首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced glycation end products (AGEs) have been confirmed to induce bone quality deterioration in diabetes mellitus (DM), and to associate with abnormal expression of miRNAs in DM patients or in vitro. Recently, miRNAs have been recognized to mediate the onset or progression of DM. In the present study, we investigated the regulation on miR-223 level by AGE-BSA treatment in osteoblast-like MC3T3-E1 cells, with real-time quantitative PCR assay. And then we examined the inhibition of insulin-like growth factor 1 receptor (IGF-1R) expression by miR-223, via targeting of the 3′ UTR of IGF-1R with real-time quantitative PCR, western blotting and luciferase reporter assay. Then we explored the regulation of miR-223 and IGF-1R levels, via the lentivirus-mediated miR-223 inhibition and IGF-1R overexpression in the AGE-BSA-induced apoptosis in MC3T3-E1 cells. It was demonstrated that AGE-BSA treatment with more than 100 μg/ml significantly up-regulated miR-223 level, whereas down-regulated IGF-1R level in MC3T3-E1 cells. And the up-regulated miR-223 down-regulated IGF-1R expression in both mRNA and protein levels, via targeting the 3′ UTR of IGF-1R. Moreover, though the AGE-BSA treatment promoted apoptosis in MC3T3-E1 cells, the IGF-1R overexpression or the miR-223 inhibition significantly attenuated the AGE-BSA-promoted apoptosis in MC3T3-E1 cells. In summary, our study recognized the promotion of miR-223 level by AGE-BSA treatment in osteoblast-like MC3T3-E1 cells. The promoted miR-223 targeted IGF-1R and mediated the AGE-BSA-induced apoptosis in MC3T3-E1 cells. It implies that miR-223 might be an effective therapeutic target to antagonize the AGE-induced damage to osteoblasts in DM.  相似文献   

2.

Aims

Mechanisms regulating adiponectin expression have not been fully clarified. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, are involved in biological processes, including obesity and insulin resistance. We evaluated whether the miRNA-378 pathway is involved in regulating adiponectin expression.

Methods and Results

First, we determined a putative target site for miRNA-378 in the 3 prime untranslated region (3''UTR) of the adiponectin gene by in silico analysis. The levels of adiponectin mRNA and protein were decreased in 3T3-L1 cells overexpressing the mimic of miRNA-378. Luminescence activity in HEK293T cells expressing a renilla-luciferase-adiponectin-3''UTR sequence was inhibited by overexpressing the mimic of miRNA-378, and the decrease was reversed by adding the inhibitor of miRNA-378. Moreover, we confirmed the inhibitory effects of the mimic were cancelled in a deleted mutant of the miR-378 3′-UTR binding site. Addition of tumor necrosis factor-α (TNFα) led a upregulation of miR-378 and downregulation of adiponectin at mRNA and protein levels in 3T3-L1 cells. Level of miR-378 was higher and mRNA level of adiponectin was lower in diabetic ob/ob mice than those of normal C57BL/6 mice and levels of miR378 and adiponectin were negatively well correlated (r = −0.624, p = 0.004).

Conclusions

We found that levels of miRNA-378 could modulate adiponectin expression via the 3''UTR sequence-binding site. Our findings warrant further investigations into the role of miRNAs in regulating the adiponectin expression.  相似文献   

3.
4.
5.
6.
MicroRNAs (miRNAs) play key roles in regulation of cellular processes in response to changes in environment. In this study, we examined alterations in miRNA profiles in peripheral blood from 25 male medical students two months and two days before the National Examination for Medical Practitioners. Blood obtained one month after the examination were used as baseline controls. Levels of seven miRNAs (miR-16, -20b, -26b, -29a, -126, -144 and -144*) were significantly elevated during the pre-examination period in association with significant down-regulation of their target mRNAs (WNT4, CCM2, MAK, and FGFR1 mRNAs) two days before the examination. State anxiety assessed two months before the examination was positively and negatively correlated with miR-16 and its target WNT4 mRNA levels, respectively. Fold changes in miR-16 levels from two days before to one month after the examination were inversely correlated with those in WNT4 mRNA levels over the same time points. We also confirmed the interaction between miR-16 and WNT4 3′UTR in HEK293T cells overexpressing FLAG-tagged WNT4 3′UTR and miR-16. Thus, a distinct group of miRNAs in periheral blood may participate in the integrated response to chronic academic stress in healthy young men.  相似文献   

