共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic interaction between U6 snRNA and the first intron nucleotide in Saccharomyces cerevisiae.
下载免费PDF全文

Nuclear pre-mRNA splicing necessitates specific recognition of the pre-mRNA splice sites. It is known that 5' splice site selection requires base pairing of U6 snRNA with intron positions 4-6. However, no factor recognizing the highly conserved 5' splice site GU has yet been identified. We have tested if the known U6 snRNA-pre-mRNA interaction could be extended to include the first intron nucleotides and the conserved 50GAG52 sequence of U6 snRNA. We observe that some combinations of 5' splice site and U6 snRNA mutations produce a specific synthetic block to the first splicing step. In addition, the U6-G52U allele can switch between two competing 5' splice sites harboring different nucleotides following the cleavage site. These results indicate that U6 snRNA position 52 interacts with the first nucleotide of the intron before 5' splice site cleavage. Some combinations of U6 snRNA and pre-mRNA mutations also blocked the second splicing step, suggesting a role for the corresponding nucleotides in a proofreading step before exon ligation. From studies in diverse organisms, various functions have been ascribed to the conserved U6 snRNA 47ACAGAG52 sequence. Our results suggest that these discrepancies might reflect variations between different experimental systems and point to an important conserved role of this sequence in the splicing reaction. 相似文献
2.
An essential snRNA from S. cerevisiae has properties predicted for U4, including interaction with a U6-like snRNA 总被引:30,自引:0,他引:30
Three yeast snRNAs (snR20, snR7, and snR14) have been implicated in pre-mRNA splicing. snR20 and snR7 contain domains of homology to U2 and U5, respectively, and each is required for viability. These RNAs are found associated with the spliceosome, as is snR14. We show here that snR14 is also an essential gene product. Sequence analysis reveals that, like snR7 and snR20, snR14 contains a consensus binding site for the Sm antigen, a feature common to all mammalian snRNAs involved in splicing. Moreover, snR14 exhibits several blocks of sequence and structural homology to U4, which in metazoans is found in association with U6. Native gel electrophoresis demonstrates that snR14 is in fact base-paired with another yeast snRNA, designated snR6, which has primary sequence homology to U6. We conclude that snR14 is the yeast analog of U4. 相似文献
3.
The intramolecular stem-loop structure of U6 snRNA can functionally replace the U6atac snRNA stem-loop
下载免费PDF全文

The U6 spliceosomal snRNA forms an intramolecular stem-loop structure during spliceosome assembly that is required for splicing and is proposed to be at or near the catalytic center of the spliceosome. U6atac snRNA, the analog of U6 snRNA used in the U12-dependent splicing of the minor class of spliceosomal introns, contains a similar stem-loop whose structure but not sequence is conserved between humans and plants. To determine if the U6 and U6atac stem-loops are functionally analogous, the stem-loops from human and budding yeast U6 snRNAs were substituted for the U6atac snRNA structure and tested in an in vivo genetic suppression assay. Both chimeric U6/U6atac snRNA constructs were active for splicing in vivo. In contrast, several mutations of the native U6atac stem-loop that either delete putatively unpaired residues or disrupt the putative stem regions were inactive for splicing. Compensatory mutations that are expected to restore base pairing within the stem regions restored splicing activity. However, other mutants that retained base pairing potential were inactive, suggesting that functional groups within the stem regions may contribute to function. These results show that the U6atac snRNA stem-loop structure is required for in vivo splicing within the U12-dependent spliceosome and that its role is likely to be similar to that of the U6 snRNA intramolecular stem-loop. 相似文献
4.
S. cerevisiae U1 RNA is large and has limited primary sequence homology to metazoan U1 snRNA 总被引:39,自引:0,他引:39
We have cloned and sequenced the yeast SNR19 gene and show here that snR19 is the yeast homolog of metazoan U1 snRNA. sn R19 is 569 nucleotides long, strikingly larger than its metazoan counterpart. The two molecules resemble each other closely in the predicted secondary structure of their first 50 nucleotides. Primary sequence homology is restricted to some of their single-stranded regions, including 11 consecutive nucleotides at the 5' end of the two molecules, the region that interacts with pre-mRNA 5' splice junctions. snR19 is spliceosome-associated and required for in vitro pre-mRNA splicing. We also note that 8 sequences in snR19 have extensive complementarity to snR20, the large yeast U2 RNA, suggesting that yeast U1 may interact with yeast U2 by base-pairing. 相似文献
5.
6.
