首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mui UN  Lubczyk CM  Nam SC 《PloS one》2011,6(10):e25965

Background

Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the apical membrane domain and adherens junction during Drosophila photoreceptor morphogenesis. It has recently been found that stable microtubules in developing Drosophila photoreceptors were linked to Crb localization. Coordinated interactions between microtubule and actin cytoskeletons are involved in many polarized cellular processes. Since Spectraplakin is able to bind both microtubule and actin cytoskeletons, the role of Spectraplakin was analyzed in the regulations of apical Crb domain in developing Drosophila photoreceptors.

Methodology/Principal Findings

The localization pattern of Spectraplakin in developing pupal photoreceptors showed a unique intracellular distribution. Spectraplakin localized at rhabdomere terminal web which is at the basal side of the apical Crb or rhabdomere, and in between the adherens junctions. The spectraplakin mutant photoreceptors showed dramatic mislocalizations of Crb, adherens junctions, and the stable microtubules. This role of Spectraplakin in Crb and adherens junction regulation was further supported by spectraplakin''s gain-of-function phenotype. Spectraplakin overexpression in photoreceptors caused a cell polarity defect including dramatic mislocalization of Crb, adherens junctions and the stable microtubules in the developing photoreceptors. Furthermore, a strong genetic interaction between spectraplakin and crb was found using a genetic modifier test.

Conclusions/Significance

In summary, we found a unique localization of Spectraplakin in photoreceptors, and identified the role of spectraplakin in the regulation of the apical Crb domain and adherens junctions through genetic mutational analysis. Our data suggest that Spectraplakin, an actin-microtubule cross-linker, is essential in the apical and adherens junction controls during the photoreceptors morphogenesis.  相似文献   

2.

Background

The replicative cycle of chikungunya virus (CHIKV), an alphavirus that recently re-emerged in India and in Indian Ocean area, remains mostly unknown. The aim of the present study was to investigate the intracellular trafficking pathway(s) hijacked by CHIKV to enter mammalian cells.

Methodology/Principal Findings

Entry pathways were investigated using a variety of pharmacological inhibitors or overexpression of dominant negative forms of proteins perturbating cellular endocytosis. We found that CHIKV infection of HEK293T mammalian cells is independent of clathrin heavy chain and- dependent of functional Eps15, and requires integrity of Rab5-, but not Rab7-positive endosomal compartment. Cytoskeleton integrity is crucial as cytochalasin D and nocodazole significantly reduced infection of the cells. Finally, both methyl β-cyclodextrin and lysomotropic agents impaired CHIKV infection, supporting that a cholesterol-, pH-dependent step is required to achieve productive infection. Interestingly, differential sensitivity to lysomotropic agents was observed between the prototypal 37997 African strain of CHIKV and the LR-OPY1 virus isolated from the recent outbreak in Reunion Island.

Conclusions

Together our data indicate that CHIKV entry in its target cells is essentially mediated by clathrin-independent, Eps15-dependent endocytosis. Despite that this property is shared by the prototypal 37997 African strain of CHIKV and the LR-OPY1 virus isolated from the recent outbreak in La Réunion Island, differential sensitivity to lysomotropic agents may support that the LR-OPY1 strain has acquired specific entry mechanisms.  相似文献   

3.

Background

We have previously reported that human recombinant granzyme B (grB) mediates apoptosis in membrane heat shock protein 70 (Hsp70)-positive tumor cells in a perforin-independent manner.

Methodology/Principal Findings

Optical imaging of uptake kinetics revealed co-localization of grB with recycling endosomes (Rab9/11) as early as 5 min after internalization, with late endosomes (Rab7) after 30 min, and the lysosomal compartment (LAMP1/2) after 60 to 120 min. Active caspase-3-mediated apoptosis was induced in mouse CT26 monolayer cells and 3D tumor spheroids, but not in normal mouse endothelial cells. Granzyme B selectively reduced the proportion of membrane Hsp70-positive cells in CT26 tumor spheroids. Consecutive i.v. injections of recombinant human grB into mice bearing membrane Hsp70-positive CT26 tumors resulted in significant tumor suppression, and a detailed inspection of normal mouse organs revealed that the administration of anti-tumoral concentrations of grB elicited no clinicopathological changes.

