首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mycobacteria use the dedicated type VII protein secretion systems ESX-1 and ESX-5 to secrete virulence factors across their highly hydrophobic cell envelope. The substrates of these systems include the large mycobacterial PE and PPE protein families, which are named after their characteristic Pro-Glu and Pro-Pro-Glu motifs. Pathogenic mycobacteria secrete large numbers of PE/PPE proteins via the major export pathway, ESX-5. In addition, a few PE/PPE proteins have been shown to be exported by ESX-1. It is not known how ESX-1 and ESX-5 recognize their cognate PE/PPE substrates. In this work, we investigated the function of the cytosolic protein EspG(5), which is essential for ESX-5-mediated secretion in Mycobacterium marinum, but for which the role in secretion is not known. By performing protein co-purifications, we show that EspG(5) interacts with several PPE proteins and a PE/PPE complex that is secreted by ESX-5, but not with the unrelated ESX-5 substrate EsxN or with PE/PPE proteins secreted by ESX-1. Conversely, the ESX-1 paralogue EspG(1) interacted with a PE/PPE couple secreted by ESX-1, but not with PE/PPE substrates of ESX-5. Furthermore, structural analysis of the complex formed by EspG(5) and PE/PPE indicates that these proteins interact in a 1:1:1 ratio. In conclusion, our study shows that EspG(5) and EspG(1) interact specifically with PE/PPE proteins that are secreted via their own ESX systems and suggests that EspG proteins are specific chaperones for the type VII pathway.  相似文献   

2.
3.
Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.  相似文献   

4.
A uniform system of genetic nomenclature for parasitic nematodes is presented. Conventions for naming strains, genes, alleles, and loci identified as DNA polymorphisms are established, and a standardized system for naming molecular clones is proposed.  相似文献   

5.
Type VII secretion systems (ESX) are responsible for transport of multiple proteins in mycobacteria. How different ESX systems achieve specific secretion of cognate substrates remains elusive. In the ESX systems, the cytoplasmic chaperone EspG forms complexes with heterodimeric PE–PPE substrates that are secreted from the cells or remain associated with the cell surface. Here we report the crystal structure of the EspG1 chaperone from the ESX-1 system determined using a fusion strategy with T4 lysozyme. EspG1 adopts a quasi 2-fold symmetric structure that consists of a central β-sheet and two α-helical bundles. In addition, we describe the structures of EspG3 chaperones from four different crystal forms. Alternate conformations of the putative PE–PPE binding site are revealed by comparison of the available EspG3 structures. Analysis of EspG1, EspG3, and EspG5 chaperones using small-angle X-ray scattering reveals that EspG1 and EspG3 chaperones form dimers in solution, which we observed in several of our crystal forms. Finally, we propose a model of the ESX-3 specific EspG3–PE5–PPE4 complex based on the small-angle X-ray scattering analysis.  相似文献   

6.
Gram-positive bacteria deploy the type VII secretion system (T7SS) to facilitate interactions between eukaryotic and prokaryotic cells. In recent work, we identified the TelC protein from Streptococcus intermedius as a T7SS-exported lipid II phosphatase that mediates interbacterial competition. TelC exerts toxicity in the inner wall zone of Gram-positive bacteria; however, intercellular intoxication of sister cells does not occur because they express the TipC immunity protein. In the present study, we sought to characterize the molecular basis of self-protection by TipC. Using sub-cellular localization and protease protection assays, we show that TipC is a membrane protein with an N-terminal transmembrane segment and a C-terminal TelC-inhibitory domain that protrudes into the inner wall zone. The 1.9-Å X-ray crystal structure of a non-protective TipC paralogue reveals that the soluble domain of TipC proteins adopts a crescent-shaped fold that is composed of three α-helices and a seven-stranded β-sheet. Subsequent homology-guided mutagenesis demonstrates that a concave surface formed by the predicted β-sheet of TipC is required for both its interaction with TelC and its TelC-inhibitory activity. S. intermedius cells lacking the tipC gene are susceptible to growth inhibition by TelC delivered between cells; however, we find that the growth of this strain is unaffected by endogenous or overexpressed TelC, although the toxin accumulates in culture supernatants. Together, these data indicate that the TelC-inhibitory activity of TipC is only required for intercellularly transferred TelC and that the T7SS apparatus transports TelC across the cell envelope in a single step, bypassing the cellular compartment in which it exerts toxicity en route.  相似文献   

7.
8.
分泌系统对于具有特殊细胞被膜结构的分枝杆菌,尤其是致病性分枝杆菌的存活和毒力非常重要.不少重要的致病因子或存活因子都通过特定的分泌系统进入环境,包括宿主体内.本文从分泌系统的基因、结构组成、分泌底物、转运机制及其与致病菌毒力的关系等几个方面介绍了分枝杆菌(mycobacteria)通用型分泌系统(general secretion pathway,SecA1)、替代型分泌系统(accessory Sec system,SecA2)、双精氨酸分泌系统(twin-arginine translocation,Tat)和Ⅶ型分泌系统(typeⅦsecretion systems,T7S system or ESX)4种分泌系统,并重点分析了Tat分泌系统.这些知识有利于从分泌系统及其底物的角度揭示结核分枝杆菌等胞内致病菌存活和逃避宿主免疫的机理,将为研发新的结核病控制措施提供依据.  相似文献   

9.
10.
11.
Highlights? EssB, a membrane-bound component of the type VII secretion system, forms a dimer ? The cytoplasmic segment EssB-N is remarkably similar to pseudokinases ? The extracellular C-terminal domain displays a helical fold ? PELDOR spectroscopy enabled construction of a model of the complete dimer  相似文献   

