首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phylogenetic analyses of sequences generated from portions of three genes coding for the proteins enolase (enoA), β-tubulin (benA), and calmodulin (calM) of a large number of isolates within the section Terrei, genus Aspergillus, revealed the presence of a new cryptic species within this section, Aspergillus alabamensis. Most members of this new cryptic species were recovered as colonizing isolates from immunocompetent patient populations, had decreased in vitro susceptibilities to the antifungal drug amphotericin B, and were morphologically similar to but genetically distinct from Aspergillus terreus isolates.Invasive infections caused by Aspergillus terreus are often disseminated with increased lethality compared with infections caused by other Aspergillus species and tend to be resistant to treatment with the antifungal drug amphotericin B (6, 14, 17). Despite the clinical significance of this organism, little is known about the epidemiology, genetic diversity, and population structure of A. terreus.Historically, A. terreus has been identified in the laboratory by conventional methods such as colony morphology and microscopic characteristics. Such morphological studies have placed A. terreus as a single homogenous species within the section Terrei along with two other varieties, A. terreus var. africanus and A. terreus var. aureus (11). Recent studies have shown that morphological characteristics may not be reliable for distinguishing Aspergillus species, as inferred from the demonstration of multiple cryptic species within the section Fumigati by molecular phylogenetic methods (3-5, 13, 18).In the past, molecular methods largely based on randomly amplified polymorphic DNA-PCR-based assays have shown that A. terreus isolates can have great strain diversity (1, 8, 16). One recent genotyping study of several A. terreus clinical isolates recovered from two different medical centers using this method concluded that nosocomial acquisition of A. terreus infections was highly unlikely given the great genetic diversity observed (7). Another study demonstrated that comparative sequence analyses of the D1 and D2 regions had limited utility to study relationships within the section Terrei, while the internal transcribed spacer regions were useful since there was more nucleotide diversity in this region (16). However, the authors of this study could not resolve species within the section Terrei using these molecular approaches.In the present study, we have developed a multilocus sequence approach employing three protein-coding regions to study species diversity of the section Terrei using a large panel of isolates from both clinical and environmental origins recovered from various parts of the world. The studies outlined below demonstrate the presence of a new, clinically relevant species, Aspergillus alabamensis, and clarify the taxonomic position of the A. terreus variant A. terreus var. aureus.  相似文献   

3.
NADP-Glutamate dehydrogenase (NADP-GDH) located at the interface of carbon and nitrogen metabolism has the potential to dictate fungal carbon flux. NADP-GDH from Aspergillus terreus, itaconate producer and an opportunistic pathogen, was purified to homogeneity using novel reactive dye-affinity resins. The pure enzyme was extensively characterized for its biochemical and kinetic properties and compared with its well studied Aspergillus niger counterpart. The A. terreus NADP-GDH was more stable and showed non-competitive ammonium inhibition with respect to glutamate. It exhibited hyperbolic 2-oxoglutarate saturation albeit with a weak substrate inhibition. This is in contrast to the allosteric nature of the enzyme from other Aspergilli. Differential susceptibility to chymotrypsin is also consistent with the absence of substrate cooperativity and conformational changes associated with A. terreus NADP-GDH. The non-allosteric nature of A. terreus NADP-GDH provides a unique opportunity to assess the contribution of allostery in metabolic regulation.  相似文献   

