首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

2.
The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S50s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, were 529.6 μg/ml and 0.29 μg/ml, respectively. The CB gene was then fused to the secretory signal peptide (sp) sequence from the barley α-amylase gene, and the new construct, pBI121-spCB, was used for the transformation of tomato plants. Integration of the CB gene into the tomato genome was confirmed by PCR, and its expression was confirmed by Western blot analyses. In vivo studies of the transgenic tomato plant demonstrated significant resistance to bacterial wilt and bacterial spot. The levels of CB expressed in transgenic tomato plants (∼0.05 μg in 50 mg of leaves) were far lower than the S50 determined in vitro. CB transgenic tomatoes could therefore be a new mode of bioprotection against these two plant diseases with significant agricultural applications.Bacterial plant diseases are a source of great losses in the annual yields of most crops (5). The agrochemical methods and conventional breeding commonly used to control these bacterially induced diseases have many drawbacks. Indiscriminate use of agrochemicals has a negative impact on human, as well as animal, health and contributes to environmental pollution. Conventional plant-breeding strategies have limited scope due to the paucity of genes with these traits in the usable gene pools and their time-consuming nature. Consequently, genetic engineering and transformation technology offer better tools to test the efficacies of genes for crop improvement and to provide a better understanding of their mechanisms. One advance is the possibility of creating transgenic plants that overexpress recombinant DNA or novel genes with resistance to pathogens (36). In particular, strengthening the biological defenses of a crop by the production of antibacterial proteins with other origins (not from plants) offers a novel strategy to increase the resistance of crops to diseases (35, 39, 41). These antimicrobial peptides (AMPs) include such peptides as cecropins (2, 15, 20, 23-24, 27, 31, 42, 50), magainins (1, 9, 14, 29, 47), sarcotoxin IA (35, 40), and tachyplesin I (3). The genes encoding these small AMPs in plants have been used in practice to enhance their resistance to bacterial and fungal pathogens (8, 22, 40). The expression of AMPs in vivo (mostly cecropins and a synthetic analog of cecropin and magainin) with either specific or broad-spectrum disease resistance in tobacco (14, 24, 27), potato (17, 42), rice (46), banana (9), and hybrid poplar (32) have been reported. The transgenic plants showed considerably greater resistance to certain pathogens than the wild types (4, 13, 24, 27, 42, 46, 50). However, detailed studies of transgenic tomatoes expressing natural cecropin have not yet been reported.The tomato (Solanum lycopersicum) is one of the most commonly consumed vegetables worldwide. The annual yield of tomatoes, however, is severely affected by two common bacterial diseases, bacterial wilt and bacterial spot, which are caused by infection with the Gram-negative bacteria Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, respectively. Currently available pesticides are ineffective against R. solanacearum, and thus bacterial wilt is a serious problem.Cecropins, one of the natural lytic peptides found in the giant silk moth, Hyalophora cecropia (25), are synthesized in lipid bodies as proteins consisting of 31 to 39 amino acid residues. They adopt an α-helical structure on interaction with bacterial membranes, resulting in the formation of ion channels (12). At low concentrations (0.1 μM to 5 μM), cecropins exhibit lytic antibacterial activity against a number of Gram-negative and some Gram-positive bacteria, but not against eukaryotic cells (11, 26, 33), thus making them potentially powerful tools for engineering bacterial resistance in crops. Moreover, cecropin B (CB) shows the strongest activity against Gram-negative bacteria within the cecropin family and therefore has been considered an excellent candidate for transformation into plants to improve their resistance against bacterial diseases.The introduction of genes encoding cecropins and their analogs into tobacco has been reported to have contradictory results regarding resistance against pathogens (20). However, subsequent investigations of these tobacco plants showed that the expression of CB in the plants did not result in accumulation of detectable levels of CB, presumably due to degradation of the peptide by host peptidases (20, 34). Therefore, protection of CB from cellular degradation is considered to be vital for the exploitation of its antibacterial activity in transgenic plants. The secretory sequences of several genes are helpful, because they cooperate with the desired genes to enhance extracellular secretion (24, 40, 46). In the present study, a natural CB gene was successfully transferred into tomatoes. The transgenic plants showed significant resistance to the tomato diseases bacterial wilt and bacterial spot, as well as with a chemically synthesized CB peptide.  相似文献   

3.
