首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
Circadian Rhythm of the Prokaryote Synechococcus sp. RF-1   总被引:6,自引:0,他引:6       下载免费PDF全文
Huang TC  Tu J  Chow TJ  Chen TH 《Plant physiology》1990,92(2):531-533
The prokaryotic Synechococcus sp. RF-1 exhibited a nitrogen fixation circadian rhythm with characteristics remarkably similar to the circadian rhythm of eukaryotes. The rhythm had a free-running period of about 24 hours when the length of the preen-trained cycle did not differ too much from 24 hours, and it was insensitive to changes in temperature from 22°C to 33°C. Because the endogenous rhythm of nitrogen fixation was not affected by a phase-shift of its previous cycles, the circadian rhythm in Synechococcus sp. RF-1 was not considered to be controlled simply by a feedback mechanism.  相似文献   

3.
Temperature compensation of circadian period length in 12 clock mutants of Neurospora crassa has been examined at temperatures between 16 and 34°C. In the wild-type strain, below 30°C (the “breakpoint” temperature), the clock is well-compensated (Q10 = 1), while above 30°C, the clock is less well-compensated (Q10 = 1.3). For mutants at the frq locus, mutations that shorten the circadian period length (frq-1, frq-2, frq-4, and frq-6) do not alter this temperature compensation response. In long period frq mutants (frq-3, frq-7, frq-8), however, the breakpoint temperature is lowered, and the longer the period length of the mutants the lower the breakpoint temperature. Long period mutants at other loci exhibit other types of alterations in temperature compensation—e.g. chr is well-compensated even above 30°C, while prd-3 has a Q10 significantly less than 1 below 30°C. Prd-4, a short period mutant, has several breakpoint temperatures. Among four double mutants examined, the only unusual interaction between the individual mutations occurred with chr prd, which had an unusually low Q10 value of 0.86 below 27°C. There was no correlation between circadian period length and growth rate. These strains should be useful tools to test models for the temperature compensation mechanism.  相似文献   

4.
We have established the presence of a circadian clock in Aspergillus flavus and Aspergillus nidulans by morphological and molecular assays, respectively. In A. flavus, the clock regulates an easily assayable rhythm in the development of sclerotia, which are large survival structures produced by many fungi. This developmental rhythm exhibits all of the principal clock properties. The rhythm is maintained in constant environmental conditions with a period of 33 h at 30°C, it can be entrained by environmental signals, and it is temperature compensated. This endogenous 33-h period is one of the longest natural circadian rhythms reported for any organism, and this likely contributes to some unique responses of the clock to environmental signals. In A. nidulans, no obvious rhythms in development are apparent. However, a free running and entrainable rhythm in the accumulation of gpdA mRNA (encoding glyceraldehyde-3-phosphate dehydrogenase) is observed, suggesting the presence of a circadian clock in this species. We are unable to identify an Aspergillus ortholog of frequency, a gene required for normal circadian rhythmicity in Neurospora crassa. Together, our data indicate the existence of an Aspergillus circadian clock, which has properties that differ from that of the well-described clock of N. crassa.  相似文献   

5.
6.
Blattella bisignata (Brunner) and B. germanica (L.) are oviparous cockroaches with cyclic reproductive behaviour, but in B. germanica only males show circadian rhythmicity of locomotion at 28°C and DD (constant darkness). In B. bisignata, males and virgin females cockroaches entrained by light–dark cycles show free‐running rhythmicity in DD, and most activities occur during the subjective night. Daily locomotor activities of virgin females show cyclic changes that coincided with ovarian development. Virgin females also exhibit calling behaviour during the subjective night, and this shows a free‐running rhythm. Male mate‐finding locomotion and female calling behaviour are under circadian control, so the timing for both behaviours is synchronized. However, most mated females do not show a locomotor free‐running rhythm under DD conditions. Our results indicate that only mated females could not express a circadian locomotor rhythm. Pregnancy reduces a female’s locomotory intensity and masks the expression of a circadian locomotor rhythm. We attribute the differences in circadian locomotory rhythms between these two species to their living environments and mate‐finding strategies.  相似文献   

