首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipids extracted from Purified Myelin Membranes (LPMM) were spread as monomolecular films at the air/aqueous interface. The films were visualized by Brewster Angle Microscopy (BAM) at different lateral pressures (π) and ionic environments. Coexistence of Liquid-Expanded (LE) and cholesterol-enriched (CE) rounded domains persisted up to π ≈ 5 mN/m but the monolayers became homogeneous at higher surface pressures. Before mixing, the domains distorted to non-rounded domains. We experimentally measured the line tension (λ) for the lipid monolayers at the domain borders by a shape relaxation technique using non-homogeneous electric fields. Regardless of the subphase conditions, the obtained line tensions are of the order of pN and tended to decrease as lateral pressure increased toward the mixing point. From the mean square displacement of nested trapped domains, we also calculated the dipole density difference between phases (μ). A non-linear drop was detected in this parameter as the mixing point is approached. Here we quantitively evaluated the π-dependance of both parameters with proper power laws in the vicinity of the critical mixing surface pressure, and the exponents showed to be consistent with a critical phenomenon in the two-dimensional Ising universality class. This idea of bidimensionality was found to be compatible only for simplified lipidic systems, while for whole myelin monolayers, that means including proteins, no critical mixing point was detected.Finally, the line tension values were related with the thickness differences between phases (Δt) near the critical point.  相似文献   

2.
Membranes containing a wide variety of ternary mixtures of high chain-melting temperature lipids, low chain-melting temperature lipids, and cholesterol undergo lateral phase separation into coexisting liquid phases at a miscibility transition. When membranes are prepared from a ternary lipid mixture at a critical composition, they pass through a miscibility critical point at the transition temperature. Since the critical temperature is typically on the order of room temperature, membranes provide an unusual opportunity in which to perform a quantitative study of biophysical systems that exhibit critical phenomena in the two-dimensional Ising universality class. As a critical point is approached from either high or low temperature, the scale of fluctuations in lipid composition, set by the correlation length, diverges. In addition, as a critical point is approached from low temperature, the line tension between coexisting phases decreases to zero. Here we quantitatively evaluate the temperature dependence of line tension between liquid domains and of fluctuation correlation lengths in lipid membranes to extract a critical exponent, ν. We obtain ν = 1.2 ± 0.2, consistent with the Ising model prediction ν = 1. We also evaluate the probability distributions of pixel intensities in fluorescence images of membranes. From the temperature dependence of these distributions above the critical temperature, we extract an independent critical exponent of β = 0.124 ± 0.03, which is consistent with the Ising prediction of β = 1/8.  相似文献   

3.
Collapse of homogeneous lipid monolayers is known to proceed via wrinkling/buckling, followed by folding into bilayers in water. For heterogeneous monolayers with phase coexistence, the mechanism of collapse remains unclear. Here, we investigated collapse of lipid monolayers with coexisting liquid-liquid and liquid-solid domains using molecular dynamics simulations. The MARTINI coarse-grained model was employed to simulate monolayers of ∼80 nm in lateral dimension for 10–25 μs. The monolayer minimum surface tension decreased in the presence of solid domains, especially if they percolated. Liquid-ordered domains facilitated monolayer collapse due to the spontaneous curvature induced at a high cholesterol concentration. Upon collapse, bilayer folds formed in the liquid (disordered) phase; curved domains shifted the nucleation sites toward the phase boundary. The liquid (disordered) phase was preferentially transferred into bilayers, in agreement with the squeeze-out hypothesis. As a result, the composition and phase distribution were altered in the monolayer in equilibrium with bilayers compared to a flat monolayer at the same surface tension. The composition and phase behavior of the bilayers depended on the degree of monolayer compression. The monolayer-bilayer connection region was enriched in unsaturated lipids. Percolation of solid domains slowed down monolayer collapse by several orders of magnitude. These results are important for understanding the mechanism of two-to-three-dimensional transformations in heterogeneous thin films and the role of lateral organization in biological membranes. The study is directly relevant for the function of lung surfactant, and can explain the role of nanodomains in its surface activity and inhibition by an increased cholesterol concentration.  相似文献   