7.
8.
9.
10.
11.
MicroRNAs (miRNAs) are short, single-stranded non-coding RNAs that repress their target genes by binding their 3′ UTRs. These RNAs play critical roles in myogenesis. To gain knowledge about miRNAs involved in the regulation of myogenesis, porcine longissimus muscles were collected from 18 developmental stages (33-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95-, 100- and 105-day post-gestation fetuses, 0 and 10-day postnatal piglets and adult pigs) to identify miRNAs using Solexa sequencing technology. We detected 197 known miRNAs and 78 novel miRNAs according to comparison with known miRNAs in the miRBase (release 17.0) database. Moreover, variations in sequence length and single nucleotide polymorphisms were also observed in 110 known miRNAs. Expression analysis of the 11 most abundant miRNAs were conducted using quantitative PCR (qPCR) in eleven tissues (longissimus muscles, leg muscles, heart, liver, spleen, lung, kidney, stomach, small intestine and colon), and the results revealed that ssc-miR-378, ssc-miR-1 and ssc-miR-206 were abundantly expressed in skeletal muscles. During skeletal muscle development, the expression level of ssc-miR-378 was low at 33 days post-coitus (dpc), increased at 65 and 90 dpc, peaked at postnatal day 0, and finally declined and maintained a comparatively stable level. This expression profile suggested that ssc-miR-378 was a new candidate miRNA for myogenesis and participated in skeletal muscle development in pigs. Target prediction and KEGG pathway analysis suggested that bone morphogenetic protein 2 (BMP2) and mitogen-activated protein kinase 1 (MAPK1), both of which were relevant to proliferation and differentiation, might be the potential targets of miR-378. Luciferase activities of report vectors containing the 3′UTR of porcine BMP2 or MAPK1 were downregulated by miR-378, which suggested that miR-378 probably regulated myogenesis though the regulation of these two genes.  相似文献   

12.
MicroRNAs (miRNAs) regulate cell differentiation by inhibiting mRNA translation or by inducing its degradation. However, the role of miRNAs in odontogenic differentiation is largely unknown. In this present study, we observed that the expression of miR-663 increased significantly during differentiation of MDPC-23 cells to odontoblasts. Furthermore, up-regulation of miR-663 expression promoted odontogenic differentiation and accelerated mineralization without proliferation in MDPC-23 cells. In addition, target gene prediction for miR-663 revealed that the mRNA of the adenomatous polyposis coli (APC) gene, which is associated with the Wnt/β-catenin signaling pathway, has a miR-663 binding site in its 3′-untranslated region (3′UTR). Furthermore, APC expressional was suppressed significantly by miR-663, and this down-regulation of APC expression triggered activation of Wnt/β-catenin signaling through accumulation of β-catenin in the nucleus. Taken together, these findings suggest that miR-663 promotes differentiation of MDPC-23 cells to odontoblasts by targeting APC-mediated activation of Wnt/β-catenin signaling. Therefore, miR-663 can be considered a critical regulator of odontoblast differentiation and can be utilized for developing miRNA-based therapeutic agents.  相似文献   

13.
14.
15.
We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) down-regulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the α subunit of CK2 (CK2α) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the CK2α 3′-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for CK2α downregulation. The four miRNAs increased senescence-associated β-galactosidase (SA-β-gal) staining, p53 and p21Cip1/WAF1 expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. CK2α over-expression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through CK2α downregulation-dependent ROS generation.  相似文献   

16.
Growing evidence from mammals suggests that host microRNAs (miRNAs) play important roles in the antiviral immune response. However, the roles of invertebrate miRNAs in response to virus infection remain to be investigated. Based on our previous studies, the shrimp miR-7 was found to be upregulated in response to white spot syndrome virus (WSSV) infection. In this study, the results showed that shrimp miR-7 could target the 3′-untranslated region (3′UTR) of the WSSV early gene wsv477, implying that miR-7 was involved in viral DNA replication. In insect High Five cells, the synthesized miR-7 significantly decreased the expression level of the fluorescent construct bearing the 3′UTR of wsv477 compared with the expression of the control constructs. When the activity of transfected miR-7 was blocked by locked-nucleic-acid (LNA)-modified anti-miR-7 oligonucleotide (AMO-miR-7), the repression of luciferase gene expression by miR-7 was relieved. In vivo, when the synthesized miR-7 was injected into shrimp, the numbers of WSSV genome copies/mg gills were 1,000-fold lower than those of WSSV only at 72 and 96 h postinfection. The results indicated that the blocking of endogenous miR-7 by AMO-miR-7 led to about a 10-fold increase of WSSV genome copies/mg gills in WSSV-infected shrimp compared with the control WSSV only. Further, it was revealed that the host Dicer1 was an important component for the biogenesis of miR-7, which had a large effect on virus infection. Therefore, our study revealed a novel regulatory function for an invertebrate miRNA in host-virus interactions by targeting the viral early gene.  相似文献   

17.
18.
MicroRNAs (miRNAs) have been reported to play a key role in oncogenesis. Genetic variations in miRNA processing genes and miRNA binding sites may affect the biogenesis of miRNA and the miRNA-mRNA interactions, hence promoting tumorigenesis. In the present study, we hypothesized that potentially functional polymorphisms in miRNA processing genes may contribute to head and neck cancer (HNC) susceptibility. To test this hypothesis, we genotyped three SNPs at miRNA binding sites of miRNA processing genes (rs1057035 in 3′UTR of DICER, rs3803012 in 3′UTR of RAN and rs10773771 in 3′UTR of HIWI) with a case-control study including 397 HNC cases and 900 controls matched by age and sex in Chinese. Although none of three SNPs was significantly associated with overall risk of HNC, rs1057035 in 3′UTR of DICER was associated with a significantly decreased risk of oral cancer (TC/CC vs. TT: adjusted OR  = 0.65, 95% CI  = 0.46–0.92). Furthermore, luciferase activity assay showed that rs1057035 variant C allele led to significantly lower expression levels as compared to the T allele, which may be due to the relatively high inhibition of hsa-miR-574-3p on DICER mRNA. These findings indicated that rs1057035 located at 3′UTR of DICER may contribute to the risk of oral cancer by affecting the binding of miRNAs to DICER. Large-scale and well-designed studies are warranted to validate our findings.  相似文献   

19.
MicroRNAs (miRNA) are generally described as negative regulators of gene expression. However, some evidence suggests that they may also play positive roles. As such, we reported that miR-1291 leads to a GPC3 mRNA expression increase in hepatoma cells through a 3′ untranslated region (UTR)-dependent mechanism. In the absence of any direct interaction between miR-1291 and GPC3 mRNA, we hypothesized that miR-1291 could act by silencing a negative regulator of GPC3 mRNA expression. Based on in silico predictions and experimental validation, we demonstrate herein that miR-1291 represses the expression of the mRNA encoding the endoplasmic reticulum (ER)-resident stress sensor IRE1α by interacting with a specific site located in the 5′ UTR. Moreover, we show, in vitro and in cultured cells, that IRE1α cleaves GPC3 mRNA at a 3′ UTR consensus site independently of ER stress, thereby prompting GPC3 mRNA degradation. Finally, we show that the expression of a miR-1291-resistant form of IRE1α abrogates the positive effects of miR-1291 on GPC3 mRNA expression. Collectively, our data demonstrate that miR-1291 is a biologically relevant regulator of GPC3 expression in hepatoma cells and acts through silencing of the ER stress sensor IRE1α.  相似文献   

20.
hTERT is the catalytic subunit of the telomerase complex. Elevated expression of hTERT is associated with the expansion and metastasis of gastric tumor. In this study, we aimed to identify novel tumor suppressor miRNAs that restrain hTERT expression. We began our screen for hTERT-targeting miRNAs with a miRNA microarray. miRNA candidates were further filtered by bioinformatic analysis, general expression pattern in different cell lines, gain-of-function effects on hTERT protein and the potential of these effects to suppress hTERT 3′ untranslated region (3′UTR) luciferase activity. The clinical relevance of two miRNAs (miR-1207-5p and miR-1266) was evaluated by real-time RT-PCR. The effects of these miRNAs on cell growth, cell cycle and invasion of gastric cancer cells were measured with CCK-8, flow cytometry and transwell assays. Finally, the ability of these miRNAs to suppress the transplanted tumors was also investigated. Fourteen miRNAs were identified using a combination of bioinformatics and miRNA microarray analysis. Of these fourteen miRNAs, nine were expressed at significantly lower levels in hTERT-positive cell lines compared with hTERT-negative cell lines and five could downregulate hTERT protein expression. Only miR-1207-5p and miR-1266 interacted with the 3′ UTR of hTERT and the expression levels of these two miRNAs were significantly decreased in gastric cancer tissues. These two miRNAs also inhibited gastric tumor growth in vitro and in vivo. Altogether, miR-1207-5p and miR-1266 were determined to be hTERT suppressors in gastric cancer, and the delivery of these two miRNAs represents a novel therapeutic strategy for gastric cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号