共查询到20条相似文献,搜索用时 15 毫秒
3.
The SasG surface protein of Staphylococcus aureus has been shown to promote the formation of biofilm. SasG comprises an N-terminal A domain and repeated B domains. Here we demonstrate that SasG is involved in the accumulation phase of biofilm, a process that requires a physiological concentration of Zn 2+. The B domains, but not the A domain, are required. Purified recombinant B domain protein can form dimers in vitro in a Zn 2+-dependent fashion. Furthermore, the protein can bind to cells that have B domains anchored to their surface and block biofilm formation. The full-length SasG protein exposed on the cell surface is processed within the B domains to a limited degree, resulting in cleaved proteins of various lengths being released into the supernatant. Some of the released molecules associate with the surface-exposed B domains that remain attached to the cell. Studies using inhibitors and mutants failed to identify any protease that could cause the observed cleavage within the B domains. Extensively purified recombinant B domain protein is very labile, and we propose that cleavage occurs spontaneously at labile peptide bonds and that this is necessary for biofilm formation. Staphylococcus aureus is a commensal bacterium that is carried persistently in the anterior nares of about 20% of the human population. The organism can cause superficial skin infections, such as abscesses and impetigo, and more dangerous and potentially life-threatening invasive infections, such as endocarditis, osteomyelitis, and septic arthritis ( 26). Staphylococcus epidermidis and S. aureus are the major causes of infections associated with indwelling medical devices, such as central venous catheters, cardiovascular devices, and artificial joints ( 34, 54). The ability to form a biofilm is crucial to the microbes'' success in device-related infections. Bacteria in the biofilm matrix are in a semidormant state, are difficult to inhibit with antibiotics, and are impervious to host neutrophils and macrophages ( 36, 43, 44, 51). Until recently biofilm formation by staphylococci was attributed to the ability to synthesize an extracellular polysaccharide called polysaccharide intercellular adhesin (PIA), which is composed of partially deacetylated poly- N-acetylglucosamine ( 15, 28, 50). Attachment of bacteria to biomedical devices is mediated by adhesion to the naked plastic or metal surface by a surface component such as the major autolysin Atl ( 2, 14). Alternatively, adhesion to surfaces that have been conditioned by fibronectin and fibrinogen from host plasma is mediated by surface proteins such as clumping factor A (ClfA) and fibronectin binding proteins (FnBPA/B) of S. aureus or SdrG/Fbe of S. epidermidis ( 17, 46, 47).Several surface proteins of staphylococci can also promote the accumulation phase of biofilm: (i) the biofilm-associated protein Bap, which is only expressed by bovine strains of S. aureus ( 8); (ii) the SasC surface protein of S. aureus ( 41); (iii) fibronectin binding proteins FnBPA and FnBPB, which are particularly associated with biofilm formation by some types of methicillin-resistant S. aureus (MRSA) ( 35, 48); (iv) the multifactorial virulence factor protein A, which promotes cell accumulation when expressed at high levels, for example,in mutants defective in the accessory gene regulator Agr ( 31); (v) the extracellular matrix binding protein (Embp) of S. epidermidis ( 4); (vi) the accumulation-associated protein (Aap) of S. epidermidis and the related protein SasG from S. aureus ( 7, 19, 40).Aap and SasG are typical LPXTG-anchored multidomain cell wall-associated proteins (see Fig. , below). A signal sequence is removed from the N terminus during secretion across the cytoplasmic membrane. The C-terminal domains comprise a sorting signal (LPXTG) and hydrophobic membrane-spanning domain and positively charged residues that are required for covalent attachment of the proteins to cell wall peptidoglycan by sortase A. The N termini of the mature proteins (A domains) comprise related amino acid sequences that have been implicated in adhesion of bacteria to desquamated epithelial cells and could be involved in colonization of the nares and skin ( 7, 27, 39). The archetypal Aap protein of S. epidermidis RP62a has 12 repeats of almost identical sequences of 128 residues followed by a partial repeat of 68 residues (region B), while SasG from S. aureus strain 8325-4 and strain Newman has seven 128-residue repeats and one partial repeat. The B subunits of Aap and SasG are 64% identical. Open in a separate window(A) Schematic representation of SasG domain organization. The positions of the signal sequence (S), A domain, B region (B1 to -8), and the wall/membrane-spanning regions (W/M) are indicated. The LPKTG motif is recognized by the sortase A enzyme, which covalently anchors the protein to the cell wall peptidoglycan. (B) Whole-cell immunoblot validating expression of A domain and B regions of SasG variants. Serial dilutions of SH1000(pALC2073: sasG+) (row 1); SH1000(pALC2073 sasG+ A +B −) (row 2); SH1000(pALC2073 sasG+ A −B +) (row 3), and SH1000(pALC2073 sasG+ A −B +) induced with tetracycline (90 ng/ml) (row 4) were applied to a nitrocellulose membrane and probed with anti-SasG A domain and anti-SasG B domain antibodies. (C) Biofilm formation by SH1000 constructs expressing SasG variants. Biofilm was allowed to form for 24 h at 37°C under static