首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degree of leaf dissection and the presence of leaf teeth, along with tooth size and abundance, inversely correlate with mean annual temperature (MAT) across many plant communities. These relationships form the core of several methods for reconstructing MAT from fossils, yet the direct selection of temperature on tooth morphology has not been demonstrated experimentally. It is also not known if atmospheric CO2 concentration affects leaf shape, limiting confidence in ancient climate reconstructions because CO2 has varied widely on geologic timescales. Here I report the results of growing Acer rubrum (red maple) in growth cabinets at contrasting temperature and CO2 conditions. The CO2 treatment imparted no significant differences in leaf size and shape, while plants grown at cooler temperatures tended to have more teeth and more highly dissected leaves. These results provide direct evidence for the selection of temperature on leaf shape in one species, and support a key link in many leaf-climate methods. More broadly, these results increase confidence for using leaf shape in fossils to reconstruct paleoclimate.  相似文献   

2.
Salinity and tidal inundation induce physiological stress in vascular plant species and influence their distribution and productivity in estuarine wetlands. Climate change-induced sea level rise may magnify these abiotic stressors and the physiological stresses they can cause. Understanding the potential of invasive plants to respond to predicted salinity increases will elucidate their potential niche breadth. To examine potential phenotypic plasticity and functional trait responses to salinity stress in the invasive cordgrass Spartina densiflora, we collected rhizomes from four invasive populations occurring from California to Vancouver Island, British Columbia on the Pacific Coast of North America. In a glasshouse common garden experiment, we measured plant traits associated with growth and allocation, photosynthesis, leaf pigments, and leaf chemistry and calculated plasticity indices across imposed salinity treatments. Fifteen of 21 leaf chemistry, pigment, morphological and physiological traits expressed plastic responses to salinity. When averaged across all measured traits, degree of plasticity did not vary among sampled populations. However, differences in plasticity among populations in response to salinity were observed for 9 of 21 measured plant traits. Leaf chemistry and adaxial leaf rolling trait responses demonstrated the highest degree of plasticity, while growth and allocation measures were less plastic. Phenotypic plasticity of leaf functional traits to salinity indicates the potential of S. densiflora to maintain invasive growth in response to rising estuarine salinity with climate change.  相似文献   

3.
Wu  Hao  Wei  Xinzeng  Jiang  Mingxi 《Plant Ecology》2021,222(12):1297-1312

Improving the accuracy of predictions regarding how plants respond to climate change is crucial to protecting biodiversity. However, little is known about the effects of seed source and elevation on the response of mountain plant species to reductions in precipitation. Here, we collected seeds of a tree species (Euptelea pleiospermum) from three seed sources and carried out a two-growing-season reciprocal transplant experiment with precipitation manipulation at three sites along an elevation gradient in the Shennongjia Mountains, central China. Variations in whole-plant traits, leaf traits, and root traits were investigated. We found that most plant traits of E. pleiospermum seedlings were affected by reductions in precipitation, and responses varied among different elevations and seed sources. Whole-plant traits, root biomass, and leaf traits related to photosynthesis capacity decreased under reduced precipitation treatments at mid and high elevation sites. Thus, climate change induced drought will likely have a negative influence on seedling growth at mid and high elevation regions. In addition, a home-site advantage in whole-plant traits and root traits was observed. However, the responses of leaf traits in most cases were not affected by seed source because of higher phenotypic plasticity. Our results suggested that both local adaptation and phenotypic plasticity were important in seedling growth responses to reduced precipitation. We also highlight the importance of taking intraspecific variation into account when studying the response of plants to changes in climate.