Ralstonia solanacearum, an economically important soilborne plant pathogen, infects host roots to cause bacterial wilt disease. However, little is known about this pathogen''s behavior in the rhizosphere and early in pathogenesis. In response to root exudates from tomato, R. solanacearum strain UW551 upregulated a gene resembling Dps, a nonspecific DNA binding protein from starved cells that is critical for stress survival in other bacteria. An R. solanacearum dps mutant had increased hydrogen peroxide sensitivity and mutation rate under starvation. Furthermore, dps expression was positively regulated by the oxidative stress response regulator OxyR. These functional results are consistent with a Dps annotation. The dps mutant caused slightly delayed bacterial wilt disease in tomato after a naturalistic soil soak inoculation. However, the dps mutant had a more pronounced reduction in virulence when bacteria were inoculated directly into host stems, suggesting that Dps helps R. solanacearum adapt to conditions inside plants. Passage through a tomato plant conferred transient increased hydrogen peroxide tolerance on both wild-type and dps mutant strains, demonstrating that R. solanacearum acquires Dps-independent oxidative stress tolerance during adaptation to the host environment. The dps mutant strain was also reduced in adhesion to tomato roots and tomato stem colonization. These results indicate that Dps is important when cells are starved or in stationary phase and that Dps contributes quantitatively to host plant colonization and bacterial wilt virulence. They further suggest that R. solanacearum must overcome oxidative stress during the bacterial wilt disease cycle.Bacterial wilt caused by Ralstonia solanacearum is a lethal disease affecting diverse economically important crops worldwide (20). The pathogen attacks over 200 species in more than 50 plant families (21). Although known primarily as a soilborne plant pathogen, R. solanacearum also survives in soil, water, and latently infected plants (20). The bacterium typically invades its host through natural or mechanical root wounds, multiplies in the root cortex, and then rapidly colonizes the xylem, where it reaches high cell densities. Once wilt symptoms develop, plants usually die, releasing the pathogen back into the soil (42).R. solanacearum is a tropical bacterium adapted to warmer climates, with the exception of a clonal group belonging to phylotype II, sequevar 1, of the R. solanacearum species complex (13). This group, historically and for regulatory purposes known as race 3 biovar 2 (R3bv2), causes brown rot of potato and bacterial wilt of tomato in tropical highlands and some temperate zones (11, 41, 45, 46). Because of its virulence at relatively cool temperatures, R3bv2 is a quarantine pest in Europe and Canada and a select agent pathogen in the United States (27).R. solanacearum virulence is quantitative and complex, with many contributing factors such as type II-secreted proteins, type III-secreted effectors, extracellular polysaccharide, and several plant cell wall-degrading enzymes (16, 17, 36, 38). Much of what is known about R. solanacearum comes from studies focusing on mid- or end-stage disease caused by tropical or warm-temperate strains (8, 30). A few virulence factors are known to function early in disease development: motility, energy taxis, and type IV pili, which collectively direct the bacterium toward and facilitate attachment to the host root (26, 44, 49, 50). However, R. solanacearum traits that contribute to fitness and virulence in the rhizosphere are not well understood for either tropical or R3bv2 strains.In soil, bacteria experience environmental stressors, such as pH and temperature extremes and water and oxygen limitation, as well as competition for nutrients (47). Plant roots release exudates and sloughed-off cells, supplying sufficient energy to sustain large microbial communities, provided other nutrients such as N, P, and Fe are present (19, 47). While rhizosphere bacteria can enjoy rapid growth in this relatively rich environment, fluctuating nutrient availability means that soil-dwelling microbes must survive periods of starvation (47).R. solanacearum also encounters oxidative stress in the rhizosphere. Plant roots produce reactive oxygen species (ROS) in response to many stimuli (25, 32). Several studies implicate ROS in root development and in interactions between roots and microbes (5, 24). We previously found that during plant colonization R. solanacearum is exposed to host-derived ROS, which triggers a bacterial oxidative stress response that adapts the pathogen to the xylem environment and is necessary for full virulence (8, 14).We previously described an in vivo expression technology (IVET)-like screen that identified R. solanacearum genes upregulated in the tomato rhizosphere (12). These genes encoded several known bacterial wilt virulence factors, such as the type 3 secretion regulator HrpG, the type IV pilus assembly protein PilP, global virulence regulator VsrA, and early virulence regulator PehR. The screen further identified a high-affinity cytochrome c oxidase necessary for R. solanacearum growth in microaerobic conditions (12). This paper presents our analysis of another rhizosphere-induced gene that encodes Dps, a DNA binding protein from starved cells originally described in Escherichia coli (2). Dps belongs to a family of ferritin-like stress-induced proteins that bind nonspecifically to DNA in stationary-phase bacteria (2, 29, 40). In E. coli, Dps helps maintain DNA integrity under environmentally challenging conditions, including starvation, oxidative damage, pH shock, and thermal stress (2, 10, 18, 29, 33). Dps also protects the soilborne plant-associated bacteria Agrobacterium tumefaciens and Pseudomonas putida from oxidative stress (9, 37).Traits that adapt R. solanacearum to detrimental conditions in the rhizosphere are likely to be important for pathogenic success. We hypothesized that Dps is required for adaptation to nutrient and oxidative stress and, thus, for bacterial wilt disease development. We found that Dps was highly expressed after starvation and contributed to oxidative stress tolerance in starved R. solanacearum cells. Furthermore, this protein was necessary for wild-type bacterial wilt disease development and for colonization of tomato xylem, suggesting that the bacterium must overcome a nutrient-poor and/or oxidative environment in the rhizosphere and xylem of host plants.  相似文献   

4.
Bacteria often infect their hosts from environmental sources, but little is known about how environmental and host-infecting populations are related. Here, phylogenetic clustering and diversity were investigated in a natural community of rhizobial bacteria from the genus Bradyrhizobium. These bacteria live in the soil and also form beneficial root nodule symbioses with legumes, including those in the genus Lotus. Two hundred eighty pure cultures of Bradyrhizobium bacteria were isolated and genotyped from wild hosts, including Lotus angustissimus, Lotus heermannii, Lotus micranthus, and Lotus strigosus. Bacteria were cultured directly from symbiotic nodules and from two microenvironments on the soil-root interface: root tips and mature (old) root surfaces. Bayesian phylogenies of Bradyrhizobium isolates were reconstructed using the internal transcribed spacer (ITS), and the structure of phylogenetic relatedness among bacteria was examined by host species and microenvironment. Inoculation assays were performed to confirm the nodulation status of a subset of isolates. Most recovered rhizobial genotypes were unique and found only in root surface communities, where little bacterial population genetic structure was detected among hosts. Conversely, most nodule isolates could be classified into several related, hyper-abundant genotypes that were phylogenetically clustered within host species. This pattern suggests that host infection provides ample rewards to symbiotic bacteria but that host specificity can strongly structure only a small subset of the rhizobial community.Symbiotic bacteria often encounter hosts from environmental sources (32, 48, 60), which leads to multipartite life histories including host-inhabiting and environmental stages. Research on host-associated bacteria, including pathogens and beneficial symbionts, has focused primarily on infection and proliferation in hosts, and key questions about the ecology and evolution of the free-living stages have remained unanswered. For instance, is host association ubiquitous within a bacterial lineage, or if not, do host-infecting genotypes represent a phylogenetically nonrandom subset? Assuming