7.
The neuropeptide pigment‐dispersing factor (PDF) is important for the generation and entrainment of circadian rhythms in the fruitfly Drosophila melanogaster. Recently two pdf homologs, pdf‐1 and pdf‐2, and a PDF receptor, pdfr‐1, have been found in Caenorhabditis elegans and have been implicated in locomotor activity. In this work, we have studied the role of the PDF neuropeptide in the circadian system of C. elegans and found that both pdf‐1 and pdf‐2 mutants affect the normal locomotor activity outputs. In particular, loss of pdf‐1 induced circadian arrhythmicity under both light–dark (LD) and constant dark (DD) conditions. These defects can be rescued by a genomic copy of the pdf‐1 locus. Our results indicate that PDF‐1 is involved in rhythm generation and in the synchronization to LD cycles, as rhythmic patterns of activity rapidly disappear when pdf‐1 mutants are recorded under both entrained and free‐running conditions. The role of PDF‐2 and the PDF receptors is probably more complex and involves the interaction between the two pdf paralogues found in the nematode.  相似文献   

8.

Background

LIN-12/Notch signaling is important for cell-cell interactions during development, and mutations resulting in constitutive LIN-12/Notch signaling can cause cancer. Loss of negative regulators of lin-12/Notch activity has the potential for influencing cell fate decisions during development and the genesis or aggressiveness of cancer.

Methodology/Principal Findings

We describe two negative modulators of lin-12 activity in C. elegans. One gene, sel-11, was initially defined as a suppressor of a lin-12 hypomorphic allele; the other gene, cdc-42, is a well-studied Rho GTPase. Here, we show that SEL-11 corresponds to yeast Hrd1p and mammalian Synoviolin. We also show that cdc-42 has the genetic properties consistent with negative regulation of lin-12 activity during vulval precursor cell fate specification.

Conclusions/Significance

Our results underscore the multiplicity of negative regulatory mechanisms that impact on lin-12/Notch activity and suggest novel mechanisms by which constitutive lin-12/Notch activity might be exacerbated in cancer.  相似文献   

9.
In the leaves of plants that are grown in the natural environment, the accumulation of mRNAs encoding the chlorophyll a/b binding proteins (CAB) follow a circadian rhythm. It is generally accepted that the day/night (sunset, light/dark) or night/day (sunrise, dark/light) transitions play an important role in the synchronization of the rhythm and the determination of the accumulation amplitude. As the results of the experiments presented in this paper indicate, temperature alterations also support the setting and the arrangement of the rhythm. Apparently, simulating “day/night” temperature alternations influences the tomato (Lycopersicon esculentum) plants to express a typical circadian oscillation pattern of cab mRNAs. This rhythm was sustained in the plants after long-term exposure to an alternating temperature regime. In constant conditions, e.g. continuous illumination at either 18°C or 24°C or in continuous darkness at 24°C, this diurnal fluctuation pattern with a period of about 24 hours remained present for at least 2 days.  相似文献   

10.
11.
The aggregation of β‐amyloid (Aβ) has the neurotoxicity, which is thought to play critical role in the pathogenesis of Alzheimer''s disease (AD). Inhibiting Aβ deposition and neurotoxicity has been considered as an important strategy for AD treatment. 3,6''‐Disinapoyl sucrose (DISS), one of the oligosaccharide esters derived from traditional Chinese medicine Polygalae Radix, possesses antioxidative activity, neuroprotective effect and anti‐depressive activity. This study was to explore whether DISS could attenuate the pathological changes of Aβ1‐42 transgenic Caenorhabditis elegans (C. elegans). The results showed that DISS (5 and 50 μM) treatment significantly prolonged the life span, increased the number of egg‐laying, reduced paralysis rate, decreased the levels of lipofuscin and ROS and attenuated Aβ deposition in Aβ1‐42 transgenic Celegans. Gene analysis showed that DISS could up‐regulate the mRNA expression of sod3, gst4, daf16, bec1 and lgg1, while down‐regulate the mRNA expression of daf2 and daf15 in Aβ1‐42 transgenic Celegans. These results suggested that DISS has the protective effect against Aβ1‐42‐induced pathological damages and prolongs the life span of Celegans, which may be related to the reduction of Aβ deposition and neurotoxicity by regulating expression of genes related to antioxidation and autophagy.  相似文献   