conditions in microtiter dishes. Biofilm was stained with crystal violet, and the absorbance was measured at 570 nm.The formation of biofilm by Aap in S. epidermidis is promoted by the removal of the A domain by cleavage by an as-yet-unidentified bacterial protease, an event that can also be precipitated by host proteases ( 40). The ability of the exposed Aap B domains of different bacterial cells to form homophilic interactions through a Zn 2+-dependent zipper mechanism was proposed when it was shown that purified B domains formed dimers in vitro that were dependent on the presence of Zn 2+ ( 6). Purified recombinant B domain protein, but not the A domain, inhibited biofilm formation, as did antibodies that specifically bound to the B domains ( 40). The Zn 2+ chelator diethylenetriaminepentaacetic acid (DTPA) inhibited biofilm formation both by S. epidermidis RP62a (presumed to be due to Aap) and by community-associated MRSA (presumed to be due to SasG) ( 6).This study set out to investigate the molecular basis of biofilm accumulation promoted by the SasG protein of S. aureus. We demonstrate that processing of SasG occurs during growth and biofilm formation in a manner that is different from that reported for Aap, and we have investigated the mechanism. 相似文献
4.
We describe the isolation and characterization of a novel cDNA encoding a polypeptide that interacts in a yeast two-hybrid system as well as in mammalian cells with the retinoblastoma (RB) protein. This new protein, which we call Rim, consists of 897 amino acids, has two leucine zipper motifs, and has a LECEE sequence previously identified as an RB-binding domain. Rim also has an E1A/CtBP-binding motif and four putative nuclear localization signals. RimmRNA is expressed ubiquitously at low levels in all human adult tissues tested and at much higher levels in several tumor cell lines. The Rimgene (HGMW-approved symbol RBBP8) is localized on human chromosome 18q11.2. 相似文献
5.
The ability to attach to host ligands is a well-established pathogenic factor in invasive Staphylococcus aureus disease. In addition to the family of adhesive proteins bound to the cell wall via the sortase A (srtA) mechanism, secreted proteins such as the fibrinogen-binding protein Efb, the extracellular adhesion protein Eap, or coagulase have been found to interact with various extracellular host molecules. Here we describe a novel protein, the extracellular matrix protein-binding protein (Emp) initially identified in Western ligand blots as a 40-kDa protein due to its broad-spectrum recognition of fibronectin, fibrinogen, collagen, and vitronectin. Emp is expressed in the stationary growth phase and is closely associated with the cell surface and yet is extractable by sodium dodecyl sulfate. The conferring gene emp (1,023 nucleotides) encodes a signal peptide of 26 amino acids and a mature protein of a calculated molecular mass of 35.5 kDa. Using PCR, emp was demonstrated in all 240 S. aureus isolates of a defined clinical strain collection as well as in 6 S. aureus laboratory strains, whereas it is lacking in all 10 S. epidermidis strains tested. Construction of an allelic replacement mutant (mEmp50) revealed the absence of Emp in mEmp50, a significantly decreased adhesion of mEmp50 to immobilized fibronectin and fibrinogen, and restoration of these characteristics upon complementation of mEmp50. Emp expression was also demonstrable upon heterologous complementation of S. carnosus. rEmp expressed in Escherichia coli interacted with fibronectin, fibrinogen, and vitronectin in surface plasmon resonance experiments at a K(d) of 21 nM, 91 nM, and 122 pM, respectively. In conclusion, the biologic characterization of Emp suggests that it is a member of the group of secreted S. aureus molecules that interact with an extended spectrum of host ligands and thereby contribute to S. aureus pathogenicity. 相似文献
6.
The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes ( yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used. 相似文献
7.
Staphylococcus epidermidis is the most common cause of device-associated infections. It has been shown that active and passive immunization in an animal model against protein SesC significantly reduces S. epidermidis biofilm-associated infections. In order to elucidate its role, knock-out of sesC or isolation of S. epidermidis sesC-negative mutants were attempted, however, without success. As an alternative strategy, sesC was introduced into Staphylococcus aureus 8325–4 and its isogenic icaADBC and srtA mutants, into the clinical methicillin-sensitive S. aureus isolate MSSA4 and the MRSA S. aureus isolate BH1CC, which all lack sesC. Transformation of these strains with sesC i) changed the biofilm phenotype of strains 8325–4 and MSSA4 from PIA-dependent to proteinaceous even though PIA synthesis was not affected, ii) converted the non-biofilm-forming strain 8325–4 ica:: tet to a proteinaceous biofilm-forming strain, iii) impaired PIA-dependent biofilm formation by 8325–4 srtA:: tet, iv) had no impact on protein-mediated biofilm formation of BH1CC and v) increased in vivo catheter and organ colonization by strain 8325–4. Furthermore, treatment with anti-SesC antibodies significantly reduced in vitro biofilm formation and in vivo colonization by these transformants expressing sesC. These findings strongly suggest that SesC is involved in S. epidermidis attachment to and subsequent biofilm formation on a substrate. 相似文献
8.
The enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalis isolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene ( esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated ( P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on the E. faecalis isolate, insertional mutagenesis of esp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboring esp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces. 相似文献
9.
Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these strains. We created a library of 14,880 mariner transposon mutants in a S. aureus strain that generates a proteinaceous and extracellular DNA based biofilm matrix. The library was screened for biofilm defects and 31 transposon mutants conferred a reproducible phenotype. In the pool, 16 mutants overproduced extracellular proteases and the protease inhibitor α 2-macroglobulin restored biofilm capacity to 13 of these mutants. The other 15 mutants in the pool displayed normal protease levels and had defects in genes involved in autolysis, osmoregulation, or uncharacterized membrane proteins. Two transposon mutants of interest in the GraRS two-component system and a putative inositol monophosphatase were confirmed in a flow cell biofilm model, genetically complemented, and further verified in a community-associated methicillin-resistant S. aureus (CA-MRSA) isolate. Collectively, our screen for biofilm defective mutants identified novel loci involved in S. aureus biofilm formation and underscored the importance of extracellular protease activity and autolysis in biofilm development. 相似文献
10.
Desulfovibrio gigas neelaredoxin is an iron-containing protein of 15 kDa, having a single iron site with a His(4)Cys coordination. Neelaredoxins and homologous proteins are widespread in anaerobic prokaryotes and have superoxide-scavenging activity. To further understand its role in anaerobes, its genomic organization and expression in D. gigas were studied and its ability to complement Escherichia coli superoxide dismutase deletion mutant was assessed. In D. gigas, neelaredoxin is transcribed as a monocistronic mRNA of 500 bases as revealed by Northern analysis. Putative promoter elements resembling sigma(70) recognition sequences were identified. Neelaredoxin is abundantly and constitutively expressed, and its expression is not further induced during treatment with O(2) or H(2)O(2). The neelaredoxin gene was cloned by PCR and expressed in E. coli, and the protein was purified to homogeneity. The recombinant neelaredoxin has spectroscopic properties identical to those observed for the native one. Mutations of Cys-115, one of the iron ligands, show that this ligand is essential for the activity of neelaredoxin. In an attempt to elucidate the function of neelaredoxin within the cell, it was expressed in an E. coli mutant deficient in cytoplasmic superoxide dismutases (sodA sodB). Neelaredoxin suppresses the deleterious effects produced by superoxide, indicating that it is involved in oxygen detoxification in the anaerobe D. gigas. 相似文献
12.
N pro is a multifunctional autoprotease unique to pestiviruses. The interacting partners of the N pro protein of classical swine fever virus (CSFV), a swine pestivirus, have been insufficiently defined. Using a yeast two-hybrid screen, we identified poly(C)-binding protein 1 (PCBP1) as a novel interacting partner of the CSFV N pro protein and confirmed this by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and confocal assays. Knockdown of PCBP1 by small interfering RNA suppressed CSFV growth, while overexpression of PCBP1 promoted CSFV growth. Furthermore, we showed that type I interferon was downregulated by PCBP1, as well as N pro. Our results suggest that cellular PCBP1 positively modulates CSFV growth. 相似文献
16.
The Gross cell surface antigen (GCSA), associated with expression of endogenous Gross-type murine leukemia virus (G-MuLV) in tissues of mice, is defined by the cytotoxic reaction of a C57BL/6 antiserum, anti-AKR spontaneous leukemia K36, with cells of the Gross virus-induced C57BL/6 leukemia, Emale symbolG2. Sequential lactoperoxidase-catalyzed radioiodination of Emale symbolG2 cells, Nonidet P-40 lysis, precipitation with anti-K36 serum, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis identified molecules with properties of polyproteins encoded by the gag region of the viral genome. These cell surface species could also be labeled by in vitro culturing of Emale symbolG2 with radioactive glucosamine. The viral specificity of these molecules and their participation in the GCSA typing system were established as follows. (i) Absorption of anti-K36 serum with GCSA(+), but not GCSA(-), leukemias led to a marked decrease in precipitation of these proteins. (ii) The same Emale symbolG2 cell surface proteins were also precipitated by antisera against the MuLV virion proteins p30 and p15. (iii) Anti-K36 was shown to possess antibodies against Gross virus p30 and p15. (iv) "Clearing" the Emale symbolG2 lysate of molecules reactive with anti-p30 or anti-p15 sera removed molecules reactive with anti-K36 serum. (v) Absorption of anti-K36 serum with disrupted G-MuLV virions or with Gross p30 or p15 removed GCSA cytotoxic antibodies; partial absorption was achieved with disrupted Rauscher-MuLV (R-MuLV) or with R-MuLV p30, and no absorption was found with R-MuLV p15. These data show that Emale symbolG2 cells express, on their surfaces, MuLV core polyproteins that apparently can be glycosylated and on which the determinants of GCSA are located. 相似文献
17.
Staphylococcus aureus is a prominent human pathogen and leading
cause of bacterial infection in hospitals and the community.
Community-associated methicillin-resistant S. aureus (CA-MRSA)
strains such as USA300 are highly virulent and, unlike hospital strains, often
cause disease in otherwise healthy individuals. The enhanced virulence of
CA-MRSA is based in part on increased ability to produce high levels of secreted
molecules that facilitate evasion of the innate immune response. Although
progress has been made, the factors that contribute to CA-MRSA virulence are
incompletely defined. We analyzed the cell surface proteome (surfome) of USA300
strain LAC to better understand extracellular factors that contribute to the
enhanced virulence phenotype. A total of 113 identified proteins were associated
with the surface of USA300 during the late-exponential phase of growth
in vitro. Protein A was the most abundant surface molecule
of USA300, as indicated by combined Mascot score following analysis of peptides
by tandem mass spectrometry. Unexpectedly, we identified a previously
uncharacterized two-component leukotoxin–herein named LukS-H and
LukF-G (LukGH)-as two of the most abundant surface-associated proteins of
USA300. Rabbit antibody specific for LukG indicated it was also freely secreted
by USA300 into culture media. We used wild-type and isogenic
lukGH deletion strains of USA300 in combination with human
PMN pore formation and lysis assays to identify this molecule as a leukotoxin.
Moreover, LukGH synergized with PVL to enhance lysis of human PMNs in
vitro, and contributed to lysis of PMNs after phagocytosis. We
conclude LukGH is a novel two-component leukotoxin with cytolytic activity
toward neutrophils, and thus potentially contributes to S.
aureus virulence. 相似文献
18.
Staphylococcus pseudintermedius, a commensal and pathogen of dogs and occasionally of humans, expresses surface proteins potentially involved in host colonization and pathogenesis. Here, we describe the cloning and characterization of SpsD, a surface protein of S. pseudintermedius reported as interacting with extracellular matrix proteins and corneocytes. A ligand screen and Western immunoblotting revealed that the N-terminal A domain of SpsD bound fibrinogen, fibronectin, elastin and cytokeratin 10. SpsD also interfered with thrombin-induced fibrinogen coagulation and blocked ADP-induced platelet aggregation. The binding site for SpsD was mapped to residues 395–411 in the fibrinogen γ-chain, while binding sites in fibronectin were localized to the N- and C-terminal regions. SpsD also bound to glycine- and serine-rich omega loops within the C-terminal tail region of cytokeratin 10. Ligand binding studies using SpsD variants lacking the C-terminal segment or containing an amino-acid substitution in the putative ligand binding site provided insights into interaction mechanism of SpsD with the different ligands. Together these data demonstrate the multi-ligand binding properties of SpsD and illustrate some interesting differences in the variety of ligands bound by SpsD and related proteins from S. aureus. 相似文献
19.
MEP21 is an avian antigen specifically expressed on the surface of Myb-Ets–transformed multipotent hematopoietic precursors (MEPs) and of normal thrombocytes. Using nanoelectrospray tandem mass spectrometry, we have sequenced and subsequently cloned the MEP21 cDNA and named the gene thrombomucin as it encodes a 571–amino acid protein with an extracellular domain typical of the mucin family of proteoglycans. Thrombomucin is distantly related to CD34, the best characterized and most used human hematopoietic stem cell marker. It is also highly homologous in its transmembrane/intracellular domain to podocalyxinlike protein–1, a rabbit cell surface glycoprotein of kidney podocytes. Single cell analysis of yolk sac cells from 3-d-old chick embryos revealed that thrombomucin is expressed on the surface of both lineage-restricted and multipotent progenitors. In the bone marrow, thrombomucin is also expressed on mono- and multipotent progenitors, showing an overlapping but distinct expression pattern from that of the receptor-type stem cell marker c-kit. These observations strengthen the notion that the Myb-Ets oncoprotein can induce the proliferation of thrombomucin-positive hematopoietic progenitors that have retained the capacity to differentiate along multiple lineages. They also suggest that thrombomucin and CD34 form a family of stem cell–specific proteins with possibly overlapping functions in early hematopoietic progenitors. 相似文献
|