首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Retinoic acid (RA) is a meiosis-inducing factor. Primordial germ cells (PGCs) in the developing ovary are exposed to RA, resulting in entry into meiosis. In contrast, PGCs in the developing testis enter mitotic arrest to differentiate into prospermatogonia. Sertoli cells express CYP26B1, an RA-metabolizing enzyme, providing a simple explanation for why XY PGCs do not initiate meios/is. However, regulation of entry into mitotic arrest is likely more complex. To investigate the mechanisms that regulate male germ cell differentiation, we cultured XX and XY germ cells at 11.5 and 12.5 days postcoitus (dpc) with an RA receptor inhibitor. Expression of Stra8, a meiosis initiation gene, was suppressed in all groups. However, expression of Dnmt3l, a male-specific gene, during embryogenesis was elevated but only in 12.5-dpc XY germ cells. This suggests that inhibiting RA signaling is not sufficient for male germ cell differentiation but that the male gonadal environment also contributes to this pathway. To define the influence of Sertoli cells on male germ cell differentiation, Sertoli cells at 12.5, 15.5, and 18.5 dpc were aggregated with 11.5 dpc PGCs, respectively. After culture, PGCs aggregated with 12.5 dpc Sertoli cells increased Nanos2 and Dnmt3l expression. Furthermore, these PGCs established male-specific methylation imprints of the H19 differentially methylated domains. In contrast, PGCs aggregated with Sertoli cells at late embryonic ages did not commit to the male pathway. These findings suggest that male germ cell differentiation is induced both by inhibition of RA signaling and by molecule(s) production by embryonic age-specific Sertoli cells.  相似文献   

2.
Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis.  相似文献   

3.
Testicular teratomas result from anomalies in germ cell development during embryogenesis. In the 129 family of inbred strains of mice, teratomas initiate around embryonic day (E) 13.5 during the same developmental period in which female germ cells initiate meiosis and male germ cells enter mitotic arrest. Here, we report that three germ cell developmental abnormalities, namely continued proliferation, retention of pluripotency, and premature induction of differentiation, associate with teratoma susceptibility. Using mouse strains with low versus high teratoma incidence (129 versus 129-Chr19(MOLF/Ei)), and resistant to teratoma formation (FVB), we found that germ cell proliferation and expression of the pluripotency factor Nanog at a specific time point, E15.5, were directly related with increased tumor risk. Additionally, we discovered that genes expressed in pre-meiotic embryonic female and adult male germ cells, including cyclin D1 (Ccnd1) and stimulated by retinoic acid 8 (Stra8), were prematurely expressed in teratoma-susceptible germ cells and, in rare instances, induced entry into meiosis. As with Nanog, expression of differentiation-associated factors at a specific time point, E15.5, increased with tumor risk. Furthermore, Nanog and Ccnd1, genes with known roles in testicular cancer risk and tumorigenesis, respectively, were co-expressed in teratoma-susceptible germ cells and tumor stem cells, suggesting that retention of pluripotency and premature germ cell differentiation both contribute to tumorigenesis. Importantly, Stra8-deficient mice had an 88% decrease in teratoma incidence, providing direct evidence that premature initiation of the meiotic program contributes to tumorigenesis. These results show that deregulation of the mitotic-meiotic switch in XY germ cells contributes to teratoma initiation.  相似文献   

4.
Hajnal A  Berset T 《The EMBO journal》2002,21(16):4317-4326
In the Caenorhabditis elegans hermaphrodite germline, spatially restricted mitogen-activated protein kinase (MAPK) signalling controls the meiotic cell cycle. First, the MAPK signal is necessary for the germ cells to progress through pachytene of meiotic prophase I. As the germ cells exit pachytene and enter diplotene/diakinesis, MAPK is inactivated and the developing oocytes arrest in diakinesis (G(2)/M arrest). During oocyte maturation, a signal from the sperm reactivates MAPK to promote M phase entry. Here, we show that the MAPK phosphatase LIP-1 dephosphorylates MAPK as germ cells exit pachytene in order to maintain MAPK in an inactive state during oocyte development. Germ cells lacking LIP-1 fail to arrest the cell cycle at the G(2)/M boundary, and they enter a mitotic cell cycle without fertilization. LIP-1 thus coordinates oocyte cell cycle progression and maturation with ovulation and fertilization.  相似文献   