12.
13.
Circadian Stomatal Rhythms in Epidermal Peels from Vicia faba   总被引:6,自引:4,他引:2       下载免费PDF全文
Circadian rhythms in stomatal aperture and in stomatal conductance have been observed previously. Here we investigate circadian rhythms in apertures that persist in functionally isolated guard cells in epidermal peels of Vicia faba, and we compare these rhythms with rhythms in stomatal conductance in attached leaves. Functionally isolated guard cells kept in constant light display a rhythmic change in aperture superimposed on a continuous opening trend. The rhythm free-runs with a period of about 22 hours and is temperature compensated between 20 and 30°C. Functionally isolated guard cell pairs are therefore capable of sustaining a true circadian rhythm without interaction with mesophyll cells. Stomatal conductance in whole leaves displays a more robust rhythm, also temperature-compensated, and with a period similar to that observed for the rhythm in stomatal aperture in epidermal peels. When analyzed individually, some stomata in epidermal peels showed a robust rhythm for several days while others showed little rhythmicity or damped out rapidly. Rhythmic periods may vary between individual stomata, and this may lead to desynchronization within the population.  相似文献   

14.

A circadian rhythm of activity is demonstrated in single neurons of Nephrops norvegicus (L.). Eyestalk extracts depress neural and locomotor activity. Entrainment of rhythmicity is achieved by the environmental light cycle, apparently acting through the eye.  相似文献   

15.
Mutations that affect the Z-disk–associated ALP-Enigma proteins have been linked to human muscular and cardiac diseases. Despite their clear physiological significance for human health, the mechanism of action of ALP-Enigma proteins is largely unknown. In Caenorhabditis elegans, the ALP-Enigma protein family is encoded by a single gene, alp-1; thus C. elegans provides an excellent model to study ALP-Enigma function. Here we present a molecular and genetic analysis of ALP-Enigma function in C. elegans. We show that ALP-1 and α-actinin colocalize at dense bodies where actin filaments are anchored and that the proper localization of ALP-1 at dense bodies is dependent on α-actinin. Our analysis of alp-1 mutants demonstrates that ALP-1 functions to maintain actin filament organization and participates in muscle stabilization during contraction. Reducing α-actinin activity enhances the actin filament phenotype of the alp-1 mutants, suggesting that ALP-1 and α-actinin function in the same cellular process. Like α-actinin, alp-1 also interacts genetically with a connectin/titin family member, ketn-1, to provide mechanical stability for supporting body wall muscle contraction. Taken together, our data demonstrate that ALP-1 and α-actinin function together to stabilize actin filaments and promote muscle structural integrity.  相似文献   

16.
The effects of suprachiasmatic and control lesions on the circadian rhythms of locomotor activity and body temperature were studied in golden hamsters (Mesocricetus auratus) maintained in constant light as well as constant darkness. Large suprachiasmatic lesions, but not control lesions, eliminated circadian rhythmicity in locomotor activity as well as in body temperature. Analysis of the robustness of the rhythms of locomotor activity and body temperature in unlesioned and lesioned animals suggests that, because body temperature rhythmicity is more robust than locomotor rhythmicity, lesions that spare a small number of suprachiasmatic cells might abolish the latter but not the former. Our results do not support the hypothesis that the body temperature rhythm is controlled by a circadian pacemaker distinct from the main pacemaker located in the suprachiasmatic nuclei.  相似文献   

17.
18.
19.
The effect of temperature pre-exposure on locomotion and chemotaxis of the soil-dwelling nematode Caenorhabditis elegans has been extensively studied. The behavior of C. elegans was quantified using a simple harmonic curvature-based model. Animals showed increased levels of activity, compared to control worms, immediately after pre-exposure to 30°C. This high level of activity in C. elegans translated into frequent turns by making ‘complex’ shapes, higher velocity of locomotion, and higher chemotaxis index () in presence of a gradient of chemoattractant. The effect of pre-exposure was observed to be persistent for about 20 minutes after which the behavior (including velocity and ) appeared to be comparable to that of control animals (maintained at 20°C). Surprisingly, after 30 minutes of recovery, the behavior of C. elegans continued to deteriorate further below that of control worms with a drastic reduction in the curvature of the worms'' body. A majority of these worms also showed negative chemotaxis index indicating a loss in their chemotaxis ability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号