首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Reliability is an important parameter in breeding. It measures the precision of estimated breeding values (EBV) and, thus, potential response to selection on those EBV. The precision of EBV is commonly measured by relating the prediction error variance (PEV) of EBV to the base population additive genetic variance (base PEV reliability), while the potential for response to selection is commonly measured by the squared correlation between the EBV and breeding values (BV) on selection candidates (reliability of selection). While these two measures are equivalent for unselected populations, they are not equivalent for selected populations. The aim of this study was to quantify the effect of selection on these two measures of reliability and to show how this affects comparison of breeding programs using pedigree-based or genomic evaluations.

Methods

Two scenarios with random and best linear unbiased prediction (BLUP) selection were simulated, where the EBV of selection candidates were estimated using only pedigree, pedigree and phenotype, genome-wide marker genotypes and phenotype, or only genome-wide marker genotypes. The base PEV reliabilities of these EBV were compared to the corresponding reliabilities of selection. Realized genetic selection intensity was evaluated to quantify the potential of selection on the different types of EBV and, thus, to validate differences in reliabilities. Finally, the contribution of different underlying processes to changes in additive genetic variance and reliabilities was quantified.

Results

The simulations showed that, for selected populations, the base PEV reliability substantially overestimates the reliability of selection of EBV that are mainly based on old information from the parental generation, as is the case with pedigree-based prediction. Selection on such EBV gave very low realized genetic selection intensities, confirming the overestimation and importance of genotyping both male and female selection candidates. The two measures of reliability matched when the reductions in additive genetic variance due to the Bulmer effect, selection, and inbreeding were taken into account.

Conclusions

For populations under selection, EBV based on genome-wide information are more valuable than suggested by the comparison of the base PEV reliabilities between the different types of EBV. This implies that genome-wide marker information is undervalued for selected populations and that genotyping un-phenotyped female selection candidates should be reconsidered.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0145-1) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values.

Methods

Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated.

Results

The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy.

Conclusions

An animal''s relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.  相似文献   

3.

Background

The E200K mutation of the prion protein gene (PRNP) is the most frequent amino acid substitution in genetic Creutzfeldt-Jakob disease and is the only one responsible for the appearance of clustered cases in the world. In the Israel and Slovakian clusters, age of disease onset was reduced in successive generations but the absence of a clear molecular basis raised the possibility that this event was an observational bias. The aim of the present study was to investigate possible selection biases or confounding factors related to anticipation in E200K CJD patients belonging to a cluster in Southern Italy.

Methods

Clinical and demographical data of 41 parent-offspring pairs from 19 pedigrees of the Italian cluster of E200K patients were collected. Age at death of parents was compared with age at death of E200K CJD offspring. Subgroup analyses were performed for controlling possible selection biases, confounding factors, or both.

Results

The mean age at death/last follow-up of the parent generation was 71.4 years while that of CJD offspring was 59.3 years with an estimated anticipation of 12.1 years. When the same analysis was performed including only parents with CJD or carrying the E200K mutation (n = 26), the difference between offspring and parents increased to 14.8 years.

Conclusions

These results show that early age at death occurs in offspring of families carrying the E200K PRNP mutation and that this event is not linked to observational biases. Although molecular or environmental bases for this occurrence remain unsettled, this information is important for improving the accuracy of information to give to mutated carriers.  相似文献   

4.

Background

Majority of the tiger habitat in Indian subcontinent lies within high human density landscapes and is highly sensitive to surrounding pressures. These forests are unable to sustain healthy tiger populations within a tiger-hostile matrix, despite considerable conservation efforts. Ranthambore Tiger Reserve (RTR) in Northwest India is one such isolated forest which is rapidly losing its links with other tiger territories in the Central Indian landscape. Non-invasive genetic sampling for individual identification is a potent technique to understand the relationships between threatened tiger populations in degraded habitats. This study is an attempt to establish tiger movement across a fragmented landscape between RTR and its neighboring forests, Kuno-Palpur Wildlife Sanctuary (KPWLS) and Madhav National Park (MNP) based on non-invasively obtained genetic data.

Methods

Data from twelve microsatellite loci was used to define population structure and also to identify first generation migrants and admixed individuals in the above forests.

Results

Population structure was consistent with the Central Indian landscape and we could determine significant gene flow between RTR and MNP. We could identify individuals of admixed ancestry in both these forests, as well as first generation migrants from RTR to KPWLS and MNP.

Conclusions

Our results indicate reproductive mixing between animals of RTR and MNP in the recent past and migration of animals even today, despite fragmentation and poaching risk, from RTR towards MNP. Substantial conservation efforts should be made to maintain connectivity between these two subpopulations and also higher protection status should be conferred on Madhav National Park.  相似文献   

5.

Background

Social interactions often occur among living organisms, including aquatic animals. There is empirical evidence showing that social interactions may genetically affect phenotypes of individuals and their group mates. In this context, the heritable effect of an individual on the phenotype of another individual is known as an Indirect Genetic Effect (IGE). Selection for socially affected traits may increase response to artificial selection, but also affect rate of inbreeding.

Methods

A simulation study was conducted to examine the effect of Best Linear Unbiased Prediction (BLUP) selection for socially affected traits on the rate of inbreeding. A base scenario without IGE and three alternative scenarios with different magnitudes of IGE were simulated. In each generation, 25 sires and 50 dams were mated, producing eight progeny per dam. The population was selected for 20 generations using BLUP. Individuals were randomly assigned to groups of eight members in each generation, with two families per group, each contributing four individuals. “Heritabilities” (for both direct and indirect genetic effects) were equal to 0.1, 0.3 or 0.5, and direct–indirect genetic correlations were −0.8, −0.4, 0, 0.4, or 0.8. The rate of inbreeding was calculated from generation 10 to 20.

Results

For the base scenario, the rates of inbreeding were 4.09, 2.80 and 1.95% for “heritabilities” of 0.1, 0.3 and 0.5, respectively. Overall, rates of inbreeding for the three scenarios with IGE ranged from 2.21 to 5.76% and were greater than for the base scenarios. The results show that social interaction within groups of two families increases the resemblance between estimated breeding values of relatives, which, in turn, increases the rate of inbreeding.

Conclusion

BLUP selection for socially affected traits increased the rate of inbreeding. To maintain inbreeding at an acceptable rate, a selection algorithm that restricts the increase in mean kinship, such as optimum contribution selection, is required.  相似文献   

6.

Background

This trial was conducted to evaluate the safety and immunogenicity of two virosome formulated malaria peptidomimetics derived from Plasmodium falciparum AMA-1 and CSP in malaria semi-immune adults and children.

Methods

The design was a prospective randomized, double-blind, controlled, age-deescalating study with two immunizations. 10 adults and 40 children (aged 5–9 years) living in a malaria endemic area were immunized with PEV3B or virosomal influenza vaccine Inflexal®V on day 0 and 90.

Results

No serious or severe adverse events (AEs) related to the vaccines were observed. The only local solicited AE reported was pain at injection site, which affected more children in the Inflexal®V group compared to the PEV3B group (p = 0.014). In the PEV3B group, IgG ELISA endpoint titers specific for the AMA-1 and CSP peptide antigens were significantly higher for most time points compared to the Inflexal®V control group. Across all time points after first immunization the average ratio of endpoint titers to baseline values in PEV3B subjects ranged from 4 to 15 in adults and from 4 to 66 in children. As an exploratory outcome, we found that the incidence rate of clinical malaria episodes in children vaccinees was half the rate of the control children between study days 30 and 365 (0.0035 episodes per day at risk for PEV3B vs. 0.0069 for Inflexal®V; RR  = 0.50 [95%-CI: 0.29–0.88], p = 0.02).

Conclusion

These findings provide a strong basis for the further development of multivalent virosomal malaria peptide vaccines.