4.
Aspergillus terreus is emerging as an etiologic agent of invasive aspergillosis in immunocompromised individuals in several medical centers in the world. Infections due to A. terreus are of concern due to its resistance to amphotericin B, in vivo and in vitro, resulting in poor response to antifungal therapy and high mortality. Herein we examined a large collection of molecularly characterized, geographically diverse A. terreus isolates (n = 140) from clinical and environmental sources in India for the occurrence of cryptic A. terreus species. The population structure of the Indian A. terreus isolates and their association with those outside India was determined using microsatellite based typing (STR) technique and Amplified Fragment Length Polymorphism analysis (AFLP). Additionally, in vitro antifungal susceptibility of A. terreus isolates was determined against 7 antifungals. Sequence analyses of the calmodulin locus identified the recently described cryptic species A. hortai, comprising 1.4% of Aspergillus section Terrei isolates cultured from cases of aspergilloma and probable invasive aspergillosis not reported previously. All the nine markers used for STR typing of A. terreus species complex proved to be highly polymorphic. The presence of high genetic diversity revealing 75 distinct genotypes among 101 Indian A. terreus isolates was similar to the marked heterogeneity noticed in the 47 global A. terreus population exhibiting 38 unique genotypes mainly among isolates from North America and Europe. Also, AFLP analysis showed distinct banding patterns for genotypically diverse A. terreus isolates. Furthermore, no correlation between a particular genotype and amphotericin B susceptibility was observed. Overall, 8% of the A. terreus isolates exhibited low MICs of amphotericin B. All the echinocandins and azoles (voriconazole, posaconazole and isavuconazole) demonstrated high potency against all the isolates. The study emphasizes the need of molecular characterization of A. terreus species complex isolates to better understand the ecology, acquisition and transmission of this species.  相似文献   

5.
Conidial Hydrophobins of Aspergillus fumigatus   总被引:1,自引:0,他引:1       下载免费PDF全文
The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and ΔrodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. ΔrodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of ΔrodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the ΔrodA ΔrodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells.  相似文献   

6.
Aspergillus taichungensis isolated from a soil sample collected in Taiwan is described as a new species. The new species is characterized by its restricted growth on Czapek's and malt extract agars and its white to light yellow colonies, radiate conidial heads, smooth and often diminutive conidiophores, hemispherical to elongate vesicles with biseriate aspergilla (conidiogenous cells), globose, micro-verrucose conidia and dark brown sclerotia. The species somewhat resemblesA. versicolor, A. terreus andA. flavipes, but differs in cultural and morphological details, and is considered to represent an interface species in the subgenusNidulantes.  相似文献   

7.
Aspergillus terreus is an allergenic fungus, in addition to causing infections in both humans and plants. However, the allergens in this fungus are still unknown, limiting the development of diagnostic and therapeutic strategies. We used a proteomic approach to search for allergens, identifying 16 allergens based on two-dimensional immunoblotting with A. terreus susceptible patient sera. We further characterized triose-phosphate isomerase (Asp t 36), one of the dominant IgE (IgE)-reactive proteins. The gene was cloned and expressed in Escherichia coli. Phylogenetic analysis showed Asp t 36 to be highly conserved with close similarity to the triose-phosphate isomerase protein sequence from Dermatophagoides farinae, an allergenic dust mite. We identified four immunodominant epitopes using synthetic peptides, and mapped them on a homology-based model of the tertiary structure of Asp t 36. Among these, two were found to create a continuous surface patch on the 3D structure, rendering it an IgE-binding hotspot. Biophysical analysis indicated that Asp t 36 shows similar secondary structure content and temperature sensitivity with other reported triose-phosphate isomerase allergens. In vivo studies using a murine model displayed that the recombinant Asp t 36 was able to stimulate airway inflammation, as demonstrated by an influx of eosinophils, goblet cell hyperplasia, elevated serum Igs, and induction of Th2 cytokines. Collectively, our results reveal the immunogenic property of Asp t 36, a major allergen from A. terreus, and define a new fungal allergen more broadly. This allergen could serve as a potent candidate for investigating component resolved diagnosis and immunotherapy.  相似文献   

8.
Fusarium species involved in the Fusarium head blight complex in Western Europe were investigated for their potential to infect and colonize non-damaged wheat leaves and to produce conidia on senescing wheat leaves incubated at high relative humidity. Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, Fusarium poae and Fusarium tricinctum did not directly penetrate the leaf tissue after conidia germination on the leaf surface. Germ tubes grew on the host surface for 24–36 hr forming a mycelial network. After invading the host, some species formed runner hyphae between cell wall layers or underneath the cuticular layer. Macroscopic symptoms developed on leaves and stems from 7 d post inoculation. Inside leaf tissues, hyphae thickened in diameter and were both inter- and intra-cellular. Fusarium tricinctum formed sporophores which erupted through the leaf surface releasing numerous conidia. Incubation of senescing leaves at 100 % relative humidity for 48 hr resulted in sporulation of all Fusarium spp.  相似文献   