Conclusions/Significance

These findings support the future clinical evaluation of human grB as a potential adjuvant therapeutic agent, especially for treating immunosuppressed patients that bear membrane Hsp70-positive tumors.  相似文献   

4.

Background

Endosomal small GTPases of the Rab family, among them Rab4a, play an essential role in the control of the glucose transporter GLUT4 trafficking, which is essential for insulin-mediated glucose uptake. We found that adipocytes also expressed Rab4b and we observed a consistent decrease in the expression of Rab4b mRNA in human and mice adipose tissue in obese diabetic states. These results led us to study this poorly characterized Rab member and its potential role in glucose transport.

Methodology/Principal Findings

We used 3T3-L1 adipocytes to study by imaging approaches the localization of Rab4b and to determine the consequence of its down regulation on glucose uptake and endogenous GLUT4 location. We found that Rab4b was localized in endosomal structures in preadipocytes whereas in adipocytes it was localized in GLUT4 and in VAMP2-positive compartments, and also in endosomal compartments containing the transferrin receptor (TfR). When Rab4b expression was decreased with specific siRNAs by two fold, an extent similar to its decrease in obese diabetic subjects, we observed a small increase (25%) in basal deoxyglucose uptake and a more sustained increase (40%) in presence of submaximal and maximal insulin concentrations. This increase occurred without any change in GLUT4 and GLUT1 expression levels and in the insulin signaling pathways. Concomitantly, GLUT4 but not TfR amounts were increased at the plasma membrane of basal and insulin-stimulated adipocytes. GLUT4 seemed to be targeted towards its non-endosomal sequestration compartment.

Conclusion/Significance

Taken our results together, we conclude that Rab4b is a new important player in the control of GLUT4 trafficking in adipocytes and speculate that difference in its expression in obese diabetic states could act as a compensatory effect to minimize the glucose transport defect in their adipocytes.  相似文献   

5.

Background & Aims

Evidence is accumulating that ethanol and its oxidative metabolite, acetaldehyde, can disrupt intestinal epithelial integrity, an important factor contributing to ethanol-induced liver injury. However, ethanol can also be metabolized non-oxidatively generating phosphatidylethanol and fatty acid ethyl esters (FAEEs). This study aims to investigate the effects of FAEEs on barrier function, and to explore the role of oxidative stress as possible mechanism.

Methods

Epithelial permeability was assessed by paracellular flux of fluorescein isothiocyanate-conjugated dextran using live cell imaging. Cell integrity was evaluated by lactate dehydrogenase release. Localization and protein levels of ZO-1 and occludin were analyzed by immunofluorescence and cell-based ELISA, respectively. Intracellular oxidative stress and cellular ATP levels were measured by dichlorofluorescein and luciferase driven bioluminescence, respectively.

Results

In vitro, ethyl oleate and ethyl palmitate dose dependently increased permeability associated with disruption and decreased ZO-1 and occludin protein levels, respectively, and increased intracellular oxidative stress without compromising cell viability. These effects could partially be attenuated by pretreatment with the antioxidant, resveratrol, pointing to the role of oxidative stress in the FAEEs-induced intestinal barrier dysfunction.

Conclusions

These findings show that FAEEs can induce intestinal barrier dysfunction by disrupting the tight junctions, most likely via reactive oxygen species-dependent mechanism.  相似文献   

6.
7.

Background

Giardia passes through two stages during its life cycle, the trophozoite and the cyst. Cyst formation involves the synthesis of cyst wall proteins (CWPs) and the transport of CWPs into encystation-specific vesicles (ESVs). Active vesicular trafficking is essential for encystation, but the molecular machinery driving vesicular trafficking remains unknown. The Rab proteins are involved in the targeting of vesicles to several intracellular compartments through their association with cytoskeletal motor proteins.

Methodology and Principal Findings

In this study, we found a relationship between Rab11 and the actin cytoskeleton in CWP1 transport. Confocal microscopy showed Rab11 was distributed throughout the entire trophozoite, while in cysts it was translocated to the periphery of the cell, where it colocalized with ESVs and microfilaments. Encystation was also accompanied by changes in rab11 mRNA expression. To evaluate the role of microfilaments in encystation, the cells were treated with latrunculin A. Scanning electron microscopy showed this treatment resulted in morphological damages to encysted parasites. The intensity of fluorescence-labeled Rab11 and CWP1 in ESVs and cyst walls was reduced, and rab11 and cwp1 mRNA levels were down-regulated. Furthermore, knocking down Rab11 with a hammerhead ribozyme resulted in an up to 80% down-regulation of rab11 mRNA. Although this knockdown did not appear lethal for trophozoites and did not affect cwp1 expression during the encystation, confocal images showed CWP1 was redistributed throughout the cytosol.