5.
Germ cell sex is defined by factors derived from somatic cells. CYP26B1 is known to be a male sex-promoting factor that inactivates retinoic acid (RA) in somatic cells. In CYP26B1-null XY gonads, germ cells are exposed to a higher level of RA than in normal XY gonads and this activates Stra8 to induce meiosis while male-specific gene expression is suppressed. However, it is unknown whether meiotic entry by an elevated level of RA is responsible for the suppression of male-type gene expression. To address this question, we have generated Cyp26b1/Stra8 double knockout (dKO) embryos. We successfully suppressed the induction of meiosis in CYP26B1-null XY germ cells by removing the Stra8 gene. Concomitantly, we found that the male genetic program represented by the expression of NANOS2 and DNMT3L was totally rescued in about half of dKO germ cells, indicating that meiotic entry causes the suppression of male differentiation. However, half of the germ cells still failed to enter the appropriate male pathway in the dKO condition. Using microarray analyses together with immunohistochemistry, we found that KIT expression was accompanied by mitotic activation, but was canceled by inhibition of the RA signaling pathway. Taken together, we conclude that inhibition of RA is one of the essential factors to promote male germ cell differentiation, and that CYP26B1 suppresses two distinct genetic programs induced by RA: a Stra8-dependent meiotic pathway, and a Stra8-independent mitotic pathway.  相似文献   

6.
Fetal mouse testes and ovaries with their urogenital connections were cultured singly or in pairs on Nuclepore filters. When a testis in which the sex was not yet morphologically detectable was cultured together with older ovaries containing germ cells which were progressing through the meiotic prophase, the male germ cells were triggered to enter meiosis. When older fetal testes in which the testicular cords have developed were cultured together with ovaries of the same age with germ cells in meiosis, the oocytes were prevented from reaching diplotene stage. It was concluded that the fetal male and female gonads secrete diffusable substances which influence germ cell differentiation. The male gonad secretes a "meiosis-preventing substance" (MPS) which can arrest the female germ cells within the meiotic prophase. The female gonad secretes a "meiosis-inducing substance" (MIS) which can trigger the nondifferentiated male germ cells to enter meiosis.  相似文献   

7.
In mammals, early fetal germ cells are unique in their ability to initiate the spermatogenesis or oogenesis programs dependent of their somatic environment. In mice, female germ cells enter into meiosis at 13.5 dpc whereas in the male, germ cells undergo mitotic arrest. Recent findings indicate that Cyp26b1, a RA-degrading enzyme, is a key factor preventing initiation of meiosis in the fetal testis. Here, we report evidence for additional testicular pathways involved in the prevention of fetal meiosis. Using a co-culture model in which an undifferentiated XX gonad is cultured with a fetal or neonatal testis, we demonstrated that the testis prevented the initiation of meiosis and induced male germ cell differentiation in the XX gonad. This testicular effect disappeared when male meiosis starts in the neonatal testis and was not directly due to Cyp26b1 expression. Moreover, neither RA nor ketoconazole, an inhibitor of Cyp26b1, completely prevented testicular inhibition of meiosis in co-cultured ovary. We found that secreted factor(s), with molecular weight greater than 10 kDa contained in conditioned media from cultured fetal testes, inhibited meiosis in the XX gonad. Lastly, although both Sertoli and interstitial cells inhibited meiosis in XX germ cells, only interstitial cells induced mitotic arrest in germ cell. In conclusion, our results demonstrate that male germ cell determination is supported by additional non-retinoid secreted factors inhibiting both meiosis and mitosis and produced by the testicular somatic cells during fetal and neonatal life.  相似文献   

8.
In response to induced DNA damage, proliferating cells arrest in their cell cycle or go into apoptosis. Ionizing radiation is known to induce degeneration of mammalian male germ cells. The effects on cell-cycle progression, however, have not been thoroughly studied due to lack of methods for identifying effects on a particular cell-cycle phase of a specific germ cell type. In this study, we have utilized the technique for isolation of defined segments of seminiferous tubules to examine the cell-cycle progression of irradiated rat mitotic (type B spermatogonia) and meiotic (preleptotene spermatocytes) G1/S cells. Cells irradiated as type B spermatogonia in mitotic S phase showed a small delay in progression through meiosis. Thus, it seems that transient arrest in the progression can occur in the otherwise strictly regulated progression of germ cells in the seminiferous epithelium. Contrary to the arrest observed in type B spermatogonia and in previous studies on somatic cells, X-irradiation did not result in a G1 delay in meiotic cells. This lack of arrest occurred despite the presence of unrepaired DNA damage that was measured when the cells had progressed through the two meiotic divisions.  相似文献   

9.
During mouse embryonic development germ cells proliferate extensively until they commit to the male or female pathway and arrest in mitosis or meiosis respectively. Whilst the transition of female germ cells exiting the mitotic cell cycle and entering meiosis is well defined histologically, the essential cell cycle proteins involved in this process have remained unresolved. Using flow cytometry we have examined the entry of female germ cells into meiosis, their termination of DNA synthesis and entry into prophase I. Analysis of key G2/M cell cycle proteins revealed that entry into meiosis and cell cycle exit at G2/M involves repression of G2/M promoting Cyclin B1, coincident upregulation of G2/M repressing Cyclin B3 and robust establishment of the ATM/CHK2 pathway. By contrast we show that the ATR/CHK1 pathway is activated in male and female germ cells. This data indicates that an important G2/M surveillance mechanism operates during germ cell proliferation and that passage into meiotic G2/M involves the combined repression of G2/M through Cyclin B3 and activation of the key G2/M checkpoint regulatory network modulated through ATM and CHK2. This work shows that the core regulatory machinery that controls G2/M progression in mitotic cells is activated in female mouse germ cells as they enter meiosis.  相似文献   

10.
During mouse fetal development, meiosis is initiated in female germ cells only, with male germ cells undergoing mitotic arrest. Retinoic acid (RA) is degraded by Cyp26b1 in the embryonic testis but not in the ovary where it initiates the mitosis/meiosis transition. However the role of RA status in fetal germ cell proliferation has not been elucidated. As expected, using organ cultures, we observed that addition of RA in 11.5 days post-conception (dpc) testes induced Stra8 expression and meiosis. Surprisingly, in 13.5 dpc testes although RA induced Stra8 expression it did not promote meiosis. On 11.5 and 13.5 dpc, RA prevented male germ cell mitotic arrest through PI3K signaling. Therefore 13.5 dpc testes appeared as an interesting model to investigate RA effects on germ cell proliferation/differentiation independently of RA effect on the meiosis induction. At this stage, RA delayed SSEA-1 extinction, p63γ expression and DNA hypermethylation which normally occur in male mitotic arrested germ cells. In vivo, in the fetal male gonad, germ cells cease their proliferation and loose SSEA-1 earlier than in female gonad and RA administration maintained male germ cell proliferation. Lastly, inhibition of endogenous Cyp26 activity in 13.5 dpc cultured testes also prevented male germ cell mitotic arrest. Our data demonstrate that the reduction of RA levels, which occurs specifically in the male fetal gonad and was known to block meiosis initiation, is also necessary to allow the establishment of the germ cell mitotic arrest and the correct further differentiation of the fetal germ cells along the male pathway.  相似文献   

11.
12.
Ex ovo omnia—all animals come from eggs—this statement made in 1651 by the English physician William Harvey marks a seminal break with the doctrine that all essential characteristics of offspring are contributed by their fathers, while mothers contribute only a material substrate. More than 360 years later, we now have a comprehensive understanding of how haploid gametes are generated during meiosis to allow the formation of diploid offspring when sperm and egg cells fuse. In most species, immature oocytes are arrested in prophase I and this arrest is maintained for few days (fruit flies) or for decades (humans). After completion of the first meiotic division, most vertebrate eggs arrest again at metaphase of meiosis II. Upon fertilization, this second meiotic arrest point is released and embryos enter highly specialized early embryonic divisions. In this review, we discuss how the standard somatic cell cycle is modulated to meet the specific requirements of different developmental stages. Specifically, we focus on cell cycle regulation in mature vertebrate eggs arrested at metaphase II (MII‐arrest), the first mitotic cell cycle, and early embryonic divisions.  相似文献   

13.
Production of functional eggs requires meiosis to be coordinated with developmental signals. Oocytes arrest in prophase I to permit oocyte differentiation, and in most animals, a second meiotic arrest links completion of meiosis to fertilization. Comparison of oocyte maturation and egg activation between mammals, Caenorhabditis elegans, and Drosophila reveal conserved signaling pathways and regulatory mechanisms as well as unique adaptations for reproductive strategies. Recent studies in mammals and C. elegans show the role of signaling between surrounding somatic cells and the oocyte in maintaining the prophase I arrest and controlling maturation. Proteins that regulate levels of active Cdk1/cyclin B during prophase I arrest have been identified in Drosophila. Protein kinases play crucial roles in the transition from meiosis in the oocyte to mitotic embryonic divisions in C. elegans and Drosophila. Here we will contrast the regulation of key meiotic events in oocytes.  相似文献   

14.
15.
The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal ovarian germ cells to mesonephros-derived retinoic acid (RA). Aspects of this model are hard to reconcile with the spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros at 8-9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to detect RA receptors RARα, β and RXRα, we find germ cells to be the predominant target of RA signalling in the fetal human ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1. Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis, but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local production of RA within the fetal ovary may be important in regulating the onset of meiosis in the human fetal ovary, mechanisms other than CYP26B1-mediated metabolism of RA may exist to inhibit the entry of germ cells into meiosis in the human fetal testis.  相似文献   

16.
Mouse primordial germ cells (PGCs) migrate from the base of the allantois to the genital ridge. They proliferate both during migration and after their arrival, until initiation of the sex-differentiation of fetal gonads. Then, PGCs enter into the prophase of the first meiotic division in the ovary to become oocytes, while those in the testis become mitotically arrested to become prospermatogonia. Growth regulation of mouse PGCs has been studied by culturing them on feeder cells. They show a limited period of proliferation in vitro and go into growth arrest, which is in good correlation with their developmental changes in vivo. However, in the presence of multiple growth signals, PGCs can restart rapid proliferation and transform into pluripotent embryonic germ (EG) cells. Observation of ectopic germ cells and studies of reaggregate cultures suggested that both male and female PGCs show cell-autonomous entry into meiosis and differentiation into oocytes if they were set apart from the male gonadal environments. Recently, we developed a two-dimensional dispersed culture system in which we can examine transition from the mitotic PGCs into the leptotene stage of the first meiotic division. Such entry into meiosis seems to be programmed in PGCs before reaching the genital ridges and unless it is inhibited by putative signals from the testicular somatic cells.  相似文献   

17.
In vitro culture of mouse primordial germ cells   总被引:5,自引:0,他引:5  
Germ cells were isolated from mouse fetal gonads 11 1/2-16 1/2 days post coitum (dpc), and exposed to various methods of in vitro culture. From 13 1/2 dpc onwards, both male and female germ cells survived well at 37 degrees C for several days. During the culture period the proportion of female germ cells in meiosis increased and later stages of meiotic prophase were seen. The gonadal environment is therefore not essential for the progress of meiosis. Male germ cells in vitro did not enter meiosis. Germ cells isolated from gonads 11 1/2 or 12 1/2 dpc did not survive at 37 degrees C in any of the three culture systems used (Petri dishes, microtest plate wells, drops under oil); cell density, substrate and culture medium were varied, and several additives tested, but no improvement in viability was detected. Below 30 degrees C, on the other hand, 11 1/2 and 12 1/2 day germ cells survived in vitro for at least a week. They did not enter meiosis in culture, but continued to undergo mitotic proliferation.  相似文献   

18.
Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex‐specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down‐regulation of genes involved in both G1‐ and G2‐phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号