9.
Understanding the surface properties of the human opportunistic pathogen Aspergillus fumigatus conidia is essential given the important role they play during the fungal interactions with the human host. Although chitin synthases with myosin motor-like domain (CSM) play a major role in cell wall biosynthesis, the extent to which deletion of the CSM genes alter the surface structural and biophysical-biological properties of conidia is not fully characterized. We used three complementary atomic force microscopy techniques—i.e., structural imaging, chemical force microscopy with hydrophobic tips, and single-molecule force spectroscopy with lectin tips—to gain detailed insights into the nanoscale surface properties (ultrastructure, hydrophobicity) and polysaccharide composition of the wild-type and the chitin synthase mutant (ΔcsmA, ΔcsmB, and ΔcsmA/csmB) conidia of A. fumigatus. Wild-type conidia were covered with a highly hydrophobic layer of rodlet nanostructures. By contrast, the surface of the ΔcsmA mutant was almost completely devoid of rodlets, leading to loss of hydrophobicity and exposure of mannan and chitin polysaccharides. The ΔcsmB and ΔcsmA/csmB mutants showed a different behavior, i.e., the surfaces featured poorly organized rodlet layers, yet with a low hydrophobicity and substantial amounts of exposed mannan and chitin at the surface. As the rodlet layer is important for masking recognition of immunogenic fungal cell wall components by innate immune cells, disappearance of rodlet layers in all three chitin synthase mutant conidia was associated with an activation of human dendritic cells. These nanoscale analyses emphasize the important and distinct roles that the CSMA and CSMB genes play in modulating the surface properties and immune interactions of A. fumigatus and demonstrate the power of atomic force microscopy in fungal genetic studies for assessing the phenotypic characteristics of mutants altered in cell surface organization.  相似文献   

10.
Geosmithia belongs among fungi living in symbiosis with phloem-feeding bark beetles. Several species have altered their ecology to that of obligatory symbiosis with ambrosia beetles, which has led to a shift in their phenotype and caused formation of large spherical conidia. In this study, we pose the following questions; (1) Is the conidial DNA content of Geosmithia correlated with conidial volume?; (2) Is the DNA content of Geosmithia related to the degree of mutual dependence between Geosmithia and their vector? There was a positive and strong correlation between conidial DNA content and conidial volume in Geosmithia. Also species more narrowly associated with the vector tend to have a larger conidial DNA content and volume than less narrowly associated species. Ambrosia fungi achieved the biggest conidial DNA content and volume compared to other species. We suppose that polyploidisation occurred during the evolution of ambrosia species in the genus Geosmithia.  相似文献   

11.
The influence of the fungus Metarhizium robertsii Bischoff, Rehner and Humber on the mortality of four water bug species, Cymatia coleoptrata (Fabricius), Sigara assimilis (Fieber), Ilyocoris cimicoides cimicoides (Linnaeus), and Notonecta reuteri Hungerford, and bloodsucking mosquito Anopheles messeae Falleroni, was investigated under various concentrations of conidia and different treatment types. We found that the mortality of adults of the water bug species was similar or higher than that of A. messeae, with C. coleoptrata and S. assimilis being more susceptible to M. robertsii than N. reuteri, I. c. cimicoides, and the mosquito A. messeae. Treatment with dry conidia at concentrations of 5 × 104 and 5 × 105 conidia/ml caused higher mortality of the water bug species than did treatment at the same concentrations with conidia in an aqueous suspension. In contrast, higher concentrations (5 × 106 conidia/ml) led to higher mortality after treatment with the aqueous suspension, relative to treatment with dry conidia. Our studies showed that water bugs exhibited the classical development of a mycosis with hemocoel colonization, mummification, and conidia formation on cadavers directly on the surface of the water. Possible changes in invertebrate communities in aquatic ecosystems after treatment with Metarhizium are discussed.  相似文献   