that host infection and free-living existence exert different selective pressures, do bacterial lineages diverge into specialists for these different lifestyles? Another set of questions addresses the degree to which bacteria associate with specific host partners. Do bacterial genotypes invariably associate with specific host lineages, and is such specificity controlled by one or both partners? Alternatively, is specificity simply a by-product of ecological cooccurrence among bacteria and hosts?Rhizobial bacteria comprise several distantly related proteobacterial lineages, most notably the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium (52), that have acquired the ability to form nodules on legumes and symbiotically fix nitrogen. Acquisition of nodulation and nitrogen fixation loci has likely occurred through repeated lateral transfer of symbiotic loci (13, 74). Thus, the term “rhizobia” identifies a suite of symbiotic traits in multiple genomic backgrounds rather than a taxonomic classification. When rhizobia infect legume hosts, they differentiate into specialized endosymbiotic cells called bacteroids, which reduce atmospheric nitrogen in exchange for photosynthates from the plant (35, 60). Rhizobial transmission among legume hosts is infectious. Rhizobia can spread among hosts through the soil (60), and maternal inheritance (through seeds) is unknown (11, 43, 55). Nodule formation on hosts is guided by reciprocal molecular signaling between bacteria and plant (5, 46, 58), and successful infection requires a compatible pairing of legume and rhizobial genotypes. While both host and symbiont genotypes can alter the outcome of rhizobial competition for adsorption (34) and nodulation (33, 39, 65) of legume roots, little is known about how this competition plays out in nature.Rhizobia can achieve reproductive success via multiple lifestyles (12), including living free in the soil (14, 44, 53, 62), on or near root surfaces (12, 18, 19, 51), or in legume nodules (60). Least is known about rhizobia in bulk soil (not penetrated by plant roots). While rhizobia can persist for years in soil without host legumes (12, 30, 61), it appears that growth is often negligible in bulk soil (4, 10, 14, 22, 25). Rhizobia can also proliferate in the rhizosphere (soil near the root zone) of legumes (4, 10, 18, 19, 22, 25, 51). Some rhizobia might specialize in rhizosphere growth and infect hosts only rarely (12, 14, 51), whereas other genotypes are clearly nonsymbiotic because they lack key genes (62) and must therefore persist in the soil. The best-understood rhizobial lifestyle is the root nodule symbiosis with legumes, which is thought to offer fitness rewards that are superior to life in the soil (12). After the initial infection, nodules grow and harbor increasing populations of bacteria until the nodules senesce and the rhizobia are released into the soil (11, 12, 38, 40, 55). However, rhizobial fitness in nodules is not guaranteed. Host species differ in the type of nodules they form, and this can determine the degree to which differentiated bacteroids can repopulate the soil (11, 12, 38, 59). Furthermore, some legumes can hinder the growth of nodules with ineffective rhizobia, thus punishing uncooperative symbionts (11, 27, 28, 56, 71).Here, we investigated the relationships between environmental and host-infecting populations of rhizobia. A main objective was to test the hypothesis that rhizobia exhibit specificity among host species as well as among host microenvironments, specifically symbiotic nodules, root surfaces, and root tips. We predicted that host infection and environmental existence exert different selective pressures on rhizobia, leading to divergent patterns of clustering, diversity, and abundance of rhizobial genotypes.  相似文献   

5.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

6.
Rhizobia are able to establish symbiosis with leguminous plants and usually occupy highly complex soil habitats. The large size and complexity of their genomes are considered advantageous, possibly enhancing their metabolic and adaptive potential and, in consequence, their competitiveness. A population of Rhizobium leguminosarum bv. trifolii organisms recovered from nodules of several clover plants growing in each other''s vicinity in the soil was examined regarding possible relationships between their metabolic-physiological properties and their prevalence in such a local population. Genetic and metabolic variability within the R. leguminosarum bv. trifolii strains occupying nodules of several plants was of special interest, and both types were found to be considerable. Moreover, a prevalence of metabolically versatile strains, i.e., those not specializing in utilization of any group of substrates, was observed by combining statistical analyses of Biolog test results with the frequency of occurrence of genetically distinct strains. Metabolic versatility with regard to nutritional requirements was not directly advantageous for effectiveness in the symbiotic interaction with clover: rhizobia with specialized metabolism were more effective in symbiosis but rarely occurred in the population. The significance of genetic and, especially, metabolic complexity of bacteria constituting a nodule population is discussed in the context of strategies employed by bacteria in competition.The soil bacterium Rhizobium leguminosarum bv. trifolii is capable of symbiotic interaction with the host plant Trifolium spp. (clover). The symbiotic process involves an exchange of chemical signals between both organisms, resulting in the expression of specific bacterial and plant genes. In response to flavonoid signals from legumes, bacterial lipochitooligosaccharides (Nod factors) are synthesized and in turn trigger the expression of plant genes and root nodule formation (9). Rhizobia invade the root nodules and differentiate into bacteroids that fix nitrogen (14, 16, 21, 36, 37). Atmospheric dinitrogen converted into ammonia is further transported and assimilated by the plant, which, reciprocally, provides photosynthates (42, 43, 50). The range of plant benefits varies and depends on the effectiveness of the bacterial strains as well as the legume plant genotype (8).A common feature of rhizobial genomes is the complexity and diversity of genomic organization, with a single chromosome and large plasmids ranging in size from ca. 100 kb up to 2 Mb (34). The genes encoding symbiotic functions usually constitute independent replicons known as symbiotic plasmids (pSym), or symbiotic islands when incorporated into the chromosome (25). The plasmids constitute a pool of accessory genetic information (18, 53) and contribute to the plasticity and dynamic state of the genome commonly observed among members of the Rhizobiaceae family (4, 25, 28, 34). Rhizobia occupy highly complex soil habitats, and their large and multipartite genomes, which encode many potentially useful metabolic traits, might be advantageous, enhancing their adaptive potential (33). Local populations of rhizobia may differ significantly on both the genetic and physiological levels. The diverse metabolic capacities of different strains and species of rhizobia might be important in their adaptation and survival in the rhizospheres of host plants. Plant root exudates contain a great number of chemical compounds, comprising sugars, amino acids, amines, aliphatic and aromatic acids, phenols, and others (2, 3, 15, 38, 49), thus potentially influencing the structure of the bacterial community in the rhizosphere. It was demonstrated that more metabolically versatile strains of R. leguminosarum were better competitors (51). Several studies showed that the nutritional diversity of soil habitats and the rhizosphere influences the number of rhizobia and that competition for root nodule colonization can take place even inside the infection threads, occupied, in some cases, by more than one strain (32, 38, 47). Up-to-date research on the diversity and competition of rhizobia focused on strains colonizing the soil or particular species of legume plants (8, 12, 24, 31, 35). Comprehensive analyses of the genetic and, especially, metabolic variability in rhizobia that occupy a spatially restricted area, for instance, all the nodules of a legume plant root system coexisting in one place, are still lacking.In this work, we investigated the degree of genetic and metabolic variability within the R. leguminosarum bv. trifolii strains occupying a spatially restricted area—the nodules of several clover plants—focusing on estimation of possible interconnections between the metabolic-physiological properties of strains and their frequency of occurrence.  相似文献   

7.