4.
This study revealed large distinctions between the lamellar and non-lamellar liquid crystalline lipid phases in their spreading at the air/water interface and propensity to form bilayer foam films. Comparative measurements were made for the lamellar L(alpha), the inverted hexagonal H(II) and the bicontinuous cubic Pn3m phases of the phospholipid dipalmitoleoylphosphatidylethanolamine (DPoPE). With regard to monolayer formation, followed as the decrease of surface tension with time, the best spreading (lowest surface tension) was observed for the L(alpha) phase, and poorest spreading (highest surface tension) was recorded for the H(II) phase. The cubic Pn3m phase of DPoPE, induced by temperature cycling, retained an intermediate position between the L(alpha) and H(II) phases. According to their ability to lower surface tension and disintegrate at the air/water interface, the three phases thus order as L(alpha)>Pn3m>H(II). Clearly expressed threshold (minimum) bulk lipid concentrations, C(t), required for formation of stable foam bilayers from these phases, were determined and their values were found to correlate well with the bulk lipid phase behaviour. The C(t) values for L(alpha) and H(II) substantially increase with the temperature. Their Arrhenius plots, ln C(t) versus 1/ T, are linear and intersect at approximately 36-37 degrees C, coinciding with the onset of the bulk L(alpha)-->H(II) phase transition, as determined by differential scanning calorimetry. However, the C(t) value for the Pn3m phase, equal to 30 micro g/mL, was found to be constant over the whole range investigated between 20 degrees C and 50 degrees C. The horizontal C(t) versus T plot for the Pn3m phase crosses the respective plot for the L(alpha) phase at the temperature bounding from below the hysteretic loop of the L(alpha)<-->H(II) transition (approximately 26 degrees C), thus providing a certain insight about the thermodynamic stability of the Pn3m phase relative to the L(alpha) phase. The established strong effect of the particular lipid phase on the formation of monolayers and stable black foam films should be of importance in various in vitro and in vivo systems, where lipid structures are in contact with interfaces and disintegrate there to different extents.  相似文献   

5.
Collapse of homogeneous lipid monolayers is known to proceed via wrinkling/buckling, followed by folding into bilayers in water. For heterogeneous monolayers with phase coexistence, the mechanism of collapse remains unclear. Here, we investigated collapse of lipid monolayers with coexisting liquid-liquid and liquid-solid domains using molecular dynamics simulations. The MARTINI coarse-grained model was employed to simulate monolayers of ∼80 nm in lateral dimension for 10–25 μs. The monolayer minimum surface tension decreased in the presence of solid domains, especially if they percolated. Liquid-ordered domains facilitated monolayer collapse due to the spontaneous curvature induced at a high cholesterol concentration. Upon collapse, bilayer folds formed in the liquid (disordered) phase; curved domains shifted the nucleation sites toward the phase boundary. The liquid (disordered) phase was preferentially transferred into bilayers, in agreement with the squeeze-out hypothesis. As a result, the composition and phase distribution were altered in the monolayer in equilibrium with bilayers compared to a flat monolayer at the same surface tension. The composition and phase behavior of the bilayers depended on the degree of monolayer compression. The monolayer-bilayer connection region was enriched in unsaturated lipids. Percolation of solid domains slowed down monolayer collapse by several orders of magnitude. These results are important for understanding the mechanism of two-to-three-dimensional transformations in heterogeneous thin films and the role of lateral organization in biological membranes. The study is directly relevant for the function of lung surfactant, and can explain the role of nanodomains in its surface activity and inhibition by an increased cholesterol concentration.  相似文献   

6.
A method for transferring a lipid monolayer from an air-water interface to an alkylated glass slide is described. Specific antibodies bind tightly to lipid haptens contained in these monolayers on the glass slides. We conclude that the polar head groups of the lipids face the aqueous phase. A monolayer containing a fluorescent lipid was used to show that the monolayer is homogeneous as observed with an epifluorescence microscope. A periodic pattern photobleaching technique was used to measure the lateral diffusion of this fluorescent lipid probe in monolayers composed of dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine. Different regions of the pressure-area isotherms of the monolayers at the air-water interface can be correlated with the diffusion of the fluorescent probe molecules on the monolayer-coated glass slide. Monolayers derived from the so-called “solid-condensed” state of a monolayer at the air-water interface showed a very low probe diffusion coefficient in this monolayer when placed on a glass slide, D ≤ 10-10 cm2/s. Monolayers derived from the “liquid condensed/liquid expanded” (LC/LE) region of the monolayer isotherms at the air-water interface showed rapid diffusion (D > 10-8 cm2/s) when these same monolayers were observed on an alkylated glass slide. The monolayers attached to the glass slide appear to be homogeneous when derived from monolayers in the LC/LE region of monolayers at the air-water interface. There is no major variation of the diffusion coefficient of a fluorescent lipid probe when this diffusion is measured on a lipid monolayer on a glass slide, for monolayers derived from various regions of the LC/LE monolayers at the air-water interface. This is consistent with the view that the LC/LE region is most likely a single fluid phase. Monolayers supported on a planar glass substrate are of much potential interest for biophysical and biochemical studies of the interactions between model membranes and cellular membranes, and for physical chemical studies relating the properties of lipid monolayers to the properties of lipid bilayers.  相似文献   