Conclusions and Significance

Our results indicate that Rab11 participates in the early and late encystation stages by regulating CWP1 localization and the actin-mediated transport of ESVs towards the periphery. In addition, alterations in the dynamics of actin affected rab11 and cwp1 expression. Our results provide new information about the molecules involved in Giardia encystation and suggest that Rab11 and actin may be useful as novel pharmacological targets.  相似文献   

8.

Background

In cardiac muscle, the intercalated disk (ID) at the longitudinal cell-edges of cardiomyocytes provides as a macromolecular infrastructure that integrates mechanical and electrical coupling within the heart. Pathophysiological disturbance in composition of this complex is well known to trigger cardiac arrhythmias and pump failure. The mechanisms underlying assembly of this important cellular domain in human heart is currently unknown.

Methods

We collected 18 specimens from individuals that died from non-cardiovascular causes. Age of the specimens ranged from a gestational age of 15 weeks through 11 years postnatal. Immunohistochemical labeling was performed against proteins comprising desmosomes, adherens junctions, the cardiac sodium channel and gap junctions to visualize spatiotemporal alterations in subcellular location of the proteins.

Results

Changes in spatiotemporal localization of the adherens junction proteins (N-cadherin and ZO-1) and desmosomal proteins (plakoglobin, desmoplakin and plakophilin-2) were identical in all subsequent ages studied. After an initial period of diffuse and lateral labelling, all proteins were fully localized in the ID at approximately 1 year after birth. Nav1.5 that composes the cardiac sodium channel and the gap junction protein Cx43 follow a similar pattern but their arrival in the ID is detected at (much) later stages (two years for Nav1.5 and seven years for Cx43, respectively).

Conclusion

Our data on developmental maturation of the ID in human heart indicate that generation of the mechanical junctions at the ID precedes that of the electrical junctions with a significant difference in time. In addition arrival of the electrical junctions (Nav1.5 and Cx43) is not uniform since sodium channels localize much earlier than gap junction channels.  相似文献   

9.

Background

Paramyxoviruses are assembled at the plasma membrane budding sites after synthesis of all the structural components in the cytoplasm. Although viral ribonuclocapsid (vRNP) is an essential component of infectious virions, the process of vRNP translocation to assembly sites is poorly understood.

Methodology/Principal Findings

To analyze real-time trafficking of vRNPs in live infected cells, we created a recombinant Sendai virus (SeV), rSeVLeGFP, which expresses L protein fused to enhanced green fluorescent protein (eGFP). The rSeVLeGFP showed similar growth kinetics compared to wt SeV, and newly synthesized LeGFP could be detected as early as 8 h postinfection. The majority of LeGFP co-localized with other components of vRNPs, NP and P proteins, suggesting the fluorescent signals of LeGFP represent the locations of vRNPs. Analysis of LeGFP movement using time-lapse digital video microscopy revealed directional and saltatory movement of LeGFP along microtubules. Treatment of the cells with nocodazole restricted vRNP movement and reduced progeny virion production without affecting viral protein synthesis, suggesting the role of microtubules in vRNP trafficking and virus assembly. Further study with an electron microscope showed close association of vRNPs with intracellular vesicles present in infected cells. In addition, the vRNPs co-localized with Rab11a protein, which is known to regulate the recycling endocytosis pathway and Golgi-to-plasma membrane trafficking. Simultaneous movement between LeGFP and Rab11a was also observed in infected cells, which constitutively express mRFP-tagged Rab11a. Involvement of recycling endosomes in vRNP translocation was also suggested by the fact that vRNPs move concomitantly with recycling transferrin labeled with Alexa 594.

Conclusions/Significance

Collectively, our results strongly suggest a previously unrecognized involvement of the intracellular vesicular trafficking pathway in vRNP translocation and provide new insights into the transport of viral structural components to the assembly sites of enveloped viruses.  相似文献   

10.

Background

E-cadherin is a major component of adherens junctions. Impaired expression of E-cadherin in the small intestine and colon has been linked to a disturbed intestinal homeostasis and barrier function. Down-regulation of E-cadherin is associated with the pathogenesis of infections with enteropathogenic bacteria and Crohn''s disease.