There is a significant potential to improve the plant-beneficial effects of root-colonizing pseudomonads by breeding wheat genotypes with a greater capacity to sustain interactions with these bacteria. However, the interaction between pseudomonads and crop plants at the cultivar level, as well as the conditions which favor the accumulation of beneficial microorganisms in the wheat rhizosphere, is largely unknown. Therefore, we characterized the three Swiss winter wheat (Triticum aestivum) cultivars Arina, Zinal, and Cimetta for their ability to accumulate naturally occurring plant-beneficial pseudomonads in the rhizosphere. Cultivar performance was measured also by the ability to select for specific genotypes of 2,4-diacetylphloroglucinol (DAPG) producers in two different soils. Cultivar-specific differences were found; however, these were strongly influenced by the soil type. Denaturing gradient gel electrophoresis (DGGE) analysis of fragments of the DAPG biosynthetic gene phlD amplified from natural Pseudomonas rhizosphere populations revealed that phlD diversity substantially varied between the two soils and that there was a cultivar-specific accumulation of certain phlD genotypes in one soil but not in the other. Furthermore, the three cultivars were tested for their ability to benefit from Pseudomonas inoculants. Interestingly, Arina, which was best protected against Pythium ultimum infection by inoculation with Pseudomonas fluorescens biocontrol strain CHA0, was the cultivar which profited the least from the bacterial inoculant in terms of plant growth promotion in the absence of the pathogen. Knowledge gained of the interactions between wheat cultivars, beneficial pseudomonads, and soil types allows us to optimize cultivar-soil combinations for the promotion of growth through beneficial pseudomonads. Additionally, this information can be implemented by breeders into a new and unique breeding strategy for low-input and organic conditions.Improvement of plant fitness and yield by root-colonizing microorganisms is of special value in low-input or organic wheat production. Beneficial soil bacteria, such as certain Pseudomonas strains, are known to promote plant growth, which might help to circumvent potential negative consequences of low-input cropping systems, such as the limited supply of nutrients and higher disease pressure. A wide range of traits in Pseudomonas spp. are responsible for plant-beneficial effects. Many pseudomonads are capable of solubilizing poorly soluble or insoluble mineral phosphates, thereby rendering this element available for the plant and promoting plant growth (25, 43). Root-colonizing pseudomonads are also able to indirectly promote plant growth by providing protection against plant diseases. The most important mechanisms for plant protection against attacking pathogens are the induction of systemic resistance in plants (3) and the direct suppression of soilborne pathogens through the production of antimicrobial metabolites (16). The protection of wheat plants against Gaeumannomyces graminis var. tritici by naturally occurring pseudomonads in take-all decline soils is a well-described phenomenon and highlights the importance of these bacteria in a successful and environmentally friendly wheat production (53). Interestingly, in many naturally disease-suppressive soils a specific group of fluorescent pseudomonads is enriched, which is able to produce the antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) (6, 38, 53). The production of the polyketide DAPG, which has broad-spectrum activity against bacteria, plants, fungi, and nematodes (8, 9, 21, 28, 33, 45), has been shown to be a key factor in the suppression of soilborne plant diseases by various Pseudomonas biocontrol strains (16).The degree of plant protection and plant growth promotion provided by root-colonizing pseudomonads is highly dependent on different environmental factors. For example, the expression of important biocontrol genes such as DAPG or HCN biosynthetic genes in the rhizosphere is modulated by biotic factors such as fungi and other bacteria present in the rhizosphere and the secondary metabolites they release (7, 19, 27, 29, 32). Moreover, it has been observed that the plant species and cultivar as well as the physiological stage of the plant can influence the expression of biocontrol genes and the production of antimicrobial metabolites (4, 7, 19, 32, 35). In addition to the production of DAPG and other antimicrobial metabolites, efficient colonization of roots is a prerequisite for beneficial plant-Pseudomonas interactions. Root colonization is dependent not only upon specific characteristics of the bacterium itself but also on root morphology and root exudates that vary between host plant species and even between cultivars of the same species (5, 34). The host species/cultivar also influences the abundance and diversity of naturally occurring pseudomonads (13). This has been shown in particular for DAPG-producing populations (4, 5, 26, 30, 36).Wheat is a crop known to benefit strongly from naturally occurring DAPG-producing pseudomonad populations (52). It has been shown that the size and composition of DAPG-producing populations in the wheat rhizosphere and also the amount of DAPG produced by these populations may vary substantially between different cultivars (4, 35). However, holistic studies which evaluate specific wheat cultivars for both their ability to benefit from plant growth-promoting pseudomonads and their influence on bacterial populations and production of biocontrol compounds are missing. A comprehensive characterization of different cultivars is needed in order to better understand which cultivars promote beneficial interactions with the pseudomonads. This knowledge has potential in future breeding strategies to be used for selection of new cultivars that optimally attract and respond to these bacteria.In order to address this gap in knowledge, this study evaluated three Swiss winter wheat (Triticum aestivum) cultivars for several characteristics considered important in a successful wheat-pseudomonas interplay: (i) the ability to accumulate pseudomonads and phlD+ pseudomonads in two different Swiss soils, (ii) the ability to select for individual phlD+ genotypes in two different soils, (iii) the ability to benefit from the two model biocontrol strains, Pseudomonas fluorescens strain CHA0 (a DAPG producer) and P. putida KD (a DAPG nonproducer), in terms of direct plant growth promotion and disease suppression, and finally (iv) the level of biocontrol gene expression (DAPG-biosynthetic gene phlA) in the rhizosphere.  相似文献   

8.