12.
《Mycological Research》2006,110(7):790-800
Two new nematode-trapping fungi, Dactylellina sichuanensis and D. varietas from China, which capture nematodes by both adhesive knobs and non-constricting rings, are described and illustrated. D. sichuanensis is characterized by both adhesive knobs and non-constricting rings, solitary conidiophores and 3-(4)-6 septate conidia, as compared with species such as D. appendiculata, D. candida, D. leptospora and D. lysipaga. Although D. sichuanensis shares similar types of trapping devices, the presence of simple conidiophores and spindle-shaped conidia with these species, it can be distinguished by its larger conidia and presence of more than four septa. In D. sichuanensis, a single conidium is born at the tip of conidiophore, while in D. candida, 3–10 conidia are born near the apex of conidiophore in a capitate arrangement. It produces spindle-shaped conidia with 3–6 septa, whereas D. leptospora produces cylindrical-shaped conidia with 5–15 septa. D. appendiculata captures nematodes by adhesive knobs whereas D. sichuanensis captures nematodes by both adhesive knobs and non-constricting rings. They also differ in conidial size (35–82.5 μm in D. sichuanensis as compared with 57–108 μm in D. appendiculata). D. varietas is characterized by conidiophores that are branched at right-angles, and elongate to fusoid conidia, with 7–8 septa (more than 25% of which are curved). D. varietas resembles D. asthenopaga, Dactylella oxyspora and Monacrosporium multiseptatum, but has elongate-fusoid conidia, whereas D. asthenopaga possesses obconical or clavate conidia. D. varietas forms both adhesive knobs and non-constricting rings whereas Dactylella oxyspora does not produce any trapping device. M. multiseptatum differs from D. varietas in having larger conidia with an inflated middle cell. Phylogenetic analyses based on nuclear and protein coding DNA sequences (18 S, and a combined 28 S + 5.8 S + β-tubulin dataset) indicate that these two taxa should be assigned to the family Orbiliaceae.  相似文献   

13.
A leaf spotting disease of an ornamental variety of Ophiopogon japonicus was discovered at several locations in northern Thailand. In all cases a species of Phyllosticta was associated with the lesions. Phyllosticta ophiopogonis sp. nov. is distinguished from Phyllosticta species from Liliaceae in conidia size, mucilaginous sheath and appendage thus the species is introduced as new in this paper. The new species which causes unsightly lesions on this ornamental plant is described, illustrated and compared with other similar Phyllosticta species.  相似文献   

14.
Lovastatin is a secondary metabolite produced by Aspergillus terreus. A chemically defined medium was developed in order to investigate the influence of carbon and nitrogen sources on lovastatin biosynthesis. Among several organic and inorganic defined nitrogen sources metabolized by A. terreus, glutamate and histidine gave the highest lovastatin biosynthesis level. For cultures on glucose and glutamate, lovastatin synthesis initiated when glucose consumption levelled off. When A. terreus was grown on lactose, lovastatin production initiated in the presence of residual lactose. Experimental results showed that carbon source starvation is required in addition to relief of glucose repression, while glutamate did not repress biosynthesis. A threefold-higher specific productivity was found with the defined medium on glucose and glutamate, compared to growth on complex medium with glucose, peptonized milk, and yeast extract.  相似文献   

15.
In contrast to popular belief, a rich variety of morphological characteristics exists in the imperfect states of powdery mildews. Because it has been generally assumed that species cannot be distinguished by their appressoria, haustoria, conidiophores, conidia, fibrosin bodies, and conidial germ tubes, their morphology has received little attention and several older publications have even been forgotten. As with the perfect states, few species can be recognized by one characteristic of the imperfect state alone but many species can be identified when a combination of several characteristics is used. Important characteristics are the location of the mycelium, the production of conidia singly or in chains, the presence or absence of conspicuous fibrosin bodies, the appressoria, the size and shape of the conidia, and the position and type of their germ tubes. Many species are associated with particular families or genera of plants and therefore these are included in a key to identify 131 species of powdery mildew. This key shows how much and especially how little is known about many species. It is hoped that this review will stimulate study of the morphology of the imperfect states of numerous species. Consideration of both the perfect and the imperfect state should result in a more natural classification of several genera, for exampleUncinula andErysiphe which at present include both species which produce conidia in long chains and those which produce conidia singly. It appears that there are two lines of development of the imperfect states. One is characterized by lobed appressoria and conidiophores which produce conidia singly. The other is characterized by more or less rounded, unlobed appressoria and conidiophores which produce conidia in chains. A better knowledge of all the different imperfect states may provide more information regarding the evolution of powdery mildews.  相似文献   

