首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.  相似文献   

2.
Extinction of conditioned fear has been extensively studied in male rodents. Recently, there have been an increasing number of studies indicating that neural mechanisms for certain behavioral tasks and response behaviors are different in females and males. Using females in research studies can represent a challenge because of the variation of gonadal hormones during their estrous cycle. This protocol describes well-established procedures that are useful in investigating the role of estrogen in fear extinction memory consolidation in female rats. Phase of the estrous cycle and exogenous estrogen administration prior to extinction training can influence extinction recall 24 hr later. The vaginal swabbing technique for estrous phase identification described here aids the examination and manipulation of naturally cycling gonadal hormones. The use of this basic rodent model may further delineate the mechanisms by which estrogen can modulate fear extinction memory in females.  相似文献   

3.
Effects of a traditional Japanese medicine, yokukansan, which is composed of seven medicinal herbs, on glutamate-induced cell death were examined using primary cultured rat cortical neurons. Yokukansan (10–300 μg/ml) inhibited the 100 μM glutamate-induced neuronal death in a concentration-dependent manner. Among seven constituent herbs, higher potency of protection was found in Uncaria thorn (UT) and Glycyrrhiza root (GR). A similar neuroprotective effect was found in four components (geissoschizine methyl ether, hirsuteine, hirsutine, and rhynchophylline) in UT and four components (glycycoumarin, isoliquiritigenin, liquiritin, and 18β-glycyrrhetinic acid) in GR. In the NMDA receptor binding and receptor-linked Ca2+ influx assays, only isoliquiritigenin bound to NMDA receptors and inhibited the glutamate-induced increase in Ca2+ influx. Glycycoumarin and 18β-glycyrrhetinic acid bound to NMDA receptors, but did not inhibit the Ca2+ influx. The four UT-derived components did not bind to NMDA receptors. The present results suggest that neuroprotective components (isoliquiritigenin, glycycoumarin, liquiritin, and 18β-glycyrrhetinic acid in GR and geissoschizine methyl ether, hirsuteine, hirsutine, and rhynchophylline in UT) are contained in yokukansan, and isoliquiritigenin, which is one of them, is a novel NMDA receptor antagonist.  相似文献   

4.
Nishiga M  Sugimoto Y  Taga C  Fujii Y  Kamei C 《Life sciences》2002,70(18):2199-2208
We examined the effects of a histidine-deficient diet on brain histamine contents as well as on learning and memory using the eight-arm radial maze in rats. A significant decrease in histamine content in the hippocampus was observed after long-term feeding of rats with a histidine-deficient diet. At the same time, significant enhancement of the acquisition process in radial maze performance was also observed. Pyrilamine did not show a significant effect on radial maze performance in histidine-deficient rats. On the other hand, pyrilamine caused a significant spatial memory deficit in control rats. Scopolamine was effective in inhibiting spatial memory in both histidine-deficient and control rats. MK-801 caused spatial memory deficits more potently in histidine-deficient rats than in controls. Brain glycine contents showed a significant increase in the hippocampus in histidine-deficient rats. These results indicated that the spatial memory deficits induced by MK-801 in histidine-deficient rats are closely related to increased glycine levels and activation of NMDA receptors.  相似文献   

5.
MK-801, an N-methyl-D-aspartate antagonist in mammalian brain tissue, is a potent nematocidal agent. Specific MK-801 binding sites have been identified and characterized in a membrane fraction prepared from the free-living nematode Caenorhabditis elegans. The high-affinity MK-801 binding site has an apparent dissociation constant, Kd, of 225 nM. Unlike the MK-801 binding site in mammalian tissues, the C. elegans binding site is not effected by glutamate or glycine, and polyamines are potent inhibitors of specific MK-801 binding.  相似文献   

6.

Background

The neuroplasticity hypothesis of major depressive disorder proposes that a dysfunction of synaptic plasticity represents a basic pathomechanism of the disorder. Animal models of depression indicate enhanced plasticity in a ventral emotional network, comprising the amygdala. Here, we investigated fear extinction learning as a non-invasive probe for amygdala-dependent synaptic plasticity in patients with major depressive disorder and healthy controls.