9.
The sequestration of iron by mammalian hosts represents a significant obstacle to the establishment of a bacterial infection. In response, pathogenic bacteria have evolved mechanisms to acquire iron from host heme. Bacillus anthracis, the causative agent of anthrax, utilizes secreted hemophores to scavenge heme from host hemoglobin, thereby facilitating iron acquisition from extracellular heme pools and delivery to iron-regulated surface determinant (Isd) proteins covalently attached to the cell wall. However, several Gram-positive pathogens, including B. anthracis, contain genes that encode near iron transporter (NEAT) proteins that are genomically distant from the genetically linked Isd locus. NEAT domains are protein modules that partake in several functions related to heme transport, including binding heme and hemoglobin. This finding raises interesting questions concerning the relative role of these NEAT proteins, relative to hemophores and the Isd system, in iron uptake. Here, we present evidence that a B. anthracis S-layer homology (SLH) protein harboring a NEAT domain binds and directionally transfers heme to the Isd system via the cell wall protein IsdC. This finding suggests that the Isd system can receive heme from multiple inputs and may reflect an adaptation of B. anthracis to changing iron reservoirs during an infection. Understanding the mechanism of heme uptake in pathogenic bacteria is important for the development of novel therapeutics to prevent and treat bacterial infections.Pathogenic bacteria need to acquire iron to survive in mammalian hosts (12). However, the host sequesters most iron in the porphyrin heme, and heme itself is often bound to proteins such as hemoglobin (14, 28, 85). Circulating hemoglobin can serve as a source of heme-iron for replicating bacteria in infected hosts, but the precise mechanisms of heme extraction, transport, and assimilation remain unclear (25, 46, 79, 86). An understanding of how bacterial pathogens import heme will lead to the development of new anti-infectives that inhibit heme uptake, thereby preventing or treating infections caused by these bacteria (47, 68).The mechanisms of transport of biological molecules into a bacterial cell are influenced by the compositional, structural, and topological makeup of the cell envelope. Gram-negative bacteria utilize specific proteins to transport heme through the outer membrane, periplasm, and inner membrane (83, 84). Instead of an outer membrane and periplasm, Gram-positive bacteria contain a thick cell wall (59, 60). Proteins covalently anchored to the cell wall provide a functional link between extracellular heme reservoirs and intracellular iron utilization pathways (46). In addition, several Gram-positive and Gram-negative bacterial genera also contain an outermost structure termed the S (surface)-layer (75). The S-layer is a crystalline array of protein that surrounds the bacterial cell and may serve a multitude of functions, including maintenance of cell architecture and protection from host immune components (6, 7, 18, 19, 56). In bacterial pathogens that manifest an S-layer, the “force field” function of this structure raises questions concerning how small molecules such as heme can be successfully passed from the extracellular milieu to cell wall proteins for delivery into the cell cytoplasm.Bacillus anthracis is a Gram-positive, spore-forming bacterium that is the etiological agent of anthrax disease (30, 33). The life cycle of B. anthracis begins after a phagocytosed spore germinates into a vegetative cell inside a mammalian host (2, 40, 69, 78). Virulence determinants produced by the vegetative cells facilitate bacterial growth, dissemination to major organ systems, and eventually host death (76-78). The release of aerosolized spores into areas with large concentrations of people is a serious public health concern (30).Heme acquisition in B. anthracis is mediated by the action of IsdX1 and IsdX2, two extracellular hemophores that extract heme from host hemoglobin and deliver the iron-porphyrin to cell wall-localized IsdC (21, 45). Both IsdX1 and IsdX2 harbor near iron transporter domains (NEATs), a conserved protein module found in Gram-positive bacteria that mediates heme uptake from hemoglobin and contributes to bacterial pathogenesis upon infection (3, 8, 21, 31, 44, 46, 49, 50, 67, 81, 86). Hypothesizing that B. anthracis may contain additional mechanisms for heme transport, we provide evidence that B. anthracis S-layer protein K (BslK), an S-layer homology (SLH) and NEAT protein (32, 43), is surface localized and binds and transfers heme to IsdC in a rapid, contact-dependent manner. These results suggest that the Isd system is not a self-contained conduit for heme trafficking and imply that there is functional cross talk between differentially localized NEAT proteins to promote heme uptake during infection.  相似文献   

10.
11.
12.
13.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

14.
Bacteriophages specific to Salmonella strains were isolated from sewage effluent and characterized. A five-strain bacteriophage mixture was applied to dairy manure compost inoculated with Salmonella enterica serotype Typhimurium. Bacteriophage treatment resulted in a greater than 2-log-unit reduction of Salmonella within 4 h at all moisture levels compared to the controls.Composting is a complex process designed to mitigate the risk of pathogen contamination while producing a nutrient-rich substrate, suitable for land application (19). When performed properly, pathogenic enteric microorganisms, such as Salmonella and Escherichia coli O157:H7, are reduced to undetectable levels in most cases (18). Some studies, however, have revealed that Salmonella strains are able to survive if composting is performed improperly (11). Furthermore, the surfaces of compost heaps have been shown to reach insufficient temperatures for the complete inactivation of pathogenic bacteria (27) and may result in pathogen regrowth (12).The growing demand for organically grown fruits and vegetables emphasizes the need for safe soil amendments and organic fertilizers. Despite increased awareness of the potential risk of pathogen contamination of crops, multiple outbreaks of food-borne illnesses associated with fresh produce have occurred (3, 21). The persistence of human pathogens in compost has led researchers to explore different approaches for pathogen reduction, such as irradiation or ammonia supplementation (20, 24). To date, there are no reports on the potential for using bacteriophage to reduce pathogen contamination of compost. Recent bacteriophage studies have evaluated their effectiveness in live animals (2, 26, 28), on fresh produce (15, 23, 25), and on meat products (7, 30). Application of bacteriophages may therefore be a preventive step in the preharvest stages of food production.The objectives of this study were to isolate and characterize bacteriophages specific to Salmonella serovars and to develop a bacteriophage mixture effective in reducing pathogen contamination in compost under different environmental conditions.  相似文献   

15.