7.
Domains within the plane of the plasma membrane, referred to as membrane rafts, have been a topic of considerable interest in the field of membrane biophysics. Although model membrane systems have been used extensively to study lipid phase behavior as it relates to the existence of rafts, very little work has focused on either the initial stage of lipid domain nucleation, or the relevant physical parameters such as temperature and interfacial line tension which control nucleation. In this work, we utilize a method in which the kinetic process of lipid domain nucleation is imaged by atomic force microscopy and modeled using classical theory of nucleation to map interfacial line tension in ternary lipid mixtures. These mixtures consist of a fluid phase lipid component (1,2-dilauroyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, or 1,2-dioleoyl-sn-glycero-3-phosphocholine), a solid phase component (galactosylceramide), and cholesterol. Interfacial line tension measurements of galactosylceramide-rich domains track with our previously measured area/perimeter ratios and height mismatches measured here. Line tension also follows known trends in cholesterol interactions and partitioning, as we observed previously with area/perimeter ratios. Our line tension measurements are discussed in combination with recent line tension measurements to address line tension regulation by cholesterol and the dynamic nature of membrane rafts.  相似文献   

8.
The liquid-liquid (Ld + Lo) coexistence region within a distearoyl-phosphatidylcholine/dioleoyl-phosphatidylcholine/palmitoyl-oleoyl-phosphatidylcholine/cholesterol (DSPC/DOPC/POPC/CHOL) mixture displays a nanoscopic-to-macroscopic transition of phase domains as POPC is replaced by DOPC. Previously, we showed that the transition goes through a modulated phase regime during this replacement, in which patterned liquid phase morphologies are observed on giant unilamellar vesicles (GUVs). Here, we describe a more detailed investigation of the modulated phase regime along two different thermodynamic tielines within the Ld + Lo region of this four-component mixture. Using fluorescence microscopy of GUVs, we found that the modulated phase regime occurs at relatively narrow DOPC/(DOPC+POPC) ratios. This modulated phase window shifts to higher values of DOPC/(DOPC+POPC) when CHOL concentration is increased, and coexisting phases become closer in properties. Monte Carlo simulations reproduced the patterns observed on GUVs, using a competing interactions model of line tension and curvature energies. Sufficiently low line tension and high bending moduli are required to generate stable modulated phases. Altogether, our studies indicate that by tuning the lipid composition, both the domain size and morphology can be altered drastically within a narrow composition space. This lends insight into a possible mechanism whereby cells can reorganize plasma membrane compartmentalization simply by tuning the local membrane composition or line tension.  相似文献   

9.
α-Hemolysin (HlyA) is a protein toxin, a member of the pore-forming Repeat in Toxin (RTX) family, secreted by some pathogenic strands of Escherichia coli. The mechanism of action of this toxin seems to involve three stages that ultimately lead to cell lysis: binding, insertion, and oligomerization of the toxin within the membrane. Since the influence of phase segregation on HlyA binding and insertion in lipid membranes is not clearly understood, we explored at the meso- and nanoscale—both in situ and in real-time—the interaction of HlyA with lipid monolayers and bilayers. Our results demonstrate that HlyA could insert into monolayers of dioleoylphosphatidylcholine/sphingomyelin/cholesterol (DOPC/16:0SM/Cho) and DOPC/24:1SM/Cho. The time course for HlyA insertion was similar in both lipidic mixtures. HlyA insertion into DOPC/16:0SM/Cho monolayers, visualized by Brewster-angle microscopy (BAM), suggest an integration of the toxin into both the liquid-ordered and liquid-expanded phases. Atomic-force-microscopy imaging reported that phase boundaries favor the initial binding of the toxin, whereas after a longer time period the HlyA becomes localized into the liquid-disordered (Ld) phases of supported planar bilayers composed of DOPC/16:0SM/Cho. Our AFM images, however, showed that the HlyA interaction does not appear to match the general strategy described for other invasive proteins. We discuss these results in terms of the mechanism of action of HlyA.  相似文献   