12.
13.
14.
The type VI secretion system (T6SS) is widely distributed in pathogenic Proteobacteria. Sequence and structural analysis of T6SS reveals a resemblance to the T4 bacteriophage tail, in which an outer sheath structure contracts an internal tube for injecting nucleic acid into bacterial cells. However, the molecular details of how this phage tail-like T6SS structure is assembled in vivo and executed for exoprotein or effector secretion remain largely unknown. Here, we used a systematic approach to identify T6SS machinery and secreted components and investigate the interaction among the putative sheath and tube components of Agrobacterium tumefaciens. We showed that 14 T6SS components play essential roles in the secretion of the T6SS hallmark exoprotein Hcp. In addition, we discovered a novel T6SS exoprotein, Atu4347, that is dispensable for Hcp secretion. Interestingly, Atu4347 and the putative tube components, Hcp and VgrG, are mainly localized in the cytoplasm but also detected on the bacterial surface. Atu4342 (TssB) and Atu4341 (TssC41) interact with and stabilize each other, which suggests that they are functional orthologs of the sheath components TssB (VipA) and TssC (VipB), respectively. Importantly, TssB interacts directly with the three exoproteins (Hcp, VgrG, and Atu4347), in which Hcp also interacts directly with VgrG-1 on co-purification from Escherichia coli. Further co-immunoprecipitation and pulldown assays revealed these subcomplex(es) in A. tumefaciens and thereby support T6SS functioning as a contractile phage tail-like structure.  相似文献   

15.
Mycobacteria use specialized type VII (ESX) secretion systems to export proteins across their complex cell walls. Mycobacterium tuberculosis encodes five nonredundant ESX secretion systems, with ESX-1 being particularly important to disease progression. All ESX loci encode extracellular membrane-bound proteases called mycosins (MycP) that are essential to secretion and have been shown to be involved in processing of type VII-exported proteins. Here, we report the first x-ray crystallographic structure of MycP1(24–407) to 1.86 Å, defining a subtilisin-like fold with a unique N-terminal extension previously proposed to function as a propeptide for regulation of enzyme activity. The structure reveals that this N-terminal extension shows no structural similarity to previously characterized protease propeptides and instead wraps intimately around the catalytic domain where, tethered by a disulfide bond, it forms additional interactions with a unique extended loop that protrudes from the catalytic core. We also show MycP1 cleaves the ESX-1 secreted protein EspB from both M. tuberculosis and Mycobacterium smegmatis at a homologous cut site in vitro.  相似文献   

16.
17.
18.
T346Hunter (Type Three, Four and Six secretion system Hunter) is a web-based tool for the identification and localisation of type III, type IV and type VI secretion systems (T3SS, T4SS and T6SS, respectively) clusters in bacterial genomes. Non-flagellar T3SS (NF-T3SS) and T6SS are complex molecular machines that deliver effector proteins from bacterial cells into the environment or into other eukaryotic or prokaryotic cells, with significant implications for pathogenesis of the strains encoding them. Meanwhile, T4SS is a more functionally diverse system, which is involved in not only effector translocation but also conjugation and DNA uptake/release. Development of control strategies against bacterial-mediated diseases requires genomic identification of the virulence arsenal of pathogenic bacteria, with T3SS, T4SS and T6SS being major determinants in this regard. Therefore, computational methods for systematic identification of these specialised machines are of particular interest. With the aim of facilitating this task, T346Hunter provides a user-friendly web-based tool for the prediction of T3SS, T4SS and T6SS clusters in newly sequenced bacterial genomes. After inspection of the available scientific literature, we constructed a database of hidden Markov model (HMM) protein profiles and sequences representing the various components of T3SS, T4SS and T6SS. T346Hunter performs searches of such a database against user-supplied bacterial sequences and localises enriched regions in any of these three types of secretion systems. Moreover, through the T346Hunter server, users can visualise the predicted clusters obtained for approximately 1700 bacterial chromosomes and plasmids. T346Hunter offers great help to researchers in advancing their understanding of the biological mechanisms in which these sophisticated molecular machines are involved. T346Hunter is freely available at http://bacterial-virulence-factors.cbgp.upm.es/T346Hunter.  相似文献   

19.
20.
The features contributing to differences in pathogenicity of the Campylobacter fetus subspecies are unknown. Putative factors involved in pathogenesis are located in genomic islands that encode a type IV secretion system (T4SS) and fic domain (filamentation induced by cyclic AMP) proteins, which may disrupt host cell processes. In the genomes of 27 C. fetus strains, three phylogenetically-different T4SS-encoding regions (T4SSs) were identified: one was located in both the chromosome and in extra-chromosomal plasmids; one was located exclusively in the chromosome; and one exclusively in extra-chromosomal plasmids. We observed that C. fetus strains can contain multiple T4SSs and that homologous T4SSs can be present both in chromosomal genomic islands (GI) and on plasmids in the C. fetus strains. The GIs of the chromosomally located T4SS differed mainly by the presence of fic genes, insertion sequence elements and phage-related or hypothetical proteins. Comparative analysis showed that T4SS sequences, inserted in the same locations, were conserved in the studied C. fetus genomes. Using phylogenetic analysis of the T4SSs, it was shown that C. fetus may have acquired the T4SS regions from other Campylobacter species by horizontal gene transfer. The identified T4SSs and fic genes were found in Cff and Cfv strains, although the presence of T4SSs and fic genes were significantly associated with Cfv strains. The T4SSs and fic genes could not be associated with S-layer serotypes or geographical origin of the strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号