首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop a new hidden Markov model-based method to analyze C elegans locomotive behavior and use this method to quantitatively characterize behavioral states. In agreement with previous work, we find states corresponding to roaming, dwelling, and quiescence. However, we also find evidence for a continuum of intermediate states. We suggest that roaming, dwelling, and quiescence may best be thought of as extremes which, mixed in any proportion, define the locomotive repertoire of C elegans foraging and feeding behavior.  相似文献   

2.
3.
A major challenge in understanding energy balance is deciphering the neural and molecular circuits that govern behavioral, physiological, and metabolic responses of animals to fluctuating environmental conditions. The neurally expressed TGF-β ligand DAF-7 functions as a gauge of environmental conditions to modulate energy balance in C. elegans. We show that daf-7 signaling regulates fat metabolism and feeding behavior through a compact neural circuit that allows for integration of multiple inputs and the flexibility for differential regulation of outputs. In daf-7 mutants, perception of depleting food resources causes fat accumulation despite reduced feeding rate. This fat accumulation is mediated, in part, through neural metabotropic glutamate signaling and upregulation of peripheral endogenous biosynthetic pathways that direct energetic resources into fat reservoirs. Thus, neural perception of adverse environmental conditions can promote fat accumulation without a concomitant increase in feeding rate.  相似文献   

4.
Food deprivation is known to affect physiology and behavior. Changes that occur could be the result of the organism's monitoring of internal and external nutrient availability. In C. elegans, male mating is dependent on food availability; food-deprived males mate with lower efficiency compared to their well-fed counterparts, suggesting that the mating circuit is repressed in low-food environments. This behavioral response could be mediated by sensory neurons exposed to the environment or by internal metabolic cues. We demonstrated that food-deprivation negatively regulates sex-muscle excitability through the activity of chemosensory neurons and insulin-like signaling. Specifically, we found that the repressive effects of food deprivation on the mating circuit can be partially blocked by placing males on inedible food, E. coli that can be sensed but not eaten. We determined that the olfactory AWC neurons actively suppress sex-muscle excitability in response to food deprivation. In addition, we demonstrated that loss of insulin-like receptor (DAF-2) signaling in the sex muscles blocks the ability of food deprivation to suppress the mating circuit. During low-food conditions, we propose that increased activity by specific olfactory neurons (AWCs) leads to the release of neuroendocrine signals, including insulin-like ligands. Insulin-like receptor signaling in the sex muscles then reduces cell excitability via activation of downstream molecules, including PLC-γ and CaMKII.  相似文献   

5.
6.
Nutrition is known to interact with genotype in human metabolic syndromes, obesity, and diabetes, and also in Drosophila metabolism. Plasticity in metabolic responses, such as changes in body fat or blood sugar in response to changes in dietary alterations, may also be affected by genotype. Here we show that variants of the foraging (for) gene in Drosophila melanogaster affect the response to food deprivation in a large suite of adult phenotypes by measuring gene by environment interactions (GEI) in a suite of food-related traits. for affects body fat, carbohydrates, food-leaving behavior, metabolite, and gene expression levels in response to food deprivation. This results in broad patterns of metabolic, genomic, and behavioral gene by environment interactions (GEI), in part by interaction with the insulin signaling pathway. Our results show that a single gene that varies in nature can have far reaching effects on behavior and metabolism by acting through multiple other genes and pathways.  相似文献   

7.
Nutrition is known to interact with genotype in human metabolic syndromes, obesity, and diabetes, and also in Drosophila metabolism. Plasticity in metabolic responses, such as changes in body fat or blood sugar in response to changes in dietary alterations, may also be affected by genotype. Here we show that variants of the foraging (for) gene in Drosophila melanogaster affect the response to food deprivation in a large suite of adult phenotypes by measuring gene by environment interactions (GEI) in a suite of food-related traits. for affects body fat, carbohydrates, food-leaving behavior, metabolite, and gene expression levels in response to food deprivation. This results in broad patterns of metabolic, genomic, and behavioral gene by environment interactions (GEI), in part by interaction with the insulin signaling pathway. Our results show that a single gene that varies in nature can have far reaching effects on behavior and metabolism by acting through multiple other genes and pathways.  相似文献   

8.
Ida Coordt Elle 《FEBS letters》2010,584(11):2183-241
The nematode Caenorhabditis elegans (C. elegans) has during the last decade emerged as an invaluable eukaryotic model organism to understand the metabolic and neuro-endocrine regulation of lipid accumulation. The fundamental pathways of food intake, digestion, metabolism, and signalling are evolutionary conserved between mammals and worms making C. elegans a genetically and metabolically extremely tractable model to decipher new regulatory mechanisms of lipid storage and to understand how nutritional and genetic perturbations can lead to obesity and other metabolic diseases. Besides providing an overview of the most important regulatory mechanisms of lipid accumulation in C. elegans, we also critically assess the current methodologies to monitor lipid storage and content as various methods differ in their applicability, consistency, and simplicity.  相似文献   

9.
Ma DK  Ringstad N 《生物学前沿》2012,7(3):246-253
Aerobic metabolism is fundamental for almost all animal life.Cellular consumption of oxygen (O2) and production of carbon dioxide (CO2) signal metabolic states and physiologic stresses.These respirator...  相似文献   

10.
An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors.  相似文献   

11.
Thermotaxis behavior of Caenorhabditis elegans is robust and highly plastic. A pair of sensory neurons, AFD, memorize environmental/cultivation temperature and communicate with a downstream neural circuit to adjust the temperature preference of the animal. This results in a behavioral bias where worms will move toward their cultivation temperature on a thermal gradient. Thermotaxis of C. elegans is also affected by the internal state and is temporarily abolished when worms are starved. Here I will discuss how C. elegans is able to modulate its behavior based on temperature by integrating environmental and internal information. Recent studies show that some parasitic nematodes have a similar thermosensory mechanism to C. elegans and exhibit cultivation-temperature-dependent thermotaxis. I will also discuss the common neural mechanisms that regulate thermosensation and thermotaxis in C. elegans and Strongyloides stercoralis.  相似文献   

12.
13.
Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Gαo pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.  相似文献   

14.
Many organisms respond to food deprivation by altering their pattern of movement, often in ways that appear to facilitate dispersal. While the behavior of the nematode C. elegans in the presence of attractants has been characterized, long-range movement in the absence of external stimuli has not been examined in this animal. Here we investigate the movement pattern of individual C. elegans over times of ∼1 hour after removal from food, using two custom imaging set-ups that allow us to track animals on large agar surfaces of 22 cm×22 cm. We find that a sizeable fraction of the observed trajectories display directed motion over tens of minutes. Remarkably, this directional persistence is achieved despite a local orientation memory that decays on the scale of about one minute. Furthermore, we find that such trajectories cannot be accounted for by simple random, isotropic models of animal locomotion. This directional behavior requires sensory neurons, but appears to be independent of known sensory signal-transduction pathways. Our results suggest that long-range directional behavior of C. elegans may not be driven by sensory cues.  相似文献   

15.
We present a new temporal model of animal behavior based on the ethological idea that the internal states of the individual essentially determine the behavior. The internal states, however, are conditioned by the external stimuli. This model, including environmental and internal parameters, predicts a fractal property of the behavior, that is, an inverse power law distribution of the duration. Being consistent with the model, we have found a fractal property of feeding in Drosophila melanogaster: The dwelling time of starved flies on food showed a clear inverse power law distribution. The dependence of the fractal dimension on the intensity of food stimuli has been observed, and the predicted change into an exponential distribution was proved.  相似文献   

16.
17.
We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of Gα signaling. rgs-3 mutant animals are defective in their avoidance of 100% octanol when they are assayed in the absence of food (E. coli bacterial lawn), but their response is restored when they are assayed in the presence of food or exogenous dopamine. However, it is not known which receptor might be mediating dopamine''s effects on octanol avoidance. Herein we describe a role for the C. elegans D2-like receptor DOP-3 in the regulation of olfactory sensitivity. We show that DOP-3 is required for the ability of food and exogenous dopamine to rescue the octanol avoidance defect of rgs-3 mutant animals. In addition, otherwise wild-type animals lacking DOP-3 function are hypersensitive to dilute octanol, reminiscent of cat-2 mutants. Furthermore, we demonstrate that DOP-3 function in the ASH sensory neurons is sufficient to rescue the hypersensitivity of dop-3 mutant animals, while dop-3 RNAi knockdown in ASH results in octanol hypersensitivity. Taken together, our data suggest that dopaminergic signaling through DOP-3 normally acts to dampen ASH signaling and behavioral sensitivity to octanol.  相似文献   

18.
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.  相似文献   

19.
The metabolic and nutritional status of an organism influences multiple behaviors in addition to food intake. When an organism is hungry, it employs behaviors that help it locate and ingest food while suppressing behaviors that are not associated with this goal. Alternatively, when an organism is satiated, food-seeking behaviors are repressed so that the animal can direct itself to other goal-oriented tasks such as reproductive behaviors. Studies in both vertebrate and invertebrate model systems have revealed that food-deprived and -satiated behaviors are differentially executed and integrated via common molecular signaling mechanisms. This article discusses cellular and molecular mechanisms for how insulin, neuropeptide Y (NPY), and serotonin utilize common signaling pathways to integrate feeding and metabolic state with other motivated behaviors. Insulin, NPY, and serotonin are three of the most well-studied molecules implicated in regulating such behaviors. Overall, insulin signaling allows an organism to coordinate proper behavioral output with changes in metabolism, NPY activates behaviors required for locating and ingesting food, and serotonin modulates behaviors performed when an organism is satiated. These three molecules work to ensure that the proper behaviors are executed in response to the feeding state of an organism.  相似文献   

20.
As small ectotherms, whose temperature equilibrates almost instantly with that of their environment, free-living nematodes rely on their behavior for thermoregulation. Caenorhabditis elegans has been extensively used as a model to address the fundamental mechanisms involved in thermosensation and the production of temperature-dependent behaviors. Behavioral responses include avoidance of acute noxious heat or cold stimuli and thermotactic responses to innocuous temperatures to produce oriented navigation in spatial thermogradients. In order to produce these behaviors, C. elegans relies on its ability to detect thermal cues with exquisite sensitivity, orchestrate a set of specific behavioral responses and adapt these responses in specific contexts, including according to past sensory experience and current internal states. The present review focuses on recent advances in our understanding of the processes occurring at the molecular, cellular, and circuit levels that enable thermosensory information processing and plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号