10.
The ordering of the hydrocarbon chain interior of bilayer membranes has been calculated using the molecular field approximation developed in previous work on liquid crystals. Different statistical averages are evaluated by exact summation over all conformations of a single chain in the field due to neighboring molecules. The internal energy of each conformation, as well as contributions arising from interaction with the molecular field and from a lateral pressure on the chain have been included.The results describe properties of both lipid monolayers and bilayers. For monolayers, the calculated pressure-area relationships are in good agreement with experimental observations. The order parameter for hydrocarbon chains in bilayers (or monolayers) as a function of temperature, lateral pressure and position along the chain, is shown and compared with the available NMR data. Combining the results of calculation and NMR measurements we obtain the value for intrinsic lateral pressure within bilayer membranes, in excellent agreement with direct measurements on surface monolayers.The calculation also gives average length of hydrocarbon chains, thermal expansion coefficient and fraction of bonds in gauche conformations. The effect of cholesterol and proteins within the bilayer is qualitatively described, and the contribution of the bilayer interior to membrane elasticity is determined.  相似文献   

11.
12.
Monolayers based on the composition of the cytoplasmic (CYT) or extracellular (EXT) sides of the myelin bilayer form coexisting immiscible liquid phases similar to the liquid-ordered/liquid-disordered phases in phospholipid/cholesterol monolayers. Increasing the temperature or surface pressure causes the two liquid phases to mix, although in significantly different fashion for the CYT and EXT monolayers. The cerebroside-rich EXT monolayer is near a critical composition and the domains undergo coalescence and a circle-to-stripe transition along with significant roughening of the domain boundaries before mixing. The phase transition in the cerebroside-free cytoplasmic side occurs abruptly without domain coalescence; hence, the cytoplasmic monolayer is not near a critical composition, although the domains exhibit shape instabilities within 1–2 mN/m of the transition. The change in mixing pressure decreases significantly with temperature for the EXT monolayer, with dΠcrit/dT ∼ 1.5 mN/m/°C, but the mixing pressure of the CYT monolayer varies little with temperature. This is due to the differences in the nonideality of cholesterol interactions with cerebrosides (EXT) relative to phospholipids (CYT). EXT monolayers based on the composition of white matter from marmosets with experimental allergic encephalomyelitis (EAE), an animal model of multiple sclerosis, remain phase-separated at higher surface pressures than control, while EAE CYT monolayers are similar to control. Myelin basic protein, when added to the CYT monolayer, increases lipid miscibility in CYT monolayers; likely done by altering the dipole density difference between the two phases.  相似文献   

13.
Sticholysins (Sts) I and II (StI/II) are pore-forming toxins (PFTs) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin family, a unique class of eukaryotic PFTs exclusively found in sea anemones. The role of lipid phase co-existence in the mechanism of the action of membranolytic proteins and peptides is not clearly understood. As for actinoporins, it has been proposed that phase separation promotes pore forming activity. However little is known about the effect of sticholysins on the phase separation of lipids in membranes. To gain insight into the mechanism of action of sticholysins, we evaluated the effect of these proteins on lipid segregation using differential scanning calorimetry (DSC) and atomic force microscopy (AFM). New evidence was obtained reflecting that these proteins reduce line tension in the membrane by promoting lipid mixing. In terms of the relevance for the mechanism of action of actinoporins, we hypothesize that expanding lipid disordered phases into lipid ordered phases decreases the lipid packing at the borders of the lipid raft, turning it into a more suitable environment for N-terminal insertion and pore formation.  相似文献   

14.
Monomolecular layers of whole myelin membrane can be formed at the air-water interface from vesicles or from solvent solution of myelin. The films appear microheterogeneous as seen by epifluorescence and Brewster angle microscopy. The pattern consists mainly of two coexisting liquid phases over the whole compression isotherm. The liquid nature of the phases is apparent from the fluorescent probe behavior, domain mobility, deformability and boundary relaxation due to the line tension of the surface domains. The monolayers were transferred to alkylated glass and fluorescently labeled against myelin components. The immunolabeling of two major proteins of myelin (myelin basic protein, proteolipid-DM20) and of 2′,3′-cyclic nucleotide 3′-phosphodiesterase shows colocalization with probes partitioning preferentially in liquid-expanded lipid domains also containing ganglioside GM1. A different phase showing an enrichment in cholesterol, galactocerebroside and phosphatidylserine markers is also found. The distribution of components is qualitatively independent of the lateral surface pressure and is generally constituted by one phase enriched in charged components in an expanded state coexisting with another phase enriched in non-charged constituents of lower compressibility. The domain immiscibility provides a physical basis for the microheterogeneity found in this membrane model system.  相似文献   