Methods and Findings

To genetically clarify the function of E-cadherin in intestinal homeostasis and maintenance of the epithelial defense line, the Cdh1 gene was conditionally inactivated in the mouse intestinal epithelium. Inactivation of the Cdh1 gene in the small intestine and colon resulted in bloody diarrhea associated with enhanced apoptosis and cell shedding, causing life-threatening disease within 6 days. Loss of E-cadherin led cells migrate faster along the crypt-villus axis and perturbed cellular differentiation. Maturation and positioning of goblet cells and Paneth cells, the main cell lineage of the intestinal innate immune system, was severely disturbed. The expression of anti-bacterial cryptidins was reduced and mice showed a deficiency in clearing enteropathogenic bacteria from the intestinal lumen.

Conclusion

These results highlight the central function of E-cadherin in the maintenance of two components of the intestinal epithelial defense: E-cadherin is required for the proper function of the intestinal epithelial lining by providing mechanical integrity and is a prerequisite for the proper maturation of Paneth and goblet cells.  相似文献   

11.
Chen G  Rogers AK  League GP  Nam SC 《PloS one》2011,6(1):e16127

Background

Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes'' role in photoreceptor morphogenesis.

Methodology/Principal Findings

Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn''s gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs).

Conclusions/Significance

These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the Drosophila photoreceptor.  相似文献   

12.
Xu J  Lan L  Bogard N  Mattione C  Cohen RS 《PloS one》2011,6(5):e20180

Background

The Drosophila egg chamber provides an excellent system in which to study the specification and differentiation of epithelial cell fates because all of the steps, starting with the division of the corresponding stem cells, called follicle stem cells, have been well described and occur many times over in a single ovary.

Methodology/Principal Findings

Here we investigate the role of the small Rab11 GTPase in follicle stem cells (FSCs) and in their differentiating daughters, which include main body epithelial cells, stalk cells and polar cells. We show that rab11-null FSCs maintain their ability to self renew, even though previous studies have shown that FSC self renewal is dependent on maintenance of E-cadherin-based intercellular junctions, which in many cell types, including Drosophila germline stem cells, requires Rab11. We also show that rab11-null FSCs give rise to normal numbers of cells that enter polar, stalk, and epithelial cell differentiation pathways, but that none of the cells complete their differentiation programs and that the epithelial cells undergo premature programmed cell death. Finally we show, through the induction of rab11-null clones at later points in the differentiation program, that Rab11 suppresses tumor-like growth of epithelial cells. Thus, rab11-null epithelial cells arrest differentiation early, assume an aberrant cell morphology, delaminate from the epithelium, and invade the neighboring germline cyst. These phenotypes are associated with defects in E-cadherin localization and a general loss of cell polarity.

Conclusions/Significance

While previous studies have revealed tumor suppressor or tumor suppressor-like activity for regulators of endocytosis, our study is the first to identify such activity for regulators of endocytic recycling. Our studies also support the recently emerging view that distinct mechanisms regulate junction stability and plasticity in different tissues.  相似文献   

13.

Background

Vascular endothelial cadherin (VE-cad) is essential for endothelial barrier integrity and vascular sprouting. However, the role of this important protein in cardiovascular development is only recently becoming apparent.

Methodology/Principal Findings

To characterize the role of VE-cadherin in cardiovascular development, we analyzed cardiovascular development in a zebrafish VE-cad knockdown model. Embryos deficient in VE-cad show profoundly impaired cardiac development despite having apparently normal peripheral vasculature. Initial formation of the heart proceeds normally in knockdown embryos, but subsequent looping morphogenesis is impaired. Consistent with these results, VE-cad knockdown embryos demonstrate impaired cardiac function and early circulatory arrest. Histologic examination of knockdown embryos shows persistent, abnormal separation of the endocardial and myocardial layers. Using transmission electron microscopy, we demonstrate that endocardial junctions form poorly in VE-cad knockdown embryos, with resulting leak across the endothelial layer and reduction in the density of the cardiac jelly.