16.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

17.
To assess interchangeability of estimates of bacterial abundance by different epifluorescence microscopy methods, total bacterial numbers (TBNs) determined by most widely accepted protocols were statistically compared. Bacteria in a set of distinctive samples were stained with acridine orange (AO), 4′-6-diamidino-2-phenylindole (DAPI), and BacLight and enumerated by visual counting (VC) and supervised image analysis (IA). Model II regression and Bland-Altman analysis proved general agreements between IA and VC methods, although IA counts tended to be lower than VC counts by 7% on a logarithmic scale. Distributions of cells and latex beads on polycarbonate filters were best fitted to negative binomial models rather than to Poisson or log-normal models. The fitted models revealed higher precisions of TBNs by the IA method than those by the VC method. In pairwise comparisons of the staining methods, TBNs by AO and BacLight staining showed good agreement with each other, but DAPI staining had tendencies of underestimation. Although precisions of the three staining methods were comparable to one another (intraclass correlation coefficients, 0.97 to 0.98), accuracy of the DAPI staining method was rebutted by disproportionateness of TBNs between pairs of samples that carried 2-fold different volumes of identical cell suspensions. It was concluded that the TBN values estimated by AO and BacLight staining are relatively accurate and interchangeable for quantitative interpretation and that IA provides better precision than does VC. As a prudent measure, it is suggested to avoid use of DAPI staining for comparative studies investigating accuracy of novel cell-counting methods.Bacterial abundance is an instrumental parameter in assessing the roles of bacteria in the environments (18, 27, 30, 45). While a variety of techniques are available (1, 30, 53, 60), staining bacterial cells with acridine orange (AO) (29) or 4′,6-diamidino-2-phenylindole (DAPI) (48) and counting them on black polycarbonate (PC) filters by epifluorescence microscopy have become the standard procedure for direct counting (9, 18, 30). The Live/Dead BacLight staining kit, which is widely accepted as a rapid measure of viability of individual cells, also provides a total count of bacteria (10). Currently, most studies reporting total bacterial numbers (TBNs) use one of the three staining methods described above. However, the basic question of which fluorochrome to use for a given samples still presents challenges, as comparative studies using two or more of these fluorochromes have often yielded conflicting results (10, 17, 20, 34, 37, 40, 49, 52, 54, 57, 58).A more perplexing question is whether TBN values based on different fluorochromes are interchangeable for a quantitative interpretation incorporating TBN data from different methods. A large-scale intersystem study, an analysis of long-term collection of longitudinal data, or a collaborative study by multiple laboratories often requires an amalgamated use of TBN values from different fluorochromes. Apart from the interchangeability of fluorochromes, there is another complication at the step of cell enumeration. For example, TBN estimates by digital image analysis (IA) on microscope fields were often either slightly higher (3, 44) or significantly lower (25) than those found by visual counting (VC). With the introduction of various instrument-aided enumeration methods, including photomicrography IA (43, 55, 59), laser-scanning microscopy (8, 36), flow cytometry (2, 27, 34), and microfluidic devices (1, 53), TBN values are now reported based on various combinations of fluorochromes and enumeration methods. Considering the rapid advancement of novel enumeration technologies, establishing a robust “gold standard” method that can estimate bacterial abundance with high accuracy and precision is more in demand than ever.However, the robust gold standard that can validate novel methods and calibrate different methods apparently does not exist yet, largely due to insufficient attention to random errors and biases involved with fluorochromes or enumeration methods (9, 30). In the studies reporting general agreement among TBN methods (22, 34, 41, 44, 53, 59), using correlation or ordinary linear regression as the only or major evidence of agreement appears to be a major analytical drawback. Since measurements under comparison are from the same quantity, i.e., the true value, intrinsic correlation is naturally expected. Therefore, analytical approaches based on correlation are biased toward finding an agreement (7), and hence, the strength of agreement cannot be objectively quantified. In cases reporting discrepancies between different TBN methods (17, 25, 35, 43, 48, 54, 57, 58), sources of biases were not identified due to the limitation of knowledge on the true abundance values or lack of estimation of precisions of methods. Error propagations of TBN methods were analyzed by several studies (13, 23, 32, 39) but have been limited to identification of sources of error for a specific method (35, 36), instead of comparing precisions and accuracies of commonly used TBN methods. Therefore, a comprehensive statistical study to reveal the intrinsic nature of the errors and biases of conventional TBN methods is necessary to establish the robust gold standard method for determining TBNs. In essence, the statistical study should compare different combinations of staining and enumeration methods that are used as the standard method for calibration of novel TBN methods or those that are most widely used for TBN estimation, either to establish a robust gold standard method for TBN estimation or to understand differences in TBN values reported in the literature.In this study, we performed intensive analyses on accuracies and precisions of the conventional TBN methods and determined agreements among their measurements. For the fluorochromes, the three most-used fluorochromes (AO, DAPI, and BacLight) were compared. For the enumeration methods, we employed VC, which is the traditional gold standard method for enumeration of bacteria, and a simple supervised IA method as a representative, using photographic images by imaging instruments. In comparison to other novel instrument-aided enumeration methods, these two methods could validate the objects being enumerated by human decision. Therefore, they had best potential as a part of the gold standard for TBN estimation. In many studies, these methods were implicitly regarded as the gold standard method in estimation of bacterial abundance. We applied Bland-Altman analysis (5) to quantify difference of measurements, characterized intrinsic errors of count data by generalized linear models (64), and determined accuracies of methods based on the confidence interval (CI) of ratios of average cell counts by a generalized pivotal approach (15). Based on these statistical properties of the methods, we identified biases intrinsic to each method and addressed which methods are accurate and interchangeable.  相似文献   

18.