15.
The pressure-dependent diffusion and partitioning of single lipid fluorophores in DMPC and DPPC monolayers were investigated with the use of a custom-made monolayer trough mounted on a combined fluorescence correlation spectroscopy (FCS) and wide-field microscopy setup. It is shown that lipid diffusion, which is essential for the function of biological membranes, is heavily influenced by the lateral pressure and phase of the lipid structure. Both of these may change dynamically during, e.g., protein adsorption and desorption processes. Using FCS, we measured lipid diffusion coefficients over a wide range of lateral pressures in DMPC monolayers and fitted them to a free-area model as well as the direct experimental observable mean molecular area. FCS measurements on DPPC monolayers were also performed below the onset of the phase transition (Π < 5 mN/m). At higher pressures, FCS was not applicable for measuring diffusion coefficients in DPPC monolayers. Single-molecule fluorescence microscopy and differential scanning calorimetry clearly showed that this was due to heterogeneous partitioning of the lipid fluorophores in condensed phases. The results were compared with dye partitioning in giant lipid vesicles. These findings are significant in relation to the application of lipid fluorophores to study diffusion in both model systems and biological systems.  相似文献   

16.
The fusion of lipid bilayers is studied with dissipative particle dynamics simulations. First, to achieve control over membrane properties, the effects of individual simulation parameters are studied and optimized. Then, a large number of fusion events for a vesicle and a planar bilayer are simulated using the optimized parameter set. In the observed fusion pathway, configurations of individual lipids play an important role. Fusion starts with individual lipids assuming a splayed tail configuration with one tail inserted in each membrane. To determine the corresponding energy barrier, we measure the average work for interbilayer flips of a lipid tail, i.e., the average work to displace one lipid tail from one bilayer to the other. This energy barrier is found to depend strongly on a certain dissipative particle dynamics parameter, and, thus, can be adjusted in the simulations. Overall, three subprocesses have been identified in the fusion pathway. Their energy barriers are estimated to lie in the range 8-15 kBT. The fusion probability is found to possess a maximum at intermediate tension values. As one decreases the tension, the fusion probability seems to vanish before the tensionless membrane state is attained. This would imply that the tension has to exceed a certain threshold value to induce fusion.  相似文献   

17.
This study focused on two hydrophobic fractions (HF-A and HF-B) isolated from porcine lung surfactant (LS) that had similar phospholipid composition, but HF-A consisted of the hydrophobic LS specific proteins (SP-B and SP-C), in contrast to HF-B. Monolayers spread in a Langmuir trough were formed at the air/water interface of both fractions and the rate of adsorption-desorption and the respreading potential of the LS constituents was studied during six consecutive compression/decompression cycles of the monolayers. By drawing a comparison between the behavior of HF-A and HF-B monolayers on the subphase of 150 mm NaCl, either with or without additional Ca2+, we estimated the role of hydrophobic LS proteins and Ca2+ ions for LS surface activity. The results demonstrated much higher ability of the HF-A sample, compared to HF-B, to maintain lower surface tension (γ) during monolayer compression and its better respreading capacity during decompression. For instance, at a surface concentration corresponding to 80 Å2 per phospholipid molecule, the HF-A monolayers showed a much lower γ max value (surface tension at 100% of the trough area), being ca. 31.0 mN/m, compared to the HF-B monolayers (γ max? 62.0 mN/m). The surface tension after compression to 20% of the initial area (γ min) reached ca. 7.0 and 19.0 mN/m in the HF-A and HF-B monolayers, respectively. Better respreading of the HF-A monolayers compared to the HF-B monolayers was due to the faster adsorption and spreading of LS phospholipids during decompression, facilitated by the hydrophobic proteins. As the phospholipid composition of both fractions was similar, we showed that the hydrophobic surfactant proteins were responsible also for the prevention of the irreversible loss of material from the surface during monolayer compression/decompression. The effects observed demonstrated also that the hydrophobic surfactant proteins were the stronger determinant, compared with Ca2+ ions, for the surface tension decrease and respreading of the monolayers during film compression/decompression. For instance, when the HF-A monolayers were spread on a subphase with an additional 5 mm Ca2+ ion content, no significant changes were detected in the γ min and γ max values between the first and sixth cycle, compared to the monolayers spread on a subphase of 150 mm NaCl only. However, in the absence of positively charged SP-B and SP-C (HF-B sample) in highly compressed monolayers, Ca2+ ions were able to cause the effects shown by SP-B and SP-C, although to a less extent. The role of the electrostatic and hydrophobic interactions is discussed for the better respreading of LS components in the presence of LS proteins and Ca2+ ions.  相似文献   