16.
17.
《Mycoscience》2014,55(2):118-123
During study of endophytic fungal diversity in tropical region, a new species of Arthrinium was isolated from healthy petiole of Jatropha podagrica. It is characterized by aseptate, dark brown, circular, lenticular conidia with hyaline margin, broad, hyaline conidiophores with numerous brown septa and ampulliform–lageniform conidiophore mother cells. The new species superficially resembles A. phaeospermum and A. saccharicola in having circular lenticular conidia, but differs in conidia and conidiophore size, and shape of conidiophore mother cells. Phylogenetic study using sequence analysis of ITS region (ITS1–5.8S–ITS2) separates the new species (A. jatrophae) from other related species of Arthrinium.  相似文献   

18.
Solicorynespora insolita sp. nov. and Solicory-nespora biseptata sp. nov., collected from plant debris in natural areas of Spain, are described and illustrated. The former species is characterized by obclavate to fusiform, 4- to 7-septate, dark brown conidia, with a mucous tunica at the apex; sometimes with an unusual oblong to bacilliform, hyaline, phialidic conidial synanamorph arising from the apical cell. Analysis of D1/D2 region rDNA sequences revealed that this fungus is related to members of the family Kirschsteiniotheliaceae of the Dothideomycetes. Solicorynespora biseptata is distinguished by obclavate, 2-septate, brown, but pale brown at the apex, smooth conidia. This latter fungus did not grow in culture. A key to species of Solicorynespora is provided.  相似文献   

19.
The soil-dwelling fungus Aspergillus terreus was isolated from sediment collected from the lake of Wadi EI Natrun in Egypt. Co-cultivation of A. terreus with the bacteria Bacillus subtilis and Bacillus cereus on solid rice medium resulted in an up to 34-fold increase in the accumulation of constitutively present fungal natural products (415) compared to axenic cultures of A. terreus. The fungal products included two new butyrolactone derivatives, isobutyrolactone II (1) and 4-O-demethylisobutyrolactone II (2), together with the known N-(carboxymethyl)anthranilic acid (3) that were not present in axenic fungal controls and were only detected during co-cultivation with B. subtilis or with B. cereus. The structures of all compounds were unambiguously elucidated by 1D and 2D NMR spectroscopy, and by HRESIMS measurements, as well as by comparison with the literature. In a second set of experiments, A. terreus was co-cultured with Streptomyces lividans and with Streptomyces coelicolor. These co-cultivation experiments failed to induce fungal natural product accumulation in contrast to co-cultures with Bacillus sp. Compounds 5 and 14 showed weak inhibition of B. cereus with minimal inhibitory concentrations (MICs) of 64 μg/mL, whereas only 8 showed moderate cytotoxicity against the murine lymphoma (L5178Y) cell line with inhibition of 80% at a dose of 10 μg/mL.  相似文献   

20.

Aspergilli are among the most abundant fungi worldwide. They degrade organic material and can be pathogens of plants and animals. Aspergilli spread by forming high numbers of conidia. Germination of these stress resistant asexual spores is characterized by a swelling and a germ tube stage. Here, we show that conidia of Aspergillus niger, Aspergillus oryzae, Aspergillus clavatus, Aspergillus nidulans and Aspergillus terreus show different swelling and germ tube formation dynamics in pure water or in water supplemented with (in)organic nutrients. Apart from inter-species heterogeneity, intra-species heterogeneity was observed within spore populations of the aspergilli except for A. terreus. Sub-populations of conidia differing in size and/or contrast showed different swelling and germ tube formation dynamics. Together, data imply that aspergilli differ in their competitive potential depending on the substrate. Moreover, results suggest that intra-species heterogeneity provides a bet hedging mechanism to optimize survival of aspergilli.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号