In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition. Here we showed, by combining soil analyses with cultivation-dependent analyses of the culturable bacterial communities associated with the widespread mycorrhizal fungus Scleroderma citrinum, a significant enrichment of bacterial isolates with efficient mineral weathering potentials around the oak and beech mycorrhizal roots compared to bulk soil. Such a difference did not exist in the rhizosphere of Norway spruce. The mineral weathering ability of the bacterial isolates was assessed using a microplaque assay that measures the pH and the amount of iron released from biotite. Using this microplate assay, we demonstrated that the bacterial isolates harboring the most efficient mineral weathering potential belonged to the Burkholderia genus. Notably, previous work revealed that oak and beech harbored very similar pHs in the 5- to 10-cm horizon in both rhizosphere and bulk soil environments. In the spruce rhizosphere, in contrast, the pH was significantly lower than that in bulk soil. Because the production of protons is one of the main mechanisms responsible for mineral weathering, our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials.The mobilization of nutrients via the biotic and abiotic weathering of soil minerals is crucial to satisfying plant nutritional needs (2, 17), especially in acidic forest soils, which are mainly nonfertilized and nutrient poor. Besides the physicochemical weathering reactions, evidence is presently accumulating which indicates that certain soil bacterial strains increase mineral weathering and improve tree nutrition (5, 9, 32, 39-41).By way of their root exudates, plants alter the structure and activity of microbial communities (6, 25, 51) and selectively favor certain ones that are potentially beneficial to them (15, 16, 21, 45, 46). A hypothesis for sustainable forest development proposes that tree roots select from the soil efficient mineral weathering bacterial communities that may contribute to nutrient mobilization and tree growth (20). In this manner, recent studies (10, 46) have revealed that the oak-Scleroderma citrinum ectomycorrhizal symbiosis selects bacterial communities that are more efficient in mineral weathering than those of the surrounding soil, suggesting that the mycorrhizal symbiosis has an indirect effect on plant nutrition through its selective pressure on the functional diversity of the mycorrhizosphere bacterial communities.Distinct impacts of the tree species on the soil bacterial community structure have been previously reported (23, 38), suggesting that the composition and activity of soil bacterial communities depend on tree physiology and notably on its impact on the soil physicochemical properties and nutrient cycling (24, 26, 37). However, no study has ever addressed the question of the impact of tree species on the structure of forest soil bacterial communities involved in mineral weathering. This question regarding the impact of tree species on the functional diversity of the bacterial communities remains a major issue in forestry, especially in the context of today''s climate change, which will give rise to a shift in the spatial distribution of forest tree species.To appreciate the effect of tree species on mycorrhizosphere bacterial communities, we focused on a single but ubiquitous mycorrhizal fungus, S. citrinum, which forms mycorrhizae with different tree species. Since no functional genes have been identified to date, a cultivation-dependent analysis was developed in this study. A total of 155 bacterial isolates were randomly chosen among a collection of 400 bacterial isolates from the soil-Scleroderma citrinum mycorrhiza interface (ectomycorrhizosphere), the extramatrical mycelium (hyphosphere), and the surrounding soil (bulk soil) in 28-year-old stands of oak (Quercus sessiliflora Smith), beech (Fagus sylvatica L.), and Norway spruce (Picea abies Karst.). The mineral weathering potential of each bacterial isolate was evaluated by way of an in vitro microplate assay, putting in interaction a calibrated bacterial suspension and the biotite, a mineral widespread in soils (46). The bacterial isolates were genotypically characterized by amplifying and sequencing a portion of the 16S rRNA gene. Their mineral weathering efficiencies and the functional structure of the bacterial communities were compared with the physicochemical characteristics of the surrounding soil.  相似文献   

19.
Mutation frequencies were studied in 174 Stenotrophomonas maltophilia isolates from clinical and nonclinical environments by detecting spontaneous rifampin-resistant mutants in otherwise-susceptible populations. The distribution of mutation frequencies followed a pattern similar to that found for other bacterial species, with a modal value of 1 × 10−8. Nevertheless, the proportion of isolates showing mutation frequencies below the modal value (hypomutators) was significantly higher for S. maltophilia than those so far reported in other organisms. Low mutation frequencies were particularly frequent among environmental S. maltophilia strains (58.3%), whereas strong mutators were found only among isolates with a clinical origin. These results indicate that clinical environments might select bacterial populations with high mutation frequencies, likely by second-order selection processes. In several of the strong-mutator isolates, functional-complementation assays with a wild-type allele of the mutS gene demonstrated that the mutator phenotype was due to the impairment of MutS activity. In silico analysis of the amino acid changes present in the MutS proteins of these hypermutator strains in comparison with the normomutator isolates suggests that the cause of the defect in MutS might be a H683P amino acid change.Stenotrophomonas maltophilia is a Gram-negative, nonfermenting environmental bacterial species often isolated from the rhizosphere and from water sources (11, 12, 63). Some S. maltophilia strains have been used for bioremediation (13, 24, 73) or bioaugmentation (37). However, besides its environmental origin and potential relevance for biotechnological purposes, S. maltophilia is also a relevant human opportunistic pathogen (44) associated with a broad spectrum of clinical syndromes, such as bacteremia (79, 81), endocarditis (18), infection in cancer patients (1), and respiratory tract infections, including those suffered by cystic fibrosis (CF) patients (72, 77). One of the most problematic characteristics of S. maltophilia is its intrinsic high resistance to several antibiotics (4). This intrinsic antibiotic resistance is at least partly due to the presence in the genome of S. maltophilia (17) of genes encoding antibiotic-inactivating enzymes (6, 9, 30, 39, 42, 58) and multidrug resistance (MDR) efflux pumps (2, 3, 43, 78). More recently, a chromosomally encoded Qnr protein that contributes to the intrinsic resistance to quinolones of S. maltophilia has been described (67, 68).A clear difference between infective (clinical) and environmental (nonclinical) S. maltophilia strains has not been reported (12, 63). However, although the available data fit the concept that opportunistic pathogens have not specifically evolved to infect humans (48), this does not mean that they do not evolve during the infective process. For most acute infections, we can presume that the time of in-host evolution is probably too short to detect relevant adaptive changes. Nevertheless, the situation