Methods

Differential fear conditioning was measured in 37 inpatients with severe unipolar depression (International Classification of Diseases, 10th revision, criteria) and 40 healthy controls. The eye-blink startle response, a subcortical output signal that is modulated by local synaptic plasticity in the amygdala in fear acquisition and extinction learning, was recorded as the primary outcome parameter.

Results

After robust and similar fear acquisition in both groups, patients with major depressive disorder showed significantly enhanced fear extinction learning in comparison to healthy controls, as indicated by startle responses to conditioned stimuli. The strength of extinction learning was positively correlated with the total illness duration.

Conclusions

The finding of enhanced fear extinction learning in major depressive disorder is consistent with the concept that the disorder is characterized by enhanced synaptic plasticity in the amygdala and the ventral emotional network. Clinically, the observation emphasizes the potential of successful extinction learning, the basis of exposure therapy, in anxiety-related disorders despite the frequent comorbidity of major depressive disorder.  相似文献   

7.
Fear conditioning is relevant for elucidating the pathophysiology of anxiety, but may also be useful in the context of chronic pain syndromes which often overlap with anxiety. Thus far, no fear conditioning studies have employed aversive visceral stimuli from the lower gastrointestinal tract. Therefore, we implemented a fear conditioning paradigm to analyze the conditioned response to rectal pain stimuli using fMRI during associative learning, extinction and reinstatement.In N = 21 healthy humans, visual conditioned stimuli (CS+) were paired with painful rectal distensions as unconditioned stimuli (US), while different visual stimuli (CS) were presented without US. During extinction, all CSs were presented without US, whereas during reinstatement, a single, unpaired US was presented. In region-of-interest analyses, conditioned anticipatory neural activation was assessed along with perceived CS-US contingency and CS unpleasantness.Fear conditioning resulted in significant contingency awareness and valence change, i.e., learned unpleasantness of a previously neutral stimulus. This was paralleled by anticipatory activation of the anterior cingulate cortex, the somatosensory cortex and precuneus (all during early acquisition) and the amygdala (late acquisition) in response to the CS+. During extinction, anticipatory activation of the dorsolateral prefrontal cortex to the CS was observed. In the reinstatement phase, a tendency for parahippocampal activation was found.Fear conditioning with rectal pain stimuli is feasible and leads to learned unpleasantness of previously neutral stimuli. Within the brain, conditioned anticipatory activations are seen in core areas of the central fear network including the amygdala and the anterior cingulate cortex. During extinction, conditioned responses quickly disappear, and learning of new predictive cue properties is paralleled by prefrontal activation. A tendency for parahippocampal activation during reinstatement could indicate a reactivation of the old memory trace. Together, these findings contribute to our understanding of aversive visceral learning and memory processes relevant to the pathophysiology of chronic abdominal pain.  相似文献   

8.

Background

Retinitis pigmentosa (RP) is a progressive retinal degenerative disease that causes deterioration of rod and cone photoreceptors. A well-studied animal model of RP is the transgenic P23H rat, which carries a mutation in the rhodopsin gene. Previously, I reported that blocking retinal GABAC receptors in the P23H rat increases light responsiveness of retinal ganglion cells (RGCs). Because activation of metabotropic glutamate 1 (mGlu1) receptors may enhance the release of GABA onto GABAC receptors, I examined the possibility that blocking retinal mGlu1 receptors might in itself increase light responsiveness of RGCs in the P23H rat.

Methodology/Principal Findings

Electrical recordings were made from RGCs in isolated P23H rat retinas. Spike activity of RGCs was measured in response to brief flashes of light over a range of light intensities. Intensity-response curves were evaluated prior to and during bath application of the mGlu1 receptor antagonist JNJ16259685. I found that JNJ16259685 increased light sensitivity of all ON-center RGCs and most OFF-center RGCs studied. RGCs that were least sensitive to light showed the greatest JNJ16259685-induced increase in light sensitivity. On average, light sensitivity increased in ON-center RGCs by 0.58 log unit and in OFF-center RGCs by 0.13 log unit. JNJ16259685 increased the maximum peak response of ON-center RGCs by 7% but had no significant effect on the maximum peak response of OFF-center RGCs. The effects of JNJ16259685 on ON-center RGCs were occluded by a GABAC receptor antagonist.