Mutations in the Saccharomyces cerevisiae LSM1 gene that affect mRNA decapping and 3' end protection
The decapping of eukaryotic mRNAs is a key step in their degradation. The heteroheptameric Lsm1p-7p complex is a general activator of decapping and also functions in protecting the 3' ends of deadenylated mRNAs from a 3'-trimming reaction. Lsm1p is the unique member of the Lsm1p-7p complex, distinguishing that complex from the functionally different Lsm2p-8p complex. To understand the function of Lsm1p, we constructed a series of deletion and point mutations of the LSM1 gene and examined their effects on phenotype. These studies revealed the following: (i) Mutations affecting the predicted RNA-binding and inter-subunit interaction residues of Lsm1p led to impairment of mRNA decay, suggesting that the integrity of the Lsm1p-7p complex and the ability of the Lsm1p-7p complex to interact with mRNA are important for mRNA decay function; (ii) mutations affecting the predicted RNA contact residues did not affect the localization of the Lsm1p-7p complex to the P-bodies; (iii) mRNA 3'-end protection could be indicative of the binding of the Lsm1p-7p complex to the mRNA prior to activation of decapping, since all the mutants defective in mRNA 3' end protection were also blocked in mRNA decay; and (iv) in addition to the Sm domain, the C-terminal domain of Lsm1p is also important for mRNA decay function. 相似文献
7.
Drosophila melanogaster U1 snRNA genes 总被引:6,自引:0,他引:6
We have isolated and characterized a recombinant which contains a Drosophila melanogaster U1 small nuclear RNA (snRNA) gene colinear with the published snRNA sequence. Southern hybridizations of the fly genomic DNA, using as probe a plasmid containing only the coding region of the gene, shows that the fly contains at most three or four genes and very few related sequences for the small nuclear U1 RNA. These genes were localized by in situ hybridization at different chromosomal loci and show no spatial relationship to the U2 snRNA genes. 相似文献
8.
U6 snRNA is the most conserved of all the snRNAs involved in pre-mRNA splicing, and likely plays an important role in splicing catalysis. Using a U6 snRNA fragment encompassing residues 25-99, we have identified a strong, UV-sensitive tertiary intramolecular interaction. A 5' deletion that removed sequences up to nt 37 only slightly reduced crosslinking, but further deletion of 11 bases, eliminating the nearly invariant ACAGAGA sequence, essentially abolished crosslinking, as did deletion of sequences 3' of 82A. The crosslinked residues were mapped to 44G in the ACAGAGA sequence and to 81C, the nucleotide at the base of the U6 intramolecular helix, opposite the G of the invariant AGC trinucleotide. This interaction is striking in that it has the potential to juxtapose invariant regions of U6 believed to play critical roles in splicing catalysis. 相似文献
9.
The enzyme phosphoglucomutase plays a key role in cellular metabolism by virtue of its ability to interconvert Glc-1-P and Glc-6-P. It was recently shown that a yeast strain lacking the major isoform of phosphoglucomutase (pgm2Delta) accumulates a high level of Glc-1-P and exhibits several phenotypes related to altered Ca(2+) homeostasis when d-galactose is utilized as the carbon source (Fu, L., Miseta, A., Hunton, D., Marchase, R. B., and Bedwell, D. M. (2000) J. Biol. Chem. 275, 5431-5440). These phenotypes include increased Ca(2+) uptake and accumulation and sensitivity to high environmental Ca(2+) levels. In the present study, we overproduced the enzyme UDP-Glc pyrophosphorylase to test whether the overproduction of a downstream metabolite produced from Glc-1-P can also mediate changes in Ca(2+) homeostasis. We found that overproduction of UDP-Glc did not cause any alterations in Ca(2+) uptake or accumulation. We also examined whether Glc-6-P can influence cellular Ca(2+) homeostasis. A yeast strain lacking the beta-subunit of phosphofructokinase (pfk2Delta) accumulates a high level of Glc-6-P (Huang, D., Wilson, W. A., and Roach, P. J. (1997) J. Biol. Chem. 272, 22495-22501). We found that this increase in Glc-6-P led to a 1.5-2-fold increase in total cellular Ca(2+). We also found that the pgm2Delta/pfk2Delta strain, which accumulated high levels of both Glc-6-P and Glc-1-P, no longer exhibited the Ca(2+)-related phenotypes associated with high Glc-1-P levels in the pgm2Delta mutant. These results provide strong evidence that cellular Ca(2+) homeostasis is coupled to the relative levels of Glc-6-P and Glc-1-P in yeast. 相似文献
10.
The U2/U6 snRNA complex is a conserved and essential component of the active spliceosome that interacts with the pre-mRNA substrate and essential protein splicing factors to promote splicing catalysis. Here we have elucidated the solution structure of a 111-nucleotide U2/U6 complex using an approach that integrates SAXS, NMR, and molecular modeling. The U2/U6 structure contains a three-helix junction that forms an extended "Y" shape. The U6 internal stem-loop (ISL) forms a continuous stack with U2/U6 Helices Ib, Ia, and III. The coaxial stacking of Helix Ib on the U6 ISL is a configuration that is similar to the Domain V structure in group II introns. Interestingly, essential features of the complex--including the U80 metal binding site, AGC triad, and pre-mRNA recognition sites--localize to one face of the molecule. This observation suggests that the U2/U6 structure is well-suited for orienting substrate and cofactors during splicing catalysis. 相似文献
11.
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, used to methylate homocysteine in methionine biosynthesis. Methionine can be activated by ATP to give rise to the universal methyl donor, S-adenosylmethionine (AdoMet). Previously, a chimeric MTHFR (Chimera-1) comprised of the yeast Met13p N-terminal catalytic domain and the Arabidopsis thaliana MTHFR (AtMTHFR-1) C-terminal regulatory domain was constructed (Roje, S., Chan, S. Y., Kaplan, F., Raymond, R. K., Horne, D. W., Appling, D. R., and Hanson, A. D. (2002) J. Biol. Chem. 277, 4056-4061). Engineered yeast (SCY4) expressing Chimera-1 accumulated more than 100-fold more AdoMet and 7-fold more methionine than the wild type. Surprisingly, SCY4 showed no appreciable growth defect. The ability of yeast to hyperaccumulate AdoMet was investigated by studying the intracellular compartmentation of AdoMet as well as the mode of hyperaccumulation. Previous studies have established that AdoMet is distributed between the cytosol and the vacuole. A strain expressing Chimera-1 and lacking either vacuoles (vps33 mutant) or vacuolar polyphosphate (vtc1 mutant) was not viable when grown under conditions that favored AdoMet hyperaccumulation. The hyperaccumulation of AdoMet was a robust phenomenon when these cells were grown in medium containing glycine and formate but did not occur when these supplements were replaced by serine. The basis of the nutrient-dependent AdoMet hyperaccumulation effect is discussed in relation to homocysteine biosynthesis and sulfur metabolism. 相似文献
12.
Novel structure of a human U6 snRNA pseudogene 总被引:2,自引:0,他引:2
A genomic DNA library containing human placental DNA cloned into phage lambda Charon 4A was screened for snRNA U6 genes. In vitro 32P-labeled U6 snRNA isolated from HeLa cells was used as a hybridization probe. A positive clone containing a 4.6-kb EcoRI fragment of human chromosomal DNA was recloned into the EcoRI site of pBR325 and mapped by restriction endonuclease digestion. Restriction fragments containing U6 RNA sequences were identified by hybridization with isolated U6[32P]RNA. The sequence analysis revealed a novel structure of a U6 RNA pseudogene, bearing two 17-nucleotide(nt)-long direct repeats of genuine U6 RNA sequences arranged in a head-to-tail fashion within the 5' part of the molecule. Hypothetical models as to how this type of snRNA U6 pseudogene might have been generated during evolution of the human genome are presented. When compared to mammalian U6 RNA sequences the pseudogene accounts for a 77% overall sequence homology and contains the authentic 5'- and 3'-ends of the U6 RNA. 相似文献
13.
14.
15.
The U2 and U6 snRNAs contribute to the catalysis of intron removal while U5 snRNA loop 1 holds the exons for ligation during pre-mRNA splicing. It is unclear how different exons are positioned precisely with U5 loop 1. Here, we investigate the role of U2 and U6 in positioning the exons with U5 loop 1. Reconstitution in vitro of spliceosomes with mutations in U2 allows U5-pre-mRNA interactions before the first step of splicing. However, insertion in U2 helix Ia disrupts U5-exon interactions with the intron lariat-3' exon splicing intermediate. Conversely, U6 helix Ia insertions prevent U5-pre-mRNA interactions before the first step of splicing. In vivo, synthetic lethal interactions have been identified between U2 insertion and U5 loop 1 insertion mutants. Additionally, analysis of U2 insertion mutants in vivo reveals that they influence the efficiency, but not the accuracy of splicing. Our data suggest that U2 aligns the exons with U5 loop 1 for ligation during the second step of pre-mRNA splicing. 相似文献
16.
17.
18.
19.
20.
LINE-1 (L1) is the most represented sequence of the human genome (17% of the total genomic mass). Moreover, it has been proposed for many years and demonstrated more recently that L1 has contributed to the mobilization of pseudogenes, small non-coding RNAs, such as tRNAs or snRNAs, and SINEs. In fact, it is estimated that L1 is responsible for at least 30% of our genome. The mobilization of non-L1 RNAs can occur in different ways and at different steps of the retrotransposition cycle. Here, by looking at U6 snRNA sequences mobilized by L1, we have observed an ancient repeat sequence derived from U6, present in all primate genomes. We were able to trace its origin in Euarchota genomes, most likely during the divergence of the four orders; Scandentia, Dermoptera, Plesiadapiform (extinct) and Primates. 相似文献