Trial Registration

ClinicalTrials.gov NCT00513669  相似文献   

7.
Tian L  Meng C  Yan H  Zhao Q  Liu Q  Yan J  Han Y  Yuan H  Wang L  Yue W  Zhang Y  Li X  Zhu C  He Y  Zhang D 《PloS one》2011,6(12):e28794

Background

Shared neuropathological features between schizophrenic patients and their first-degree relatives have potential as indicators of genetic vulnerability to schizophrenia. We sought to explore genetic influences on brain morphology and function in schizophrenic patients and their relatives.

Methods

Using a multimodal imaging strategy, we studied 33 schizophrenic patients, 55 of their unaffected parents, 30 healthy controls for patients, and 29 healthy controls for parents with voxel-based morphometry of structural MRI scans and functional connectivity analysis of resting-state functional MRI data.

Results

Schizophrenic patients showed widespread gray matter reductions in the bilateral frontal cortices, bilateral insulae, bilateral occipital cortices, left amygdala and right thalamus, whereas their parents showed more localized reductions in the left amygdala, left thalamus and right orbitofrontal cortex. Patients and their parents shared gray matter loss in the left amygdala. Further investigation of the resting-state functional connectivity of the amygdala in the patients showed abnormal functional connectivity with the bilateral orbitofrontal cortices, bilateral precunei, bilateral dorsolateral frontal cortices and right insula. Their parents showed slightly less, but similar changes in the pattern in the amygdala connectivity. Co-occurrences of abnormal connectivity of the left amygdala with the left orbitofrontal cortex, right dorsolateral frontal cortex and right precuneus were observed in schizophrenic patients and their parents.

Conclusions

Our findings suggest a potential genetic influence on structural and functional abnormalities of the amygdala in schizophrenia. Such information could help future efforts to identify the endophenotypes that characterize the complex disorder of schizophrenia.  相似文献   

8.

Background

In national evaluations, direct genomic breeding values can be considered as correlated traits to those for which phenotypes are available for traditional estimation of breeding values. For this purpose, estimates of the accuracy of direct genomic breeding values expressed as genetic correlations between traits and their respective direct genomic breeding values are required.

Methods

We derived direct genomic breeding values for 2239 registered Limousin and 2703 registered Simmental beef cattle genotyped with either the Illumina BovineSNP50 BeadChip or the Illumina BovineHD BeadChip. For the 264 Simmental animals that were genotyped with the BovineHD BeadChip, genotypes for markers present on the BovineSNP50 BeadChip were extracted. Deregressed estimated breeding values were used as observations in weighted analyses that estimated marker effects to derive direct genomic breeding values for each breed. For each breed, genotyped individuals were clustered into five groups using K-means clustering, with the aim of increasing within-group and decreasing between-group pedigree relationships. Cross-validation was performed five times for each breed, using four groups for training and the fifth group for validation. For each trait, we then applied a weighted bivariate analysis of the direct genomic breeding values of genotyped animals from all five validation sets and their corresponding deregressed estimated breeding values to estimate variance and covariance components.

Results

After minimizing relationships between training and validation groups, estimated genetic correlations between each trait and its direct genomic breeding values ranged from 0.39 to 0.76 in Limousin and from 0.29 to 0.65 in Simmental. The efficiency of selection based on direct genomic breeding values relative to selection based on parent average information ranged from 0.68 to 1.28 in genotyped Limousin and from 0.51 to 1.44 in genotyped Simmental animals. The efficiencies were higher for 323 non-genotyped young Simmental animals, born after January 2012, and ranged from 0.60 to 2.04.

Conclusions

Direct genomic breeding values show promise for routine use by Limousin and Simmental breeders to improve the accuracy of predicted genetic merit of their animals at a young age and increase response to selection. Benefits from selecting on direct genomic breeding values are greater for breeders who use natural mating sires in their herds than for those who use artificial insemination sires. Producers with unregistered commercial Limousin and Simmental cattle could also benefit from being able to identify genetically superior animals in their herds, an opportunity that has in the past been limited to seed stock animals.  相似文献   

9.