Conclusions

The results of this study indicate that blocking retinal mGlu1 receptors in a rodent model of human RP potentiates transmission of any, weak signals originating from photoreceptors. This augmentation of photoreceptor-mediated signals to RGCs occurs presumably through a reduction in GABAC-mediated inhibition.  相似文献   

9.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   

10.
Interactions of the potent phencyclidine receptor agonist MK-801 with the dopaminergic system were examined in various brain regions in the rat. MK-801 increased dopamine (DA) metabolism in the pyriform cortex, entorhinal cortex, prefrontal cortex, striatum, olfactory tubercle, amygdala, and septum without affecting DA metabolism in the cingulate cortex and nucleus accumbens. In pyriform cortex and amygdala, MK-801 was more potent than phencyclidine at increasing DA metabolism. Local injections of MK-801 into ventral tegmental area and into the amygdala/pyriform cortex interface indicated that MK-801 may act at the cell body as well as the nerve terminal level to increase DA metabolism and that ongoing dopaminergic neuronal activity is a prerequisite for full drug action.  相似文献   

11.
Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself – a lever – more and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in computational neuroscience studies may be useful.  相似文献   

12.
One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT3 receptor in the development of PTSD, even though 5-HT3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.  相似文献   

13.
International Journal of Peptide Research and Therapeutics - Nowadays inquiry of possible interplay between different neurotransmitters in brain function is one of the major fields of interest for...  相似文献   

14.
Xenon (Xe) is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA) receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD). Because glutamate receptors also have been shown to play a role in fear memory reconsolidation – a state in which recalled memories become susceptible to modification – we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing) in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr) on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory.  相似文献   

15.
The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI) is considered a primary contributor to the pathophysiology of schizophrenia (SZ), but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model.  相似文献   

16.
Twenty four hours after mice were forced to swim for up to 10 minutes in cold water, there was a reduction in the ability of MK-801 to antagonize the electrical precipitation of tonic hindlimb extension. Milacemide, a lipophilic prodrug of glycine, restored the antiseizure efficacy of MK-801 to the same level observed in unstressed animals treated with milacemide and MK-801. Stimulation of the glycine-gated chloride ionophore subsequent to the liberation of free glycine could explain milacemide's pharmacologic action as an adjuvant to MK-801. Consistent with this interpretation, milacemide was able to potentiate the antiseizure effects of flurazepam, a benzodiazepine agonist, in stressed and unstressed mice and carbamazepine in unstressed animals.d-cycloserine, a partial glycine agonist with greater specificity for the strychnine-insensitive modulatory site on the NMDA receptor complex, was examined for its effect on MK-801's antiseizure efficacy. At a high dose (320 mg/kg),d-cycloserine alone had an anticonvulsant effect. Moreover, this dose ofd-cycloserine administered with MK-801 showed a significantly greater anticonvulsant efficacy than MK-801 alone. The data support the development of glycinergic interventions as adjunctive agents in the pharmacotherapy of seizure disorders.  相似文献   

17.
应用蛋白质印迹检测技术,研究早期听觉剥夺、经验对大鼠听皮层NMDA受体NR2B蛋白表达的影响.结果表明,听觉剥夺使生后14天龄组和28天龄组动物听皮层NR2B蛋白表达水平明显下降(P<0.05,P<0.01),听觉剥夺7天后再给予纯音暴露则又使NR2B表达水平明显提高(P<0.05),呈现双向调节趋势.听觉剥夺和纯音暴露对生后42天龄组大鼠听皮层NR2B表达不再产生明显调节作用(P>0.05).结果提示,在大鼠生后发育关键期,听觉剥夺、经验可改变听皮层NMDA受体NR2B蛋白表达水平.研究结果为研究感觉功能发育可塑性的机制提供了重要实验资料.  相似文献   