might be different in chronic infections, such as those involving the bronchial compartment in CF patients. In this case, the same bacterial clone can be maintained and grow inside the host for years (62). This produces strong diversification over time and in different compartments of the lung (25, 71, 80), a process in which the acquisition of a mutator phenotype is important (52). Thus, isolates derived from an initial clone but presenting different morphotypes (47), different phenotypes of susceptibility to antibiotics (26) or in the expression of virulence determinants (14, 15, 36), or with different mutation frequencies (49, 60) are recovered from each individual patient suffering chronic infections. More recently, intraclonal diversification has also been described for Pseudomonas aeruginosa causing acute infections in intubated patients (38). Taken together, this indicates that bacteria can evolve during infection.For different bacterial species, strains isolated from CF patients with chronic lung infections show high mutation frequencies (hypermutable strains) (19, 60, 61, 66), whereas hypermutators have rarely been found in isolates from acute infections (33). An explanation for this difference could be that hypermutable strains tend to be selected for in the highly compartmentalized environment of the infected lung by intensive antibiotic therapy, as well as by the stressful conditions of the habitat. This is a second-order selection process (75, 76), in which mutations are selected because they confer an advantage in clinical environments in such a way that mutator strains are selected because they can produce more mutants (both advantageous and deleterious) for selection. In cases of chronic infections that are treated, strong and maintained selective local processes might occur, either by antibiotic treatment or by the actions of the anti-infective systems of the host. Natural out-of-host open environments obviously might have local stresses. However, the intensity of selection is expected to be lower in these habitats, and a constant replacement of potentially lost organisms by migration of neighbor populations probably mitigates the local selection of mutators and favors the enrichment of bacteria presenting low mutation frequencies. In the case of chronic infections, the replacement of mutators by neighbor normomutators is unlikely, because those infections are produced by a single clone that remains for several years in the host (62). Furthermore, although the infection process presents strong evolutionary bottlenecks for bacterial populations, the human host also provides a constant temperature, reliable nutrient supplies, and a habitat largely free from predators and competitors. Thus, while hypermutation might increase the capability of bacteria to adapt to some specific challenges in the clinical environment, the cost of hypermutation in terms of deleterious mutations might also be diminished, and these effects might be mutually reinforcing.The hypothesis explored in this paper is that S. maltophilia is adapted to deal with out-of-host fluctuating environmental variations but that once the organism enters a patient as an opportunistic pathogen, its adaptive needs significantly increase due to the actions of stressful local environmental conditions, such as the immune response and, when present, antibiotics. This enhanced stress under infective conditions might result in the selection of variants with increased mutation frequencies in a second-order selection process (75, 76). To test this hypothesis, the mutation frequencies of S. maltophilia clinical isolates (obtained from CF and non-CF patients) and from the environment (nonclinical origin) were compared. Most works that have been published on the different mutation frequencies in bacterial populations have focused on the detection of strains showing a high mutation frequency (mutators). In our work, we describe for the first time the presence of mutators in clinical isolates of S. maltophilia and demonstrate that hypermutation in several of those isolates is due to defects in MutS.Nevertheless, our main goal has been the analysis of the global distribution of mutation frequencies in an ample number of samples from clinical and nonclinical environments. Our results indicate not only that mutators are more frequent in clinical S. maltophilia isolates, but also that the overall distribution of mutation frequencies is different in S. maltophilia populations with environmental or clinical origins, with a tendency toward mutation frequencies lower than the modal mutation value (hypomutators) in the environmental isolates.  相似文献   

20.
Here, we report a fluorescence in situ hybridization (FISH) method for rapid detection of Cronobacter strains in powdered infant formula (PIF) using a novel peptide nucleic acid (PNA) probe. Laboratory tests with several Enterobacteriaceae species showed that the specificity and sensitivity of the method were 100%. FISH using PNA could detect as few as 1 CFU per 10 g of Cronobacter in PIF after an 8-h enrichment step, even in a mixed population containing bacterial contaminants.Cronobacter strains were originally described as Enterobacter sakazakii (12), but they are now known to comprise a novel genus consisting of six separate genomospecies (20, 21). These opportunistic pathogens are ubiquitous in the environment and various types of food and are occasionally found in the normal human flora (11, 12, 16, 32, 47). Based on case reports, Cronobacter infections in adults are generally less severe than Cronobacter infections in newborn infants, with which a high fatality rate is associated (24).The ability to detect Cronobacter and trace possible sources of infection is essential as a means of limiting the impact of these organisms on neonatal health and maintaining consumer confidence in powdered infant formula (PIF). Conventional methods, involving isolation of individual colonies followed by biochemical identification, are more time-consuming than molecular methods, and the reliability of some currently proposed culture-based methods has been questioned (28). Recently, several PCR-based techniques have been described (23, 26, 28-31, 38). These techniques are reported to be efficient even when low levels of Cronobacter cells are found in a sample (0.36 to 66 CFU/100 g). However, PCR requires DNA extraction and does not allow direct, in situ visualization of the bacterium in a sample.Fluorescence in situ hybridization (FISH) is a method that is commonly used for bacterial identification and localization in samples. This method is based on specific binding of nucleic acid probes to particular DNA or RNA target regions (1, 2). rRNA has been regarded as the most suitable target for bacterial FISH, allowing differentiation of potentially viable cells. Traditionally, FISH methods are based on the use of conventional DNA oligonucleotide probes, and a commercial system, VIT-E sakazakii (Vermicon A.G., Munich, Germany), has been developed based on this technology (25). However, a recently developed synthetic DNA analogue, peptide nucleic acid (PNA), has been shown to provide improved hybridization performance compared to DNA probes, making FISH procedures easier and more efficient (41). Taking advantage of the PNA properties, FISH using PNA has been successfully used for detection of several clinically relevant microorganisms (5, 15, 17, 27, 34-36).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号