Background

With improved medical outcome in preterm infants, the psychosocial situation of their families is receiving increasing attention. For parents, the birth of a preterm infant is generally regarded as a stressful experience, and therefore many interventions are based on reducing parental stress. Nevertheless, it remains unclear whether parents of children born preterm experience more stress than parents of term-born children, which would justify these interventions. This meta-analysis provides a comprehensive account of parental stress in parents of preterm infants, from birth of the infant through to their adolescence. Mean levels of stress in specific domains of family functioning were investigated, and stress levels in parents of preterm and term infants, and fathers and mothers of preterm infants, were compared. Furthermore, we investigated moderators of parental stress.

Methods and Findings

A random-effects meta-analysis was conducted including 38 studies describing 3025 parents of preterm (<37 wk) and low birth weight (<2500 g) infants. Parental stress was measured with two parent-reported questionnaires, the Parenting Stress Index and the Parental Stressor Scale: Neonatal Intensive Care Unit. The results indicate that parents of preterm-born children experience only slightly more stress than parents of term-born children, with small effect sizes. Furthermore, mothers have slightly more stress than fathers, but these effect sizes are also small. Parents report more stress for infants with lower gestational ages and lower birth weights. There is a strong effect for infant birth year, with decreasing parental stress from the 1980s onward, probably due to increased quality of care for preterm infants.

Conclusions

Based on our findings we argue that prematurity can best be regarded as one of the possible complications of birth, and not as a source of stress in itself.  相似文献   

10.

Background

At present the Croatian Turopolje pig population comprises about 157 breeding animals. In Austria, 324 Turopolje pigs originating from six Croatian founder animals are registered. Multiple bottlenecks have occurred in this population, one major one rather recently and several more older and moderate ones. In addition, it has been subdivided into three subpopulations, one in Austria and two in Croatia, with restricted gene flow. These specificities explain the delicate situation of this endangered Croatian lard-type pig breed.

Methods

In order to identify candidate breeding animals or gene pools for future conservation breeding programs, we studied the genetic diversity and population structure of this breed using microsatellite data from 197 individuals belonging to five different breeds.

Results

The genetic diversity of the Turopolje pig is dramatically low with observed heterozygosities values ranging from 0.38 to 0.57. Split into three populations since 1994, two genetic clusters could be identified: one highly conserved Croatian gene pool in Turopoljski Lug and the"Posavina" gene pool mainly present in the Austrian population. The second Croatian subpopulation in Lonjsko Polje in the Posavina region shows a constant gene flow from the Turopoljski Lug animals.

Conclusions

One practical conclusion is that it is necessary to develop a "Posavina" boar line to preserve the "Posavina" gene pool and constitute a corresponding population in Croatia. Animals of the highly inbred herd in Turopoljski Lug should not be crossed with animals of other populations since they represent a specific phenotype-genotype combination. However to increase the genetic diversity of this herd, a program to optimize its sex ratio should be carried out, as was done in the Austrian population where the level of heterozygosity has remained moderate despite its heavy bottleneck in 1994.  相似文献   

11.

Background

In classical pedigree-based analysis, additive genetic variance is estimated from between-family variation, which requires the existence of larger phenotyped and pedigreed populations involving numerous families (parents). However, estimation is often complicated by confounding of genetic and environmental family effects, with the latter typically occurring among full-sibs. For this reason, genetic variance is often inferred based on covariance among more distant relatives, which reduces the power of the analysis. This simulation study shows that genome-wide identity-by-descent sharing among close relatives can be used to quantify additive genetic variance solely from within-family variation using data on extremely small family samples.

Methods

Identity-by-descent relationships among full-sibs were simulated assuming a genome size similar to that of humans (effective number of loci ~80). Genetic variance was estimated from phenotypic data assuming that genomic identity-by-descent relationships could be accurately re-created using information from genome-wide markers. The results were compared with standard pedigree-based genetic analysis.

Results

For a polygenic trait and a given number of phenotypes, the most accurate estimates of genetic variance were based on data from a single large full-sib family only. Compared with classical pedigree-based analysis, the proposed method is more robust to selection among parents and for confounding of environmental and genetic effects. Furthermore, in some cases, satisfactory results can be achieved even with less ideal data structures, i.e., for selectively genotyped data and for traits for which the genetic variance is largely under the control of a few major genes.

Conclusions

Estimation of genetic variance using genomic identity-by-descent relationships is especially useful for studies aiming at estimating additive genetic variance of highly fecund species, using data from small populations with limited pedigree information and/or few available parents, i.e., parents originating from non-pedigreed or even wild populations.  相似文献   

12.

Background

Human T-Cell Lymphotropic Virus Type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It has been estimated that 10–20 million people are infected worldwide, but no successful treatment is available. Recently, the epidemiology of this virus was addressed in blood donors from Maputo, showing rates from 0.9 to 1.2%. However, the origin and impact of HTLV endemic in this population is unknown.

Objective

To assess the HTLV-1 molecular epidemiology in Mozambique and to investigate their relationship with HTLV-1 lineages circulating worldwide.

Methods

Blood donors and HIV patients were screened for HTLV antibodies by using enzyme immunoassay, followed by Western Blot. PCR and sequencing of HTLV-1 LTR region were applied and genetic HTLV-1 subtypes were assigned by the neighbor-joining method. The mean genetic distance of Mozambican HTLV-1 lineages among the genetic clusters were determined. Human mitochondrial (mt) DNA analysis was performed and individuals classified in mtDNA haplogroups.

Results

LTR HTLV-1 analysis demonstrated that all isolates belong to the Transcontinental subgroup of the Cosmopolitan subtype. Mozambican HTLV-1 sequences had a high inter-strain genetic distance, reflecting in three major clusters. One cluster is associated with the South Africa sequences, one is related with Middle East and India strains and the third is a specific Mozambican cluster. Interestingly, 83.3% of HIV/HTLV-1 co-infection was observed in the Mozambican cluster. The human mtDNA haplotypes revealed that all belong to the African macrohaplogroup L with frequencies representatives of the country.

Conclusions

The Mozambican HTLV-1 genetic diversity detected in this study reveals that although the strains belong to the most prevalent and worldwide distributed Transcontinental subgroup of the Cosmopolitan subtype, there is a high HTLV diversity that could be correlated with at least 3 different HTLV-1 introductions in the country. The significant rate of HTLV-1a/HIV-1C co-infection, particularly in the Mozambican cluster, has important implications for the controls programs of both viruses.  相似文献   

13.

Objective

Individual differences in the temperamental dimension of effortful control are constitutionally based and have been associated with an adverse prenatal developmental environment, with structural brain alterations presenting a potential mechanism. We investigated this hypothesis for anatomically defined brain regions implicated in cognitive and inhibitory motor control.

Methods

Twenty-seven 15–16 year old participants with low, medium, or high fetal growth were selected from a longitudinal birth cohort to maximize variation and represent the full normal spectrum of fetal growth. Outcome measures were parent ratings of attention and inhibitory control, thickness and surface area of the orbitofrontal cortex (lateral (LOFC) and medial (MOFC)) and right inferior frontal gyrus (rIFG), and volumetric measures of the striatum and amygdala.

Results

Lower birth weight was associated with lower inhibitory control, smaller surface area of LOFC, MOFC and rIFG, lower caudate volume, and thicker MOFC. A mediation model found a significant indirect effect of birth weight on inhibitory control via caudate volume.

Conclusions

Our findings support a neuroanatomical mechanism underlying potential long-term consequences of an adverse fetal developmental environment for behavioral inhibitory control in adolescence and have implications for understanding putative prenatal developmental origins of externalizing behavioral problems and self-control.  相似文献   

14.

Aim

To calibrate Ir-192 high dose rate (HDR) brachytherapy source using different calibration methods and to determine the accuracy and suitability of each method for routine calibrations.

Background

The source calibration is an essential part of the quality assurance programme for dosimetry of brachytherapy sources. The clinical use of brachytherapy source requires an independent measurement of the air kerma strength according to the recommendations of medical physics societies.

Materials and methods

The Ir-192 HDR brachytherapy source from Gammamed plus machine (Varian Medical Systems, Palo Alto, CA) was calibrated using three different procedures, one using the well-type ionization chamber, second by the in-air calibration method and third using solid water phantoms. The reference air kerma rate (RAKR) of the source was determined using Deutsche Gesellschaft fur Medizinische Physik (DGMP) recommendations.

Results

The RAKR determined using different calibration methods are in good agreement with the manufacturer stated value. The mean percentage variations of 0.21, −0.94, −0.62 and 0.58 in RAKR values with respect to the manufacturer quoted values were observed with the well-type chamber, in-air calibration, cylindrical phantom and slab phantom measurements, respectively.

Conclusion

Measurements with a well-type chamber are relatively simple to perform. For in-air measurements, the indigenously designed calibration jig provides an accurate positioning of the source and chamber with minimum scatter contribution. The slab phantom system has an advantage that no additional phantom and chamber are required other than those used for external beam therapy dosimetry. All the methods of calibration discussed in this study are effective to be used for routine calibration purposes.  相似文献   

15.

Background

Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity.

Methods

The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences.

Results

Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data.

Conclusions

The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families.  相似文献   

16.

Objectives

Educational opportunities for African-Americans expanded throughout the 20th century. Twin pairs are an informative population in which to examine changes in educational attainment because each twin has the same parents and childhood socioeconomic status. We hypothesized that correlation in educational attainment of older twin pairs would be higher compared to younger twin pairs reflecting changes in educational access over time and potentially reflecting a “ceiling effect” associated with Jim Crow laws and discrimination.

Methodology and Principal Findings

We used data from 211 same-sex twin pairs (98 identical, 113 fraternal) in the Carolina African-American Twin Study of Aging who were identified through birth records. Participants completed an in-person interview. The twins were predominantly female (61%), with a mean age of 50 years (SD = 0.5). We found that older age groups had a stronger intra-twin correlation of attained educational level. Further analysis across strata revealed a trend across zygosity, with identical twins demonstrating more similar educational attainment levels than did their fraternal twin counterparts, suggesting a genetic influence.

Discussion

These findings suggest that as educational opportunities broadened in the 20th century, African-Americans gained access to educational opportunities that better matched their individual abilities.  相似文献   

17.

Background

The most efficient method to maintain genetic diversity in populations under conservation programmes is to optimize, for each potential parent, the number of offspring left to the next generation by minimizing the global coancestry. Coancestry is usually calculated from genealogical data but molecular markers can be used to replace genealogical coancestry with molecular coancestry. Recent studies showed that optimizing contributions based on coancestry calculated from a large number of SNP markers can maintain higher levels of diversity than optimizing contributions based on genealogical data. In this study, we investigated how SNP density and effective population size impact the use of molecular coancestry to maintain diversity.

Results

At low SNP densities, the genetic diversity maintained using genealogical coancestry for optimization was higher than that maintained using molecular coancestry. The performance of molecular coancestry improved with increasing marker density, and, for the scenarios evaluated, it was as efficient as genealogical coancestry if SNP density reached at least 3 times the effective population size.However, increasing SNP density resulted in reduced returns in terms of maintained diversity. While a benefit of 12% was achieved when marker density increased from 10 to 100 SNP/Morgan, the benefit was only 2% when it increased from 100 to 500 SNP/Morgan.

Conclusions

The marker density of most SNP chips already available for farm animals is sufficient for molecular coancestry to outperform genealogical coancestry in conservation programmes aimed at maintaining genetic diversity. For the purpose of effectively maintaining genetic diversity, a marker density of around 500 SNPs/Morgan can be considered as the most cost effective density when developing SNP chips for new species. Since the costs to develop SNP chips are decreasing, chips with 500 SNPs/Morgan should become available in a short-term horizon for non domestic species.  相似文献   

18.

Background

The radiation-induced energy metabolism dysfunction related to injury and radiation doses is largely elusive. The purpose of this study is to investigate the early response of energy metabolism in small intestinal tissue and its correlation with pathologic lesion after total body X-ray irradiation (TBI) in Tibet minipigs.

Methods and Results

30 Tibet minipigs were assigned into 6 groups including 5 experimental groups and one control group with 6 animals each group. The minipigs in these experimental groups were subjected to a TBI of 2, 5, 8, 11, and 14 Gy, respectively. Small intestine tissues were collected at 24 h following X-ray exposure and analyzed by histology and high performance liquid chromatography (HPLC). DNA contents in this tissue were also examined. Irradiation causes pathologic lesions and mitochondrial abnormalities. The Deoxyribonucleic acid (DNA) content-corrected and uncorrected adenosine-triphosphate (ATP) and total adenine nucleotides (TAN) were significantly reduced in a dose-dependent manner by 2–8 Gy exposure, and no further reduction was observed over 8 Gy.

Conclusion

TBI induced injury is highly dependent on the irradiation dosage in small intestine and inversely correlates with the energy metabolism, with its reduction potentially indicating the severity of injury.  相似文献   

19.

Background

Genomic selection is a recently developed technology that is beginning to revolutionize animal breeding. The objective of this study was to estimate marker effects to derive prediction equations for direct genomic values for 16 routinely recorded traits of American Angus beef cattle and quantify corresponding accuracies of prediction.

Methods

Deregressed estimated breeding values were used as observations in a weighted analysis to derive direct genomic values for 3570 sires genotyped using the Illumina BovineSNP50 BeadChip. These bulls were clustered into five groups using K-means clustering on pedigree estimates of additive genetic relationships between animals, with the aim of increasing within-group and decreasing between-group relationships. All five combinations of four groups were used for model training, with cross-validation performed in the group not used in training. Bivariate animal models were used for each trait to estimate the genetic correlation between deregressed estimated breeding values and direct genomic values.

Results

Accuracies of direct genomic values ranged from 0.22 to 0.69 for the studied traits, with an average of 0.44. Predictions were more accurate when animals within the validation group were more closely related to animals in the training set. When training and validation sets were formed by random allocation, the accuracies of direct genomic values ranged from 0.38 to 0.85, with an average of 0.65, reflecting the greater relationship between animals in training and validation. The accuracies of direct genomic values obtained from training on older animals and validating in younger animals were intermediate to the accuracies obtained from K-means clustering and random clustering for most traits. The genetic correlation between deregressed estimated breeding values and direct genomic values ranged from 0.15 to 0.80 for the traits studied.

Conclusions

These results suggest that genomic estimates of genetic merit can be produced in beef cattle at a young age but the recurrent inclusion of genotyped sires in retraining analyses will be necessary to routinely produce for the industry the direct genomic values with the highest accuracy.  相似文献   

20.

Background

Preterm birth, defined as birth occurring before 37 weeks gestation, is one of the most significant contributors to neonatal mortality and morbidity, with long-term adverse consequences for health, and cognitive outcome.

Objective

The aim of the present study was to identify risk factors of preterm birth (≤36+6 weeks gestation) among singleton births and to quantify the contribution of risk factors to socioeconomic disparities in preterm birth.

Methods

A retrospective population–based case-control study using data derived from the Finnish Medical Birth Register. A total population of singleton births in Finland from 1987−2010 (n = 1,390,742) was reviewed.

Results

Among all singleton births (n = 1,390,742), 4.6% (n = 63,340) were preterm (<37 weeks), of which 0.3% (n = 4,452) were classed as extremely preterm, 0.4% (n = 6,213) very preterm and 3.8% (n = 54,177) moderately preterm. Smoking alone explained up to 33% of the variation in extremely, very and moderately preterm birth incidence between high and the low socioeconomic status (SES) groups. Reproductive risk factors (placental abruption, placenta previa, major congenital anomaly, amniocentesis, chorionic villus biopsy, anemia, stillbirth, small for gestational age (SGA) and fetal sex) altogether explained 7.7−25.0% of the variation in preterm birth between SES groups.

Conclusions

Smoking explained about one third of the variation in preterm birth groups between SES groups whereas the contribution of reproductive risk factors including placental abruption, placenta previa, major congenital anomaly, amniocentesis, chorionic villus biopsy, anemia, stillbirth, SGA and fetal sex was up to one fourth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号