首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycoproteins IIb (GPIIb) and IIIa (GPIIIa) form the Ca2(+)-dependent GPIIb/IIIa complex, which acts as the fibrinogen receptor on activated platelets. GPIIb and GPIIIa are synthesized as single peptide chains. The GPIIb precursor is processed proteolytically to yield two disulphide-bonded chains, GPIIb alpha and GPIIb beta. The GPIIb/IIIa complex has two membrane attachment sites located at the C-termini of GPIIb beta and GPIIIa. The short cytoplasmic tails of GPIIb beta and/or GPIIIa become most likely associated to the cytoskeleton of activated platelets. In the present work the C-terminal amino acid residues of platelet GPIIb beta and GPIIIa have been analyzed by protein-chemical methods and compared with those predicted from cDNA analysis. We were able to confirm the positions of the C-termini in both glycoproteins and the identity of the C-terminus predicted for GPIIIa, i.e. threonine. However, glutamine, not glutamic acid as predicted for GPIIb beta from the human erythroleukemic cell line and megakaryocyte cells, was found to be the C-terminal amino acid of GPIIb beta. This indicates that the glutamic acid in the GPIIb precursor is posttranslationally modified to glutamine.  相似文献   

2.
The non-covalent and Ca(2+)-dependent heterodimer GPIIb/IIIa, formed by platelet glycoproteins IIb (GPIIb) and IIIa (GPIIIa), also known as the integrin alpha IIb beta 3, is the inducible receptor for fibrinogen and other adhesive proteins on the surface of activated platelets. A fraction of the isolated GPIIb/IIIa in solution binds RGD or KQAGDV inhibitory peptides and, upon peptide removal, apparently acquires the capacity to bind fibrinogen ('activated' GPIIb/IIIa) [Du, X., Plow, E. F., Frelinger, A. L., III, O'Toole, T. E., Loftus, J. C. & Ginsberg, M. H. (1991) Cell 65, 409-416]. Photoaffinity labelling was used here to study the ligand binding site(s) of GPIIb/IIIa in solution, for which the peptides CKRKRKRKRRGDV (alpha 1), CGRGDF (alpha 2), CYHHLGGAKQAGDV (gamma 1) and CGAKQAGDV (gamma 2) were synthesized with a photoactivable cross-linker group and a fluorescent reporter group attached to the N-terminal cysteine residue. Contrary to the situation in activated platelets, both GPIIb and GPIIIa were equally labelled by the four peptides and the cross-linking sites were localized by protein chemical analyses of the fluorescently labelled tryptic peptides of both subunits. Thus, the localization of the cross-linking sites in GPIIb varies considerably with the peptide length and is very different from that localization observed in activated platelets: alpha 2 and gamma 2 were found cross-linked to the N-terminal of both the heavy (GPIIbH 42-73) and the light (GPIIbL2 30-75) chains of GPIIb; while the longer peptides alpha 1 and gamma 1 were cross-linked to the C-terminal of GPIIbH within the 696-724 and 752-768 peptide stretches, respectively. On the other hand, the cross-linking sites of the four inhibitory peptides in GPIIIa were found mainly within the proteolysis susceptible region, between the N-terminal (GPIIIa 1-52) and the core (GPIIb 423-622) highly disulphide-bonded domains, observing that the longer the peptide the closer the cross-linking site is to the N-terminal of GPIIIa: alpha 1 at GPIIIa 63-87 and 303-350; gamma 1 at GPIIIa 9-37; alpha 2 at GPIIIa 151-191; and gamma 2 at GPIIIa 303-350. These results led us to the following conclusions. (a) The GPIIIa 100-400 region contributes to the ligand-binding domain in GPIIb/IIIa both in solution and in activated platelets.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The serine proteinase alpha chymotrypsin from bovine pancreas (CT) is known to expose fibrinogen binding sites on the surface of human platelets in the absence of cell activation and granular secretion. This is accompanied by the appearance of membrane-bound chymotryptic fragments of both glycoprotein (GP) IIb and GPIIIa, the two subunits of the platelet fibrinogen receptor, the GPIIb-IIIa complex. However, no clear relationship between discrete proteolytic event(s) within GPIIb-IIIa and fibrinogen-binding-site expression has yet been established. We have now evaluated the proteolysis of GPIIb-IIIa by CT by Western blot analyses using a panel of polyclonal and monoclonal antibodies against GPIIb or GPIIIa. The different proteolytic events were then correlated with the kinetics of the expression of active fibrinogen binding sites on platelets, as measured through the binding of 125I-labelled purified fibrinogen and to the capacity of CT-treated platelets to aggregate. Treatment of platelets with CT at 22 degrees C resulted in the expression of fibrinogen binding sites prior to cleavage of GPIIIa (Mr approximately 90,000) into a previously described, major membrane-bound fragment with Mr 60,000. In contrast, fibrinogen receptor expression closely paralleled a proteolytic cleavage at the carboxy terminus of the GPIIb heavy chain (Mr approximately 120,000), which was converted into a faster migrating species with Mr approximately 115,000). This proteolysis resulted in the release of a soluble peptide with an expected molecular mass of less than 3.7 kDa. Quantitation of this peptide using a competitive immunoenzymatic assay, confirmed that its release from the platelet surface correlated with the expression of fibrinogen binding sites and aggregability. When platelets were exposed to CT at 37 degrees C, a prompt increase in fibrinogen binding sites and platelet aggregability was observed, whereas the GPIIb heavy chain was rapidly converted into the carboxy-terminal-cleaved form. However, incubation at 37 degrees C for longer than 10 min resulted in extensive and simultaneous degradation of both the GPIIb heavy and light chains and of GPIIIa, with the latter being converted into the 60-kDa fragment. These later events were associated with a sharp decline of platelet aggregability and a reduction in the number of fibrinogen binding sites. These data allow us to propose that an early and limited proteolytic processing of the GPIIb component of the platelet fibrinogen receptor is associated with a shift of this receptor complex into a state which expresses specific binding sites for fibrinogen. Further cleavage of GPIIIa to generate the 60-kDa fragment results in loss of receptor activity.  相似文献   

4.
Platelet membrane glycoprotein IIb-IIIa forms a calcium-dependent heterodimer and constitutes the fibrinogen receptor on stimulated platelets. GPIIb is a two-chain protein containing disulfide-linked alpha and beta subunits. GPIIIa is a single chain protein. These proteins are synthesized in the bone marrow by megakaryocytes, but the study of their synthesis has been hampered by the difficulty in obtaining enriched population of megakaryocytes in large numbers. To examine the biosynthesis and processing of GPIIb-IIIa, purified human megakaryocytes were isolated from liquid cultures of cryopreserved leukocytes stem cell concentrates from patients with chronic myelogenous leukemia. Immunoprecipitation of [35S]methionine pulse-chase-labeled cell extracts by antibodies specific for the alpha or beta subunits of GPIIb indicated that GPIIb was derived from a precursor of Mr 130,000 that contains the alpha and beta subunits. This precursor was converted to GPIIb with a half-life of 4-5 h. No precursor form of GPIIIa was detected. The glycosylation of GPIIb-IIIa was examined in megakaryocytes by metabolic labeling in the presence of tunicamycin, monensin, or treatment with endoglycosidase H. The polypeptide backbones of the GPIIb and the GPIIIa have molecular masses of 120 and 90 kD, respectively. High-mannose oligosaccharides are added to these polypeptide backbones co-translationally. The GPIIb precursor is then processed with conversion of high-mannose to complex type carbohydrates yielding the mature subunits GPIIb alpha (Mr 116,000) and GPIIb beta (Mr 25,000). No posttranslational processing of GPIIIa was detected.  相似文献   

5.
The Arg-Gly-Asp (RGD)-binding domain of GPIIb-IIIa has been localized in a fragment of the GPIIIa subunit that includes the sequence between amino acids 109 and 171. To examine, in a platelet membrane environment, the activated versus nonactivated status of this domain, we have produced a monoclonal antibody against a synthetic peptide (residues 109-128) located within the RGD-binding region on GPIIIa. This kappa-IgM, named AC7, was specific for GPIIIa peptide 109-128 and interacted only with activated platelets. Fibrinogen, RGDF peptide, and the fibrinogen phi chain decapeptide LGGAKQAGDV inhibited the binding of AC7 to ADP-stimulated platelets. AC7 IgM and "small fragments" inhibited fibrinogen binding and platelet aggregation in a dose-dependent fashion. Induction of AC7 binding by D33C, a monoclonal antibody recognizing the GPIIb 426-437 sequence and stimulating fibrinogen binding, indicated that the GPIIb 426-437 and the GPIIIa 109-128 sequences were both involved in a stimulation-dependent conformational modification of the receptor. AC7 was able to recognize beta subunits other than GPIIIa on leucocyte surfaces but only after cell fixation with glutaraldehyde. The results are consistent with the implication of the RGD-binding domain in receptor ligand interaction on the platelet surface and its conformational modification and exposure upon receptor induction.  相似文献   

6.
7.
Integrins are alpha beta heterodimers that play a major role in cell-cell contacts and in interactions between cells and extracellular matrices. Identification of structural domains that are critical for the expression of such receptors at the cell surface in a functional conformation is one of the major issues that has not yet been resolved. In the present study, the role of the cytoplasmic and transmembrane domains of each of the subunits has been examined using platelet GPIIb/IIIa as a prototypic integrin. GPIIb/IIIa (alpha IIb/beta 3) is a member of the integrin family and functions as a receptor for fibrinogen, fibronectin, von Willebrand factor, and vitronectin at the surface of activated platelets. Human megakaryocyte GPIIb and GPIIIa cDNAs were used to create a GPIIb mutant coding for the extracellular GPIIb heavy chain alone (GPIIb delta 1) and a GPIIIa mutant lacking the transmembrane and cytoplasmic domains (GPIIIa delta m). Full length and mutant cDNAs were subcloned into the expression vector pECE and used to transfect COS cells. The formation of heterodimers and their cellular localization was analyzed by immunoprecipitation and immunofluorescence labeling using anti-platelet GPIIb/IIIa antibodies. We show here that the extracellular domains of alpha and beta subunits are able to form a heterodimer, although with a lower efficiency, in the absence of the transmembrane and cytoplasmic domains. The presence of the cytoplasmic and transmembrane domains in the alpha subunit is, however, necessary for expression at the surface of the cell whereas the corresponding domains of the beta subunit are not required.  相似文献   

8.
We demonstrate that unstimulated platelets attach to immobilized fibrinogen in a selective process mediated by the membrane glycoprotein (GP) complex IIb-IIIa (alpha IIb beta 3). The initial attachment, independent of platelet activation, is followed by spreading and irreversible adhesion even in the presence of activation inhibitors. Using fibrinogen fragments derived from plasmin digestion, we found that unstimulated platelets do not attach to immobilized fragment E, which contains an Arg-Gly-Asp sequence at A alpha 95-97, and adhere to fragments X and D, both containing the gamma 400-411 dodecapeptide adhesion sequence, less efficiently than to intact fibrinogen. Thus, the carboxyl terminus of the A alpha chain, missing in the "early" fragment X used in these studies, appears to be involved in the interaction of fibrinogen with unstimulated platelets. In contrast, activated platelets adhere to immobilized fibrinogen and fragments X, D, and E in a time-dependent and equivalent manner. Although activated platelets adhere to immobilized vitronectin, fibronectin, and von Willebrand factor through GP IIb-IIIa, unstimulated platelets fail to adhere to vitronectin and have only a limited capacity to adhere to fibronectin and von Willebrand factor. These results demonstrate that GP IIb-IIIa on unstimulated platelets displays a recognition specificity for attachment to immobilized adhesive proteins that is distinct from that seen following platelet activation. Thus, unstimulated platelets selectively interact with fibrinogen, and the initial attachment is followed by spreading and irreversible adhesion in the absence of exogenous agonists. This process may be regulated by plasmin cleavage of the fibrinogen A alpha chain and may play an important role during normal hemostasis and during the pathological development of thrombotic vascular occlusions.  相似文献   

9.
The platelet glycoprotein GPIIb/IIIa and the vitronectin receptor (VNR) are alpha beta-heterodimeric proteins and share the same beta-subunit. By performing swainsonine treatment and digestion with endoglycosidase H (Endo H), we showed that the heavy chains of GPIIb and VNR alpha are glycosylated by complex-type oligosaccharide chains, and provided the first evidence for the presence of one complex carbohydrate residue on their light chains. The proteolytic cleavage of pro-GPIIb and the acquisition of Endo H-resistance are independent events occurring in the same Golgi compartment. We demonstrated the Endo H-sensitivity of GPIIIa and VNR beta in all cellular systems tested. In addition, this beta-subunit is differently glycosylated according to whether it is associated with GPIIb or VNR alpha, one carbohydrate chain being processed to the complex type on GPIIIa, but not on VNR beta.  相似文献   

10.
Summary The platelet GPIIb-IIIa complex functions as a receptor for fibrinogen, fibronectin, and von Willebrand factor on activated platelets. This glycoprotein is a member of a broadly distributed family of structurally and immunologically related membrane receptors involved in cell-cell contact and cell-matrices interactions. GPIIb-IIIa is a heterodimer complex composed of GPIIb (the subunit), which consists of two disulfide-linked heavy and light chains, and GPIIIa (the subunit), which is a single polypeptide chain. Congenital absence of platelet GPIIb-IIIa in Glanzmann's thrombasthenia results in a severe bleeding disorder characterized by defective platelet aggregation and failure of fibrinogen to bind to platelets. The gene coding for GPIIb was located on 17q21.1-17q21.3 as determined by in situ hybridization with a 2650-pb GP2B (GPIIb) cDNA probe prepared from human megakaryocytes.  相似文献   

11.
Platelet cohesion requires the binding of fibrinogen to its receptor, a heterodimer consisting of the plasma-membrane glycoproteins GPIIb and GPIIIa. Although the GPIIb-IIIa complex is present on the surface of unstimulated platelets, it binds fibrinogen only after platelet activation. We have used an immunogold-surface replica technique to study the distribution of GPIIb-IIIa and bound fibrinogen over broad expanses of surface membranes in unstimulated and ADP-activated human platelets. We found that the gold prove was monodispersed over the surface of unstimulated platelets, although the cell surface lacked immunoreactive fibrinogen. To ascertain whether the receptors clustered prior to ligand binding or as a consequence thereof, we studied the surface distribution of GPIIb-IIIa after stimulation with ADP, which causes activation of the fibrinogen receptor function of GPIIb-IIIa without inducing the secretion of fibrinogen. In the absence of added fibrinogen, the unoccupied, yet binding-competent receptors on ADP-stimulated platelets were monodispersed. The addition of fibrinogen caused the GPIIb-IIIa molecules to cluster on the cell surface. Clustering was also induced by the addition of the GPIIb-IIIa binding domains of fibrinogen--namely, the tetrapeptide Arg-Gly-Asp-Ser on the alpha-chain or the gamma-chain decapeptide gamma 402-411. These results show that receptor occupancy causes clustering of GPIIb-IIIa in activated platelets.  相似文献   

12.
In order to study thrombin interaction with fibrinogen, thrombin binding to fragments D and E (prepared by plasmin digestion of fibrinogen) and to intact S-carboxymethylated chains of fibrinogen (A alpha, B beta, and gamma) was analyzed by autoradiography, immunoblotting, and affinity chromatography. Complex formation was observed between late fragment E and thrombin but not with fragment D. The three reduced chain remnants of fragment E all formed complexes with thrombin. Also, thrombin bound to the intact, separated A alpha, B beta, and gamma chains of fibrinogen as well as to the alpha and beta chains of fibrin. In these experiments the extended substrate-binding site, but not the catalytic-binding site, was being examined because fragment E had as its amino-terminal amino acids Val20 in the alpha chain, Lys54 in the beta chain, and Tyr1 in the gamma chain. Also, thrombin inhibited in its active center by D-phenyl-alanyl-L-prolyl-L-arginine-chloromethyl ketone bound to fragment E and to the separated chains in the same manner as unmodified thrombin. A lysine residue to thrombin was essential for its binding to fibrinogen. Thrombin attached to CNBr-activated Sepharose through its amino groups did not bind to fragment E, but when thrombin was attached through its carboxyl groups, it bound fragment E.  相似文献   

13.
As reported previously, homologous plasma lipoproteins specifically bind to the plasma membrane of human blood platelets. The two major lipoprotein-binding membrane glycoproteins were purified to apparent homogeneity and identified by their mobilities in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, both in the nonreduced and reduced state, by specific antibodies against glycoproteins IIb (GPIIb) and IIIa (GPIIIa), respectively, including the alloantibody anti-PlA1 and monoclonal antibodies. Furthermore, lipoprotein binding to intact platelets is also inhibited in a dose-dependent fashion by preincubation of the platelets with antibodies against these glycoproteins. From these experiments it can be concluded that lipoproteins bind to both components of the glycoprotein IIb-IIIa complex in isolated membranes and intact platelets. High density lipoprotein and low density lipoprotein bind to GPIIIa blotted to nitrocellulose in a way that binding of one species interferes with the binding of the other. Addition of fibrinogen significantly inhibits this binding. The specific binding of fibrinogen to GPIIIa is strongly inhibited in the presence of either of the two lipoproteins. LDL and HDL are specifically bound by isolated GPIIb, too. In our blotting experiments fibrinogen shows no binding to this membrane glycoprotein. On the other hand, fibrinogen significantly interferes with the interaction between GPIIb and the lipoproteins.  相似文献   

14.
Human platelet plasma membrane glycoproteins IIb (GPIIb) and IIIa (GPIIIa) form a Ca(2+)-dependent heterodimer, the integrin GPIIb/IIIa, which serves as the receptor for fibrinogen and other adhesive proteins at the surface of activated platelets. Below the critical micellar concentration of Triton X100 (TtX), the three glycoproteins do not bind appreciably to TtX and form association products of large size. The size-exclusion chromatographic patterns of GPIIb, GPIIIa and GPIIb/IIIa have been obtained at 0.2% TtX, and the molecular properties of the association products and monomer fractions have been determined by analysis of the detergent bound to the glycoproteins, laser-light scattering, sedimentation velocity, and electron microscopy (TEM). The monomer of the GPIIb-TtX complex was identified by the molecular mass (M) of the glycoprotein moiety (125 +/- 15 kDa), the molecular size (9.5 +/- 1.5 nm x 11 +/- 1.5 nm) and globular shape observed by TEM. It has a molecular mass (M*) of 197 +/- 20 kDa, a sedimentation coefficient s degrees 20* of 5.8 +/- 0.1 S, a Stokes radius R s* of 6.8 +/- 0.4 nm, and a frictional ratio f*/fmin* of 1.7 +/- 0.14. The (GPIIb)n-TtX complexes are disulphide-bonded size-heterogeneous association products of GPIIb, tetramers being the smallest species found. GPIIIa has a greater propensity to self-associate than GPIIb, this tendency being lower below 1 mg GPIIIa/ml, 0.1 mM Ca2+, pH 9.0. The (GPIIIa)n-TtX complexes are noncovalent size-heterogeneous association products of GPIIIa, tetramers being the smallest form observed. The monomer of the GPIIIa-TtX complex was identified by the 103 +/- 15 kDa M determined for the glycoprotein moiety, and the 9 +/- 1.5 nm x 10 +/- 1.5 nm size and globular shape observed by TEM. It has a M* of 136 +/- 15 kDa, a s degrees 20* of 3.9 +/- 0.3 S, a Rs* of 6.4 +/- 0.5 nm, a f*/fmin* of 1.9 +/- 0.3, and, when stored at pH 7.4, has a certain tendency to form filamentous association products (20-70 nm x 2-5 nm), as observed by TEM. The GPIIb/IIIa-TtX complex in 0.2% TtX/0.1 mM Ca2+ elutes as a single monomeric fraction, as deduced from the 210 +/- 15 kDa M determined for its glycoprotein moiety and the 12 +/- 1.5 nm x 14 +/- 1.5 nm size of the globular forms observed by TEM.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Human platelet membrane glycoproteins IIb (GPIIb) and IIIa (GPIIIa), which have been proposed to be subunits of a receptor for fibrinogen, were purified from Triton X-100-solubilized platelet membranes by affinity chromatography on a concanavalin A (Con A)-Sepharose column followed by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Compositional analyses of the purified glycoproteins showed that GPIIb and GPIIIa contain 15% and 18% carbohydrate by weight, respectively, which consists of galactose, mannose, glucosamine, fucose, and sialic acid. This suggested that these glycoproteins contained N-linked carbohydrate chains. The carbohydrate chains were released from each glycoprotein by hydrazinolysis and then fractionated by ion-exchange chromatography on a Mono Q column. From each glycoprotein, mono-, di-, and trisialylated and neutral oligosaccharide fractions were obtained. The structures of these oligosaccharides were investigated by means of compositional and methylation analyses and digestion by exoglycosidase, and their reactivities to immobilized lectins were also examined. The neutral oligosaccharides, which comprised about 14% of the total oligosaccharides released from GPIIb and about 52% of that from GPIIIa, were found to be of the high mannose-type, in that they contained 5 or 6 mannose residues. On the other hand, a major part of the acidic oligosaccharides was found to consist of typical bi- and triantennary complex-type sugar chains, and much smaller amounts of tetraantennary complex-type sugar chains, and complex-type sugar chains with a fucosyl residue at a N-acetylglucosamine residue in the peripheral portion or a bisecting N-acetylglucosamine at a beta-mannosyl residue in the core portion were also detected. In conclusion, we found that GPIIb contained mainly complex-type sugar chains, whereas high mannose-type sugar chains were the predominant carbohydrate units in GPIIIa, and that the detected differences in the carbohydrate moieties of GPIIb and GPIIIa were quantitative but not qualitative.  相似文献   

16.
This study characterized conformational states of platelet glycoprotein IIb-IIIa (GPIIb-IIIa) and regions of the molecule required for fibrinogen binding. Platelet lysates were passed sequentially over concanavalin A and aminoethylglycine (Aeg)RGDS affinity columns. Approximately 10% of the total GPIIb-IIIa bound to the Aeg-RGDS column. The non-binding GPIIb-IIIa was further purified by S300 gel filtration. Only GPIIb-IIIa which recognized immobilized RGDS bound fibrinogen. The functional difference between the Aeg-RGDS binding GPIIb-IIIa (active) and the S300-purified complex (inactive) suggested that the two populations existed in different conformations. This was confirmed immunochemically and in an assay utilizing endoproteinase Arg-C. Active GPIIb-IIIa was heavily degraded by Arg-C, whereas inactive GPIIb-IIIa was highly resistant to degradation. Receptor occupancy by RGDV or peptidomimetic inhibitors prevented degradation of regions of the active complex and stimulated hydrolysis of the inactive receptor such that the two populations yielded fragments of identical electrophoretic mobility. Induction of hydrolysis of inactive GPIIb-IIIa required 15-fold higher concentrations of RGDV than protection of the active complex. Upon removal of inhibitor, fragments generated from either active or inactive GPIIb-IIIa bound fibrinogen. The ability of carboxypeptidase Y to digest inhibitor-protected GPIIb-IIIa was also examined. GPIIb was cleaved to a 58-kDa NH2-terminal fragment, whereas GPIIIa remained essentially intact. The complexed fragments bound fibrinogen with similar affinity as intact GPIIb-IIIa. This binding was inhibited by both RGDV and HHLGGAKQAGDV peptides. These data suggest that: 1) purified active and inactive GPIIb-IIIa exist in different conformations and have different affinities for RGDV; 2) certain peptidomimetic inhibitors (Ro 42-1499 and Ro 43-5054) alter the conformation of inactive GPIIb-IIIa; 3) GPIIIa and a 58-kDa NH2-terminal fragment of GPIIb alpha form a high affinity fibrinogen binding complex.  相似文献   

17.
The authors isolated a product of proteolytic degradation of glycoprotein IIIa (GPIIIa) which is formed on the surface of human platelets during incubation with chymotrypsin and which was previously described as the 66 kDa platelet membrane component. This component migrated with an apparent Mr 62,400 in a non-reduced system of sodium dodecyl sulfate polyacrylamide gel electrophoresis. In a reduced system it yielded two major subunits migrating with apparent Mr 14,000-17,000 and 65,000. The low-molecular weight component began with the NH2-terminal sequence of GPIIIa (GPNICTTR...) and the larger component with residue 348 of GPIIIa (GKIRSKKA...) as deduced from a cDNA clone of this glycoprotein. The two subunits appeared to be linked by one or more S-S bridges supporting the contention that GPIIIa is a highly folded molecule on the platelet membrane. In contrast to GPIIIa, the '66 kDa component' did not bind to GRGDSPK-agarose, to fibrinogen-agarose nor to insolubilized monoclonal antibody recognizing the GPIIb/IIIa complex. The exposure of fibrinogen receptors during the course of incubation of platelets with chymotrypsin preceded the formation of the '66 kDa component' characterized in this study. An intermediate product of GPIIIa proteolysis migrating with an apparent Mr 120,000 in a non-reduced system and Mr 80,000 in a reduced system was identified as a precursor of the '66 kDa component'. The '120 kDa component' was not retained on GRGDSPK-agarose or on fibrinogen-agarose but it was retained on insolubilized antibody recognizing the GPIIb/IIIa complex. Incubation of platelets with porcine pancreatic elastase or human granulocytic elastase resulted in the formation of similar proteolytic degradation fragments.  相似文献   

18.
The crucial role of the human platelet fibrinogen receptor in maintaining normal hemostasis is best exemplified by the autosomal recessive bleeding disorder Glanzmann thrombasthenia (GT). The platelet fibrinogen receptor is a heterodimer composed of glycoproteins IIb (GPIIb) and IIIa (GPIIIa). Platelets from patients with GT have a quantitative or qualitative abnormality in GPIIb and GPIIIa and can neither bind fibrinogen nor aggregate. Very few genetic defects have been identified that cause this disorder. We describe a kindred with GT in which the affected individuals have a unique inversion-deletion mutation in the gene for GPIIIa. Patient platelets lacked both GPIIIa protