首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chick embryo is a valuable tool in the study of early embryonic development. Its transparency, accessibility and ease of manipulation, make it an ideal tool for studying the formation and patterning of brain, neural tube, somite and heart primordia. Applications of chick embryo culture include electroporation of DNA or RNA constructs in order to analyze gene function, grafts of growth factor coated beads such as FGFs and BMPs , as well as whole mount in situ hybridization and immunohistochemistry. This video demonstrates the different steps in chick embryo culture; First, the embryo is explanted in saline. Then, the embryo is centered on a glass ring. The membranes surrounding the embryo are lifted along the walls of the ring. The ring is then placed in a culture dish containing a pool of albumine. The culture dish is sealed and placed in a humid chamber, where the embryo is cultured for up to 24 hrs. Finally, the embryo is removed from the ring, fixed and processed for further applications. A troubleshooting guide is also presented.Download video file.(101M, mp4)  相似文献   

2.
The chick embryo is a valuable tool in the study of early embryonic development. Its transparency, accessibility and ease of manipulation, make it an ideal tool for studying antibody expression in developing brain, neural tube and somite. This video demonstrates the different steps in whole-mount antibody staining using HRP conjugated secondary antibodies; First, the embryo is dissected from the egg and fixed in paraformaldehyde. Second, endogenous peroxidase is inactivated; The embryo is then exposed to primary antibody. After several washes, the embryo is incubated with secondary antibody conjugated to HRP. Peroxidase activity is revealed using reaction with diaminobenzidine substrate. Finally, the embryo is fixed and processed for photography and sectioning. The advantage of this method over the use of fluorescent antibodies is that embryos can be processed for wax sectioning, thus enabling the study of antigen sites in cross section. This method was originally introduced by Jane Dodd and Tom Jessell 1.Open in a separate windowClick here to view.(64M, flv)  相似文献   

3.
The neural crest arises from the neuro-ectoderm during embryogenesis and persists only temporarily. Early experiments already proofed pluripotent progenitor cells to be an integral part of the neural crest1. Phenotypically, neural crest stem cells (NCSC) are defined by simultaneously expressing p75 (low-affine nerve growth factor receptor, LNGFR) and SOX10 during their migration from the neural crest2,3,4,5. These progenitor cells can differentiate into smooth muscle cells, chromaffin cells, neurons and glial cells, as well as melanocytes, cartilage and bone6,7,8,9. To cultivate NCSC in vitro, a special neural crest stem cell medium (NCSCM) is required10. The most complex part of the NCSCM is the preparation of chick embryo extract (CEE) representing an essential source of growth factors for the NCSC as well as for other types of neural explants. Other NCSCM ingredients beside CEE are commercially available. Producing CCE using laboratory standard equipment it is of high importance to know about the challenging details as the isolation, maceration, centrifugation, and filtration processes. In this protocol we describe accurate techniques to produce a maximized amount of pure and high quality CEE.Download video file.(56M, mov)  相似文献   

4.
Chicken eggs in the early phase of breeding are between in vitro and in vivo systems and provide a vascular test environment not only to study angiogenesis but also to study tumorigenesis. After the chick chorioallantoic membrane (CAM) has developed, its blood vessel network can be easily accessed, manipulated and observed and therefore provides an optimal setting for angiogenesis assays. Since the lymphoid system is not fully developed until late stages of incubation, the chick embryo serves as a naturally immunodeficient host capable of sustaining grafted tissues and cells without species-specific restrictions. In addition to nurturing developing allo- and xenografts, the CAM blood vessel network provides a uniquely supportive environment for tumor cell intravasation, dissemination, and vascular arrest and a repository where arrested cells extravasate to form micro metastatic foci.For experimental purposes, in most of the recent studies the CAM was exposed by cutting a window through the egg shell and experiments were carried out in ovo, resulting in significant limitations in the accessibility of the CAM and possibilities for observation and photo documentation of effects. When shell-less cultures of the chick embryo were used1-4, no experimental details were provided and, if published at all, the survival rates of these cultures were low. We refined the method of ex ovo culture of chick embryos significantly by introducing a rationally controlled extrusion of the egg content. These ex ovo cultures enhance the accessibility of the CAM and chick embryo, enabling easy in vivo documentation of effects and facilitating experimental manipulation of the embryo. This allows the successful application to a large number of scientific questions: (1) As an improved angiogenesis assay5,6, (2) an experimental set up for facilitated injections in the vitreous of the chick embryo eye7-9, (3) as a test environment for dissemination and intravasation of dispersed tumor cells from established cell lines inoculated on the CAM10-12, (4) as an improved sustaining system for successful transplantation and culture of limb buds of chicken and mice13 as well as (5) for grafting, propagation, and re-grafting of solid primary tumor tissue obtained from biopsies on the surface of the CAM14.In this video article we describe the establishment of a refined chick ex ovo culture and CAM assay with survival rates over 50%. Besides we provide a step by step demonstration of the successful application of the ex ovo culture for a large number of scientific applications.Daniel S. Dohle, Susanne D. Pasa, and Sebastian Gustmann contributed equally to this study.Download video file.(166M, mp4)  相似文献   

5.
A central theme in developmental biology is the diversification of lineages and the elucidation of underlying molecular mechanisms. This entails a thorough analysis of the fates of single cells under normal and experimental conditions. To this end, transfection methods that target single progenitors are a prerequisite. We describe here a technically straightforward method for transfecting single cells in chicken tissues in-ovo, allowing reliable lineage tracing as well as genetic manipulation. Specific tissue domains are targeted within the somite or neural tube, and DNA is injected directly into the epithelium of interest, resulting in sporadic transfection of single cells. Using reporters, clonal populations may consequently be traced for up to three days, and behavior of genetically manipulated clonal populations can be compared with that of controls. This method takes advantage of the accessibility of the chick embryo along with emerging tools for genetic manipulation. We compare and discuss its advantages over the widely-used electroporation method, and possible applications and use in additional in-vivo models are also suggested. We advocate the use of this method as a significant addition and complement for existing lineage tracing and genetic interference tools.Download video file.(53M, mov)  相似文献   

6.
As one of the most stringent and least technically challenging models, skin transplantation is a standard method to assay host T cell responses to MHC-disparate donor antigens. The aim of this video-article is to provide the viewer with a step-by-step visual demonstration of skin transplantation using the mouse model. The protocol is divided into 5 main components: 1) harvesting donor skin; 2) preparing recipient for transplant; 3) skin transplant; 4) bandage removal and monitoring graft rejection; 5) helpful hints. Once proficient, the procedure itself should take <10 min to perform.Download video file.(38M, mov)  相似文献   

7.
Precise patterns of division, migration and differentiation of neural progenitor cells are crucial for proper brain development and function1,2. To understand the behavior of neural progenitor cells in the complex in vivo environment, time-lapse live imaging of neural progenitor cells in an intact brain is critically required. In this video, we exploit the unique features of zebrafish embryos to visualize the development of forebrain neural progenitor cells in vivo. We use electroporation to genetically and sparsely label individual neural progenitor cells. Briefly, DNA constructs coding for fluorescent markers were injected into the forebrain ventricle of 22 hours post fertilization (hpf) zebrafish embryos and electric pulses were delivered immediately. Six hours later, the electroporated zebrafish embryos were mounted with low melting point agarose in glass bottom culture dishes. Fluorescently labeled neural progenitor cells were then imaged for 36hours with fixed intervals under a confocal microscope using water dipping objective lens. The present method provides a way to gain insights into the in vivo development of forebrain neural progenitor cells and can be applied to other parts of the central nervous system of the zebrafish embryo.Download video file.(49M, mov)  相似文献   

8.
It is becoming increasingly apparent that electroporation is the most effective way to introduce plasmid DNA or siRNA into primary cells. The Gene Pulser MXcell electroporation system and Gene Pulser electroporation buffer were specifically developed to transfect nucleic acids into mammalian cells and difficult-to-transfect cells, such as primary and stem cells.This video demonstrates how to establish primary hematopoietic cell cultures from murine bone marrow, and then prepare them for electroporation in the MXcell system. We begin by isolating femur and tibia. Bone marrow from both femur and tibia are then harvested and cultures are established. Cultured bone marrow cells are then transfected and analyzed.Download video file.(51M, flv)  相似文献   

9.
Key to understanding the morphogenetic processes that shape the early vertebrate embryo is the ability to image cells at high resolution. In zebrafish embryos, injection of plasmid DNA results in mosaic expression, allowing for the visualization of single cells or small clusters of cells 1 . We describe how injection of plasmid DNA encoding membrane-targeted Green Fluorescent Protein (mGFP) under the control of a ubiquitous promoter can be used for imaging cells undergoing neurulation. Central to this protocol is the methodology for imaging labeled cells at high resolution in sections and also in real time. This protocol entails the injection of mGFP DNA into young zebrafish embryos. Embryos are then processed for vibratome sectioning, antibody labeling and imaging with a confocal microscope. Alternatively, live embryos expressing mGFP can be imaged using time-lapse confocal microscopy. We have previously used this straightforward approach to analyze the cellular behaviors that drive neural tube formation in the hindbrain region of zebrafish embryos 2. The fixed preparations allowed for unprecedented visualization of cell shapes and organization in the neural tube while live imaging complemented this approach enabling a better understanding of the cellular dynamics that take place during neurulation.Download video file.(105M, mp4)  相似文献   

10.
Given their small embryo size, rapid development, transparency, fecundity, and numerous molecular, morphological and physiological similarities to mammals, zebrafish has emerged as a powerful in vivo platform for phenotype-based drug screens and chemical genetic analysis. Here, we demonstrate a simple, practical method for large-scale screening of small molecules using zebrafish embryos. Download video file.(43M, mov)  相似文献   

11.
In this video, we demonstrate the technique of microinjection into one-cell stage medaka embryos. Medaka is a small egg-laying freshwater fish that allows both genetic and embryological analyses and is one of the vertebrate model organisms in which genome-wide phenotype-driven mutant screens were carried out 1, as in zebrafish and the mouse. Divergence of functional overlap of related genes between medaka and zebrafish allows identification of novel phenotypes that are unidentifiable in a single species 2, thus medaka and zebrafish are complementary for genetic dissection of vertebrate genome functions.To take advantage of medaka fish whose embryos are transparent and develop externally, microinjection is an essential technique to inject cell-tracers for labeling cells, mRNAs or anti-sense oligonucleotides for over-expressing and knocking-down genes of interest, and DNAs for making transgenic lines.Download video file.(40M, flv)  相似文献   

12.
Peripheral arterial disease (PAD) results from narrowing of the peripheral arteries that supply oxygenated blood and nutrients to the legs and feet, This pathology causes symptoms such as intermittent claudication (pain with walking), painful ischemic ulcerations, or even limb-threatening gangrene. It is generally believed that the vascular endothelium, a monolayer of endothelial cells that invests the luminal surface of all blood and lymphatic vessels, plays a dominant role in vascular homeostasis and vascular regeneration. As a result, stem cell-based regeneration of the endothelium may be a promising approach for treating PAD.In this video, we demonstrate the transplantation of embryonic stem cell (ESC)-derived endothelial cells for treatment of unilateral hindimb ischemia as a model of PAD, followed by non-invasive tracking of cell homing and survival by bioluminescence imaging. The specific materials and procedures for cell delivery and imaging will be described. This protocol follows another publication in describing the induction of hindlimb ischemia by Niiyama et al.1Download video file.(55M, flv)  相似文献   

13.
During metastasis cancer cells disseminate from the primary tumor, invade into surrounding tissues, and spread to distant organs. Metastasis is a complex process that can involve many tissue types, span variable time periods, and often occur deep within organs, making it difficult to investigate and quantify. In addition, the efficacy of the metastatic process is influenced by multiple steps in the metastatic cascade making it difficult to evaluate the contribution of a single aspect of tumor cell behavior. As a consequence, metastasis assays are frequently performed in experimental animals to provide a necessarily realistic context in which to study metastasis. Unfortunately, these models are further complicated by their complex physiology. The chick embryo is a unique in vivo model that overcomes many limitations to studying metastasis, due to the accessibility of the chorioallantoic membrane (CAM), a well-vascularized extra-embryonic tissue located underneath the eggshell that is receptive to the xenografting of tumor cells (figure 1). Moreover, since the chick embryo is naturally immunodeficient, the CAM readily supports the engraftment of both normal and tumor tissues. Most importantly, the avian CAM successfully supports most cancer cell characteristics including growth, invasion, angiogenesis, and remodeling of the microenvironment. This makes the model exceptionally useful for the investigation of the pathways that lead to cancer metastasis and to predict the response of metastatic cancer to new potential therapeutics. The detection of disseminated cells by species-specific Alu PCR makes it possible to quantitatively assess metastasis in organs that are colonized by as few as 25 cells. Using the Human Epidermoid Carcinoma cell line (HEp3) we use this model to analyze spontaneous metastasis of cancer cells to distant organs, including the chick liver and lung. Furthermore, using the Alu-PCR protocol we demonstrate the sensitivity and reproducibility of the assay as a tool to analyze and quantitate intravasation, arrest, extravasation, and colonization as individual elements of metastasis.Download video file.(52M, mov)  相似文献   

14.
Transgenic Caenorhabditis elegans can be readily created via microinjection of a DNA plasmid solution into the gonad 1. The plasmid DNA rearranges to form extrachromosomal concatamers that are stably inherited, though not with the same efficiency as actual chromosomes 2. A gene of interest is co-injected with an obvious phenotypic marker, such as rol-6 or GFP, to allow selection of transgenic animals under a dissecting microscope. The exogenous gene may be expressed from its native promoter for cellular localization studies. Alternatively, the transgene can be driven by a different tissue-specific promoter to assess the role of the gene product in that particular cell or tissue. This technique efficiently drives gene expression in all tissues of C. elegans except for the germline or early embryo 3. Creation of transgenic animals is widely utilized for a range of experimental paradigms. This video demonstrates the microinjection procedure to generate transgenic worms. Furthermore, selection and maintenance of stable transgenic C. elegans lines is described.Download video file.(141M, mp4)  相似文献   

15.
This video demonstrates how to grow human embryonic stem cells (hESCs) on mouse embryonic fibroblast (MEF) feeder cells. Download video file.(126M, mov)  相似文献   

16.
17.
Obliterative airway disease (OAD) is the major complication after lung transplantations that limits long term survival (1-7).To study the pathophysiology, treatment and prevention of OAD, different animal models of tracheal transplantation in rodents have been developed (1-7). Here, we use two established models of trachea transplantation, the heterotopic and orthotopic model and demonstrate their advantages and limitations.For the heterotopic model, the donor trachea is wrapped into the greater omentum of the recipient, whereas the donor trachea is anastomosed by end-to-end anastomosis in the orthotopic model.In both models, the development of obliterative lesions histological similar to clinical OAD has been demonstrated (1-7).This video shows how to perform both, the heterotopic as well as the orthotopic tracheal transplantation technique in mice, and compares the time course of OAD development in both models using histology.Download video file.(54M, flv)  相似文献   

18.
In this video, we demonstrate the method our lab has developed to analyze the cell shape changes and rearrangements required to bend and fold the developing zebrafish brain (Gutzman et al, 2008). Such analysis affords a new understanding of the underlying cell biology required for development of the 3D structure of the vertebrate brain, and significantly increases our ability to study neural tube morphogenesis. The embryonic zebrafish brain is shaped beginning at 18 hours post fertilization (hpf) as the ventricles within the neuroepithelium inflate. By 24 hpf, the initial steps of neural tube morphogenesis are complete. Using the method described here, embryos at the one cell stage are injected with mRNA encoding membrane-targeted green fluorescent protein (memGFP). After injection and incubation, the embryo, now between 18 and 24 hpf, is mounted, inverted, in agarose and imaged by confocal microscopy. Notably, the zebrafish embryo is transparent making it an ideal system for fluorescent imaging. While our analyses have focused on the midbrain-hindbrain boundary and the hindbrain, this method could be extended for analysis of any region in the zebrafish to a depth of 80-100 μm.Open in a separate windowClick here to view.(44M, flv)  相似文献   

19.
Flying insects use visual cues to stabilize their heading in a wind stream. Many animals additionally track odors carried in the wind. As such, visual stabilization of upwind tracking directly aids in odor tracking. But do olfactory signals directly influence visual tracking behavior independently from wind cues? Additionally, recent advances in olfactory molecular genetics and neurophysiology have motivated novel quantitative behavioral analyses to assess the behavioral influence of (e.g.) genetically inactivating specific olfactory activation circuits. We modified a magnetic tether system originally devised for vision experiments by equipping the arena with narrow laminar flow odor plumes. Here we focus on experiments that can be performed after a fly is tethered and is able to navigate in the magnetic arena. We show how to acquire video images optimized for measuring body angle, how to judge stable odor tracking, and we illustrate two experiments to examine the influence of visual cues on odor tracking.Download video file.(56M, flv)  相似文献   

20.
The Protease Fluorescent Detection Kit provides ready-to-use reagents for detecting the presence of protease activity. This simple assay to detect protease activity uses casein labeled with fluorescein isothiocyanate (FITC) as the substrate.Protease activity results in the cleavage of the FITC-labeled casein substrate into smaller fragments, which do not precipitate under acidic conditions. After incubation of the protease sample and substrate, the reaction is acidified with the addition of trichloroacetic acid (TCA). The mixture is then centrifuged with the undigested substrate forming a pellet and the smaller, acid soluble fragments remaining in solution. The supernatant is neutralized and the fluorescence of the FITC-labeled fragments is measured.The described kit procedure detects the trypsin protease control at a concentration of approximately 0.5 μg/ml (5 ng of trypsin added to the assay). This sensitivity can be increased with a longer incubation time, up to 24 hours. The assay is performed in microcentrifuge tubes and procedures are provided for fluorescence detection using either cuvettes or multiwell plates.Download video file.(52M, flv)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号