  相似文献   

4.
Global change is predicted to promote plant invasions world-wide, reducing biodiversity and ecosystem function. Phenotypic plasticity may influence the ability of introduced plant species to invade and dominate extant communities. However, interpreting differences in plasticity can be confounded by phylogenetic differences in morphology and physiology. Here we present a novel case investigating the role of fitness trait values and phenotypic plasticity to global change factors between conspecific lineages of Phragmites australis. We hypothesized that due to observed differences in the competitive success of North American-native and Eurasian-introduced P. australis genotypes, Eurasian-introduced P. australis would exhibit greater fitness in response to global change factors. Plasticity and plant performance to ambient and predicted levels of carbon dioxide and nitrogen pollution were investigated to understand how invasion pressure may change in North America under a realistic global change scenario. We found that the introduced Eurasian genotype expressed greater mean trait values in nearly every ecophysiological trait measured – aboveground and belowground – to elevated CO2 and nitrogen, outperforming the native North American conspecific by a factor of two to three under every global change scenario. This response is consistent with “jack and master” phenotypic plasticity. We suggest that differences in plant nitrogen productivity, specific leaf area, belowground biomass allocation, and inherently higher relative growth rate are the plant traits that may enhance invasion of Eurasian Phragmites in North America. Given the high degree of genotypic variability within this species, and our limited number of genotypes, our results must be interpreted cautiously. Our study is the first to demonstrate the potential importance of jack-and-master phenotypic plasticity in plant invasions when facing imminent global change conditions. We suggest that jack-and-master invasive genotypes and/or species similar to introduced P. australis will have an increased ecological fitness, facilitating their invasion in both stressful and resource rich environments.  相似文献   

5.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   

6.
7.
Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments? When the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has little predictive value for the change in a second trait. To characterize such “tunability” in developmental plasticity, we carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to environment – a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given environment.  相似文献   

8.
In a warming climate, the ability to accurately predict and track shifting environmental conditions will be fundamental for plant survival. Environmental cues define the transitions between growth and dormancy as plants synchronise development with favourable environmental conditions, however these cues are predicted to change under future climate projections which may have profound impacts on tree survival and growth. Here, we use a quantitative genetic approach to estimate the genetic basis of spring and autumn phenology in Populus trichocarpa to determine this species capacity for climate adaptation. We measured bud burst, leaf coloration, and leaf senescence traits across two years (2017–2018) and combine these observations with measures of lifetime growth to determine how genetic correlations between phenology and growth may facilitate or constrain adaptation. Timing of transitions differed between years, although we found strong cross year genetic correlations in all traits, suggesting that genotypes respond in consistent ways to seasonal cues. Spring and autumn phenology were correlated with lifetime growth, where genotypes that burst leaves early and shed them late had the highest lifetime growth. We also identified substantial heritable variation in the timing of all phenological transitions (h2 = 0.5–0.8) and in lifetime growth (h2 = 0.8). The combination of additive variation and favourable genetic correlations in phenology traits suggests that populations of cultivated varieties of P. Trichocarpa may have the capability to adapt their phenology to climatic changes without negative impacts on growth.Subject terms: Plant breeding, Forest ecology, Evolutionary genetics  相似文献   

9.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   

10.
When exotic species spread over novel environments, their phenotype will depend on a combination of different processes, including phenotypic plasticity (PP), local adaptation (LA), environmental maternal effects (EME) and genetic drift (GD). Few attempts have been made to simultaneously address the importance of those processes in plant invasion. The present study uses the well-documented invasion history of Senecio inaequidens (Asteraceae) in southern France, where it was introduced at a single wool-processing site. It gradually invaded the Mediterranean coast and the Pyrenean Mountains, which have noticeably different climates. We used seeds from Pyrenean and Mediterranean populations, as well as populations from the first introduction area, to explore the phenotypic variation related to climatic variation. A reciprocal sowing experiment was performed with gardens under Mediterranean and Pyrenean climates. We analyzed climatic phenotypic variation in germination, growth, reproduction, leaf physiology and survival. Genetic structure in the studied invasion area was characterized using AFLP. We found consistent genetic differentiation in growth traits but no home-site advantage, so weak support for LA to climate. In contrast, genetic differentiation showed a relationship with colonization history. PP in response to climate was observed for most traits, and it played an important role in leaf trait variation. EME mediated by seed mass influenced all but leaf traits in a Pyrenean climate. Heavier, earlier-germinating seeds produced larger individuals that produced more flower heads throughout the growing season. However, in the Mediterranean garden, seed mass only influenced the germination rate. The results show that phenotypic variation in response to climate depends on various ecological and evolutionary processes associated with geographical zone and life history traits. Seeing the relative importance of EME and GD, we argue that a “local adaptation vs. phenotypic plasticity” approach is therefore not sufficient to fully understand what shapes phenotypic variation and genetic architecture of invasive populations.  相似文献   

11.
The planktonic copepod Acartia hudsonica apparently requires summer diapause or dormancy to persist in Narragansett Bay, RI. In estuaries to the north, however, active A. hudsonica populations are present year-round and may not express dormancy. Using a full-sibling rearing design and analysis of variance (ANOVA), I assessed the importance of phenotypic and genetic sources of variation in two geographically separate populations, one from Maine and one from Rhode Island. Both populations showed phenotypic plasticity in the percentage of dormant eggs produced. Moreover, experiments revealed significant sibship-environment interactions in both populations, indicating that the phenotypic plasticity has a genetic component. Both populations also revealed a significant amount of genetic variation in the percentage of dormant eggs produced. For the Maine population, broad sense heritability was high (0.91, 1.10) in two short-day (12L:12D) treatments and near zero (0.08) in the long-day treatment (15L:9D). For a Rhode Island population, broad sense heritability was higher (0.95) in a low-temperature short-day treatment (13.5 °C, 12L:12D) than in a high-temperature short-day treatment (17.5 °C, 12L:12D; h2=0.25).  相似文献   

12.
Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species.  相似文献   

13.
Background and AimsThe centre–periphery hypothesis posits that higher species performance is expected in geographic and ecological centres rather than in peripheral populations. However, this is not the commonly found pattern; therefore, alternative approaches, including the historical dimension of species geographical ranges, should be explored. Morphological functional traits are fundamental determinants of species performance, commonly related to environmental stability and productivity. We tested whether or not historical processes may have shaped variations in tree and leaf traits of the Chaco tree Bulnesia sarmientoi.MethodsMorphological variation patterns were analysed from three centre–periphery approaches: geographical, ecological and historical. Tree (stem and canopy) and leaf (leaf size and specific leaf area) traits were measured in 24 populations across the species range. A principal component analysis was performed on morphological traits to obtain synthetic variables. Linear mixed-effects models were used to test which of the implemented centre–periphery approaches significantly explained trait spatial patterns.Key ResultsThe patterns retrieved from the three centre–periphery approaches were not concordant. The historical approach revealed that trees were shorter in centre populations than in the periphery. Significant differences in leaf traits were observed between the geographical centre and the periphery, mainly due to low specific leaf area values towards the geographical centre. We did not find any pattern associated with the ecological centre–periphery approach.ConclusionsThe decoupled response between leaf and tree traits suggests that these sets of traits respond differently to processes occurring at different times. The geographical and historical approaches showed centres with extreme environments in relation to their respective peripheries, but the historical centre has also been a climatically stable area since the Last Glacial Maximum. The historical approach allowed for the recovery of historical processes underlying variation in tree traits, highlighting that centre–periphery delimitations should be based on a multi-approach framework.  相似文献   

14.

Background and Aims

Functional traits are indicators of plant interactions with their environment and the resource-use strategies of species can be defined through some key functional traits. The importance of genetic variability and phenotypic plasticity in trait variations in response to a common environmental change was investigated in two subalpine species.

Methods

Two species with contrasted resource-use strategies, Dactylis glomerata and Festuca paniculata, were grown along a productivity gradient in a greenhouse experiment. Functional traits of different genotypes were measured to estimate the relative roles of phenotypic plasticity and genetic variability, and to compare their levels of phenotypic plasticity.

Key Results

Trait variability in the field for the two species is more likely to be the result of phenotypic plasticity rather than of genetic differentiation between populations. The exploitative species D. glomerata expressed an overall higher level of phenotypic plasticity compared with the conservative species F. paniculata. In addition to different amplitudes of phenotypic plasticity, the two species differed in their pattern of response for three functional traits relevant to resource use (specific leaf area, leaf dry matter content and leaf nitrogen content).

Conclusions

Functional trait variability was mainly the result of phenotypic plasticity, with the exploitative species showing greater variability. In addition to average trait values, two species with different resource-use strategies differed in their plastic responses to productivity.  相似文献   

15.
Plant functional trait variation in tropical forests results from taxonomic differences in phylogeny and associated genetic differences, as well as, phenotypic plastic responses to the environment. Accounting for the underlying mechanisms driving plant functional trait variation is important for understanding the potential rate of change of ecosystems since trait acclimation via phenotypic plasticity is very fast compared to shifts in community composition and genetic adaptation. We here applied a statistical technique to decompose the relative roles of phenotypic plasticity, genetic adaptation, and phylogenetic constraints. We examined typically obtained plant functional traits, such as wood density, plant height, specific leaf area, leaf area, leaf thickness, leaf dry mass content, leaf nitrogen content, and leaf phosphorus content. We assumed that genetic differences in plant functional traits between species and genotypes increase with environmental heterogeneity and geographic distance, whereas trait variation due to plastic acclimation to the local environment is independent of spatial distance between sampling sites. Results suggest that most of the observed trait variation could not be explained by the measured environmental variables, thus indicating a limited potential to predict individual plant traits from commonly assessed parameters. However, we found a difference in the response of plant functional traits, such that leaf traits varied in response to canopy‐light regime and nutrient availability, whereas wood traits were related to topoedaphic factors and water availability. Our analysis furthermore revealed differences in the functional response of coexisting neotropical tree species, which suggests that endemic species with conservative ecological strategies might be especially prone to competitive exclusion under projected climate change.  相似文献   

16.
A multivariate selection analysis has been used to test the adaptiveness of several Iris pumila leaf traits that display plasticity to natural light conditions. Siblings of a synthetic population comprising 31 families of two populations from contrasting light habitats were grown at an open dune site and in the understory of a Pinus nigra stand in order to score variation in phenotypic expression of six leaf traits: number of senescent leaves, number of live leaves, leaf length, leaf width, leaf angle, and specific leaf area. The ambient light conditions affected the values of all traits studied except for specific leaf area. In accordance to ecophysiological expectations for an adaptive response to light, both leaf length and width were significantly greater while the angle between sequential leaves was significantly smaller in the woodland understory than at the exposed dune site. The relationship between leaf traits and vegetative fitness (total leaf area) differed across light habitats as predicted by functional hypotheses. The standardized linear selection gradient (β′) for leaf length and width were positive in sign in both environments, but their magnitude for leaf length was higher in the shade than under full sunlight. Since plasticity of leaf length in the woodland shade has been recognized as adaptive, fitness cost of producing plastic change in leaf length was assessed. In both of the available methods used, the two-step and the multivariate regression procedures, a rather high negative association between the fitness value and the plasticity of leaf length was obtained, indicating a cost of plasticity. The selection gradient for leaf angle was weak and significant only in the woodland understory. Genetic correlations between trait expressions in contrasting light environments were negative in sign and low in magnitude, implying a significant genetic variation for plasticity in these leaf traits. Furthermore, leaf length and leaf width were found to be genetically positively coupled, which indicates that there is a potential for these two traits to evolve toward their optimal phenotypic values even faster than would be expected if they were genetically independent.  相似文献   

17.
Heat is a major abiotic stress that drastically reduces chickpea yield. This study aimed to identify heat-responsive traits to sustain crop productivity by screening a recombinant inbred line (RILs) population at two locations in India (Ludhiana and Faridkot). The RIL population was derived from an inter-specific cross between heat-tolerant genotype GPF 2 (C. arietinum L.) and heat sensitive accession ILWC 292 (C. reticulatum). The pooled analysis of variance showed highly significant differences for all the traits in RILs and most of the traits were significantly affected by heat stress at both locations. High values of genotypic coefficient of variation (19.52–38.53%), phenotypic coefficient of variation (20.29–39.85%), heritability (92.50–93.90%), and genetic advance as a percentage of mean (38.68–76.74%) have been observed for plant height, number of pods per plant, biomass, yield, and hundred seed weight across the heat stress environments. Association studies and principal component analysis showed a significant positive correlation of plant height, number of pods per plant, biomass, hundred seed weight, harvest index, relative leaf water content, and pollen viability with yield under both timely-sown and late-sown conditions. Path analysis revealed that biomass followed by harvest index was the major contributor to yield among the environments. Both step-wise and multiple regression analyses concluded that number of pods per plant, biomass and harvest index consistently showed high level of contribution to the total variation in yield under both timely-sown and late-sown conditions. Thus, the holistic approach of these analyses illustrated that the promising traits provide a framework for developing heat-tolerant cultivars in chickpea.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00977-5.  相似文献   

18.
Phenotypic plasticity has been suggested as the main mechanism for species persistence under a global change scenario, and also as one of the main mechanisms that alien species use to tolerate and invade broad geographic areas. However, contrasting with this central role of phenotypic plasticity, standard models aimed to predict the effect of climatic change on species distributions do not allow for the inclusion of differences in plastic responses among populations. In this context, the climatic variability hypothesis (CVH), which states that higher thermal variability at higher latitudes should determine an increase in phenotypic plasticity with latitude, could be considered a timely and promising hypothesis. Accordingly, in this study we evaluated, for the first time in a plant species (Taraxacum officinale), the prediction of the CVH. Specifically, we measured plastic responses at different environmental temperatures (5 and 20°C), in several ecophysiological and fitness-related traits for five populations distributed along a broad latitudinal gradient. Overall, phenotypic plasticity increased with latitude for all six traits analyzed, and mean trait values increased with latitude at both experimental temperatures, the change was noticeably greater at 20° than at 5°C. Our results suggest that the positive relationship found between phenotypic plasticity and geographic latitude could have very deep implications on future species persistence and invasion processes under a scenario of climate change.  相似文献   

19.
Invasive alien species might benefit from phenotypic plasticity by being able to (i) maintain fitness in stressful environments (‘robust’), (ii) increase fitness in favourable environments (‘opportunistic’), or (iii) combine both abilities (‘robust and opportunistic’). Here, we applied this framework, for the first time, to an animal, the invasive slug, Arion lusitanicus, and tested (i) whether it has a more adaptive phenotypic plasticity compared with a congeneric native slug, Arion fuscus, and (ii) whether it is robust, opportunistic or both. During one year, we exposed specimens of both species to a range of temperatures along an altitudinal gradient (700–2400 m a.s.l.) and to high and low food levels, and we compared the responsiveness of two fitness traits: survival and egg production. During summer, the invasive species had a more adaptive phenotypic plasticity, and at high temperatures and low food levels, it survived better and produced more eggs than A. fuscus, representing the robust phenotype. During winter, A. lusitanicus displayed a less adaptive phenotype than A. fuscus. We show that the framework developed for plants is also very useful for a better mechanistic understanding of animal invasions. Warmer summers and milder winters might lead to an expansion of this invasive species to higher altitudes and enhance its spread in the lowlands, supporting the concern that global climate change will increase biological invasions.  相似文献   

20.

Background

Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada’s High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early – middle Eocene (∼53–50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada’s easternmost Arctic – Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada’s westernmost Arctic Island – Banks Island, Northwest Territories – they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island.

Principal Findings

We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower – middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO).

Conclusions/Significance

These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early – middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence time between the two extant alligatorid lineages Alligator mississippiensis and A. sinensis, and high-latitude dispersal across Beringia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号