18.
The feasibility of applying multiphoton excitation fluorescence microscopy-related techniques in planar membrane systems, such as lipid monolayers at the air-water interface (named Langmuir films), is presented and discussed in this paper. The non-linear fluorescence microscopy approach, allows obtaining spatially and temporally resolved information by exploiting the fluorescent properties of particular fluorescence probes. For instance, the use of environmental sensitive probes, such as LAURDAN, allows performing measurements using the LAURDAN generalized polarization function that in turn is sensitive to the local lipid packing in the membrane. The fact that LAURDAN exhibit homogeneous distribution in monolayers, particularly in systems displaying domain coexistence, overcomes a general problem observed when “classical” fluorescence probes are used to label Langmuir films, i.e. the inability to obtain simultaneous information from the two coexisting membrane regions. Also, the well described photoselection effect caused by excitation light on LAURDAN allows: (i) to qualitative infer tilting information of the monolayer when liquid condensed phases are present and (ii) to provide high contrast to visualize 3D membranous structures at the film's collapse pressure. In the last case, computation of the LAURDAN GP function provides information about lipid packing in these 3D structures. Additionally, LAURDAN GP values upon compression in monolayers were compared with those obtained in compositionally similar planar bilayer systems. At similar GP values we found, for both DOPC and DPPC, a correspondence between the molecular areas reported in monolayers and bilayers. This correspondence occurs when the lateral pressure of the monolayer is 26 ± 2 mN/m and 28 ± 3 mN/m for DOPC and DPPC, respectively.  相似文献   

19.
The effect of a saponin-rich extract from rhizomes of Soapwort (Saponaria officinalis L) and four synthetic surfactants: sodium lauryl sulphate (SLS), sodium laureth sulphate (SLES), ammonium lauryl sulphate (ALS) and cocamidopropyl betaine (CAPB) on two model lipid monolayers is analyzed using surface pressure, surface dilatational rheology and fluorescence microscopy. The following monolayers were employed: dipalmitoylphosphatidylcholine/cholesterol mixture in a molar ratio of 7:3 (DPPC/CHOL) and Ceramide [AP]/stearic acid/cholesterol in a molar ratio of 14:14:10 (CER/SA/CHOL). They mimicked a general bilayer structure and an intercellular lipid mixture, respectively. Both lipid mixtures on Milli-Q water were first compressed to the initial surface pressure, Π0 = 30 mN/m and then the subphase was exchanged with the respective (bio)surfactant solution at 1% (w/w). All four synthetic surfactants behaved in a similar way: they increased surface pressure to about 40 mN/m and reduced the storage modulus of surface dilational surface rheology, E′, to the values close to zero. The corresponding fluorescence microscopy pictures confirmed that the lipids mimicking the stratum corneum components were almost completely removed by the synthetic surfactants under the present experimental conditions. The components of the Soapwort extract (SAP) increased surface pressure to significantly higher values than the synthetic surfactants, but even more spectacular increase was observed for the storage modulus of the SAP-penetrated lipid monolayers (up to E′= 715 mN/m).  相似文献   

20.
Collective cell migration is a fundamental process during embryogenesis and its initial occurrence, called epiboly, is an excellent in vivo model to study the physical processes involved in collective cell movements that are key to understanding organ formation, cancer invasion, and wound healing. In zebrafish, epiboly starts with a cluster of cells at one pole of the spherical embryo. These cells are actively spreading in a continuous movement toward its other pole until they fully cover the yolk. Inspired by the physics of wetting, we determine the contact angle between the cells and the yolk during epiboly. By choosing a wetting approach, the relevant scale for this investigation is the tissue level, which is in contrast to other recent work. Similar to the case of a liquid drop on a surface, one observes three interfaces that carry mechanical tension. Assuming that interfacial force balance holds during the quasi-static spreading process, we employ the physics of wetting to predict the temporal change of the contact angle. Although the experimental values vary dramatically, the model allows us to rescale all measured contact-angle dynamics onto a single master curve explaining the collective cell movement. Thus, we describe the fundamental and complex developmental mechanism at the onset of embryogenesis by only three main parameters: the offset tension strength, α, that gives the strength of interfacial tension compared to other force-generating mechanisms; the tension ratio, δ, between the different interfaces; and the rate of tension variation, λ, which determines the timescale of the whole process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号