18.
Anticonvulsant action of MK-801, a novel noncompetitive antagonist of N-methyl-d-aspartate (NMDA) receptor, was examined in genetically epileptic E1 mice. Systemic injection of MK-801 (0.1–1.0 mg/kg) potently suppressed generalized tonic-clonic convulsions of in a dose-dependent manner (ED50, 0.17 mg/kg). This anticonvulsant effect of MK-801 appeared at a dose which did not induced any obvious behavioral changes. Following the administration of a fully anticonvulsant dose of MK-801 (1 mg/kg), amino acid analysis revealed a significantly elevated level of glycine in the hippocampus. Levels of other amino acids including glutamate, aspartate, taurine, glutamine, alanine, and -aminobutyrate were not changed either in the hippocampus or in the cerebral cortex. This study suggests that NMDA system may play an essential role in seizure-triggering mechanisms in E1 mouse.  相似文献   

19.
The effect of moderate alcohol consumption on liver fibrosis is not well understood, but evidence suggests that adenosine may play a role in mediating the effects of moderate ethanol on tissue injury. Ethanol increases the concentration of adenosine in the liver. Adenosine 2A receptor (A2AR) activation is known to enhance hepatic stellate cell (HSC) activation and A2AR deficient mice are protected from fibrosis in mice. Making use of a novel mouse model of moderate ethanol consumption in which female C57BL/6J mice were allowed continued access to 2% (vol/vol) ethanol (11% calories) or pair-fed control diets for 2 days, 2 weeks or 5 weeks and superimposed with exposure to CCl4, we tested the hypothesis that moderate ethanol consumption increases fibrosis in response to carbon tetrachloride (CCl4) and that treatment of mice with an A2AR antagonist prevents and/or reverses this ethanol-induced increase in liver fibrosis. Neither the expression or activity of CYP2E1, required for bio-activation of CCl4, nor AST and ALT activity in the plasma were affected by ethanol, indicating that moderate ethanol did not increase the direct hepatotoxicity of CCl4. However, ethanol feeding enhanced HSC activation and exacerbated liver fibrosis upon exposure to CCl4. This was associated with an increased sinusoidal angiogenic response in the liver. Treatment with A2AR antagonist both prevented and reversed the ability of ethanol to exacerbate liver fibrosis.

Conclusion

Moderate ethanol consumption exacerbates hepatic fibrosis upon exposure to CCl4. A2AR antagonism may be a potential pharmaceutical intervention to decrease hepatic fibrosis in response to ethanol.  相似文献   

20.
Exposure of rats to footshocks leads to an enduring behavioral state involving generalized fear responses and avoidance. Recent evidence suggests that the expression of negative emotional behaviors produced by a stressor is in part mediated by dynorphin and its main receptor, the kappa opioid receptor (KOR). The purpose of this study was to determine if a subcutaneous injection of the long-acting KOR antagonist norbinaltorphimine (norBNI; 15.0 and 30.0 mg/kg) given 2 days after an acute exposure of rats to footshooks (5×2 s episodes of 1.5 mA delivered over 5 min) attenuates the expression of lasting fear and anxiety. We report that exposure of rats to acute footshock produced long-lasting (>4 weeks) fear (freezing) and anxiety (avoidance of an open area in the defensive withdrawal test). The 30 mg dose of norBNI attenuated the fear expressed when shock rats were placed in the shock context at Day 9 but not Day 27 post-shock. The same dose of norBNI had no effect on the expression of generalized fear produced when shock rats were placed in a novel chamber at Days 8 and 24. In contrast, the 30 mg dose of norBNI produced consistent anxiolytic effects in shock and nonshock rats. First, the 30 mg dose was found to decrease the latency to enter the open field in the defensive withdrawal test done 30 days after the shock exposure. Second, the same high dose also had anxiolytic effects in both nonshock and shock rats as evidence by a decrease in the mean time spent in the withdrawal box. The present study shows that systemic injection of the KOR antagonist norBNI had mixed effect on fear. In contrast, norBNI had an anxiolytic effect which included the attenuation of the enhanced avoidance of a novel area produced by a prior shock experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号