Conclusions

Our results demonstrate a significant role for VE-cadherin in cardiac development independent of its effects on the formation of the peripheral vasculature.  相似文献   

14.
15.
Blastocyst formation is essential for implantation and maintenance of pregnancy and is dependent on the expression and coordinated function of a series of proteins involved in establishing and maintaining the trans-trophectoderm ion gradient that enables blastocyst expansion. These consist of Na/K-ATPase, adherens junctions, tight junctions (TJ) and aquaporins (AQP). While their role in supporting blastocyst formation is established, the intracellular signaling pathways that coordinate their function is unclear. The p38 MAPK pathway plays a role in regulating these proteins in other cell types and is required for embryo development at the 8–16 cell stage, but its role has not been investigated in the blastocyst.

Hypothesis

p38 MAPK regulates blastocyst formation by regulating blastocyst formation gene expression and function.

Methods

Embryos were cultured from the early blastocyst stage for 12 h or 24 h in the presence of a potent and specific p38 MAPK inhibitor, SB 220025. Blastocyst expansion, hatching, gene family expression and localization, TJ function and apoptosis levels were analyzed.

Results

Inhibition of the p38 MAPK pathway reduced blastocyst expansion and hatching, increased tight junction permeability, affected TJP1 localization, reduced Aqp3 expression, and induced a significant increase in apoptosis.

Conclusion

The p38 MAPK pathway coordinates the overall events that regulate blastocyst formation.  相似文献   

16.

Background

The cytokines TNF (TNFSF2) and IFNγ are important mediators of inflammatory bowel diseases and contribute to enhanced intestinal epithelial permeability by stimulating apoptosis and/or disrupting tight junctions. Apoptosis and tight junctions are also important for epithelial tissue morphogenesis, but the effect of TNF and IFNγ on the process of intestinal epithelial morphogenesis is unknown.

Methods/Principal Findings

We have employed a three-dimensional cell culture system, reproducing in vivo-like multicellular organization of intestinal epithelial cells, to study the effect of TNF on intestinal epithelial morphogenesis and permeability. We show that human intestinal epithelial cells in three-dimensional culture assembled into luminal spheres consisting of a single layer of cells with structural, internal, and planar cell polarity. Exposure of preformed luminal spheres to TNF or IFNγ enhanced paracellular permeability, but via distinctive mechanisms. Thus, while both TNF and IFNγ, albeit in a distinguishable manner, induced the displacement of selected tight junction proteins, only TNF increased paracellular permeability via caspase-driven apoptosis and cell shedding. Infliximab and adalumimab inhibited these effects of TNF. Moreover, we demonstrate that TNF via its stimulatory effect on apoptosis fundamentally alters the process of intestinal epithelial morphogenesis, which contributes to the de novo generation of intestinal epithelial monolayers with increased permeability. Also IFNγ contributes to the de novo formation of monolayers with increased permeability, but in a manner that does not involve apoptosis.

Conclusions

Our study provides an optimized 3D model system for the integrated analysis of (real-time) intestinal epithelial paracellular permeability and morphogenesis, and reveals apoptosis as a pivotal mechanism underlying the enhanced permeability and altered morphogenesis in response to TNF, but not IFNγ.  相似文献   

17.

Background

Adherens junctions consist of transmembrane cadherins, which interact intracellularly with p120ctn, ß-catenin and α-catenin. p120ctn is known to regulate cell-cell adhesion by increasing cadherin stability, but the effects of other adherens junction components on cell-cell adhesion have not been compared with that of p120ctn.

Methodology/Principal Findings

We show that depletion of p120ctn by small interfering RNA (siRNA) in DU145 prostate cancer and MCF10A breast epithelial cells reduces the expression levels of the adherens junction proteins, E-cadherin, P-cadherin, ß-catenin and α-catenin, and induces loss of cell-cell adhesion. p120ctn-depleted cells also have increased migration speed and invasion, which correlates with increased Rap1 but not Rac1 or RhoA activity. Downregulation of P-cadherin, β-catenin and α-catenin but not E-cadherin induces a loss of cell-cell adhesion, increased migration and enhanced invasion similar to p120ctn depletion. However, only p120ctn depletion leads to a decrease in the levels of other adherens junction proteins.

Conclusions/Significance

Our data indicate that P-cadherin but not E-cadherin is important for maintaining adherens junctions in DU145 and MCF10A cells, and that depletion of any of the cadherin-associated proteins, p120ctn, ß-catenin or α-catenin, is sufficient to disrupt adherens junctions in DU145 cells and increase migration and cancer cell invasion.  相似文献   

18.

Background

Mutations in spastin are the most common cause of hereditary spastin paraplegia, a neurodegenerative disease. In this study, the role of spastin was examined in Drosophila photoreceptor development.

Methodology/Principal Findings

The spastin mutation in developing pupal eyes causes a mild mislocalization of the apical membrane domain at the distal section, but the apical domain was dramatically reduced at the proximal section of the developing pupal eye. Since the rhabdomeres in developing pupal eyes grow from distal to proximal, this phenotype strongly suggests that spastin is required for apical domain maintenance during rhabdomere elongation. This role of spastin in apical domain modulation was further supported by spastin''s gain-of-function phenotype. Spastin overexpression in photoreceptors caused the expansion of the apical membrane domain from apical to basolateral in the developing photoreceptor. Although the localizations of the apical domain and adherens junctions (AJs) were severely expanded, there were no defects in cell polarity.

Conclusions/Significance

These results strongly suggest that spastin is essential for apical domain biogenesis during rhabdomere elongation in Drosophila photoreceptor morphogenesis.  相似文献   

19.

Background

The 60+ members of the mammalian Rab protein family group into subfamilies postulated to share common functionality. The Rab VI subfamily contains 5 Rab proteins, Rab6a/a’, Rab6b, Rab6c and Rab41. High-level knockdown of Rab6a/a’ has little effect on the tightly organized Golgi ribbon in HeLa cells as seen by fluorescence microscopy. In striking contrast, we found Rab41 was strongly required for normal Golgi ribbon organization.

Methods/Results

Treatment of HeLa cells with Rab41 siRNAs scattered the Golgi ribbon into clustered, punctate Golgi elements. Overexpression of GDP-locked Rab41, but not wild type or GTP-locked Rab41, produced a similar Golgi phenotype. By electron microscopy, Rab41 depletion produced short, isolated Golgi stacks. Golgi-associated vesicles accumulated. At low expression levels, wild type and GTP-locked Rab41 showed little concentration in the Golgi region, but puncta were observed and most were in ruffled regions at the cell periphery. There was 25% co-localization of GTP-locked Rab41 with the ER marker, Sec61p. GDP-locked Rab41, as expected, displayed an entirely diffuse cytoplasmic distribution. Depletion of Rab41 or overexpression of GDP-locked Rab41 partially inhibited ER-to-Golgi transport of VSV-G protein. However, Rab41 knockdown had little, if any, effect on endosome-to-Golgi transport of SLTB. Additionally, after a 2-day delay, treatment with Rab41 siRNA inhibited cell growth, while overexpression of GDP-locked Rab41, but not wild type or GTP-locked Rab41, produced a rapid, progressive cell loss. In double knockdown experiments with Rab6, the Golgi ribbon was fragmented, a result consistent with Rab41 and Rab6 acting in parallel.

Conclusion

We provide the first evidence for distinctive Rab41 effects on Golgi organization, ER-to-Golgi trafficking and cell growth. When combined with the evidence that Rab6a/a’ and Rab6b have diverse roles in Golgi function, while Rab6c regulates mitotic function, our data indicate that Rab VI subfamily members, although related by homology and structure, share limited functional conservation.  相似文献   

20.

Background

Desmoglein 3 (Dsg3), a desmosomal adhesion protein, is expressed in basal and immediate suprabasal layers of skin and across the entire stratified squamous epithelium of oral mucosa. However, increasing evidence suggests that the role of Dsg3 may involve more than just cell-cell adhesion.

Methodology/Principal Findings

To determine possible additional roles of Dsg3 during epithelial cell adhesion we used overexpression of full-length human Dsg3 cDNA, and RNAi-mediated knockdown of this molecule in various epithelial cell types. Overexpression of Dsg3 resulted in a reduced level of E-cadherin but a colocalisation with the E-cadherin-catenin complex of the adherens junctions. Concomitantly these transfected cells exhibited marked migratory capacity and the formation of filopodial protrusions. These latter events are consistent with Src activation and, indeed, Src-specific inhibition reversed these phenotypes. Moreover Dsg3 knockdown, which also reversed the decreased level of E-cadherin, partially blocked Src phosphorylation.

Conclusions/Significance

Our data are consistent with the possibility that Dsg3, as an up-stream regulator of Src activity, helps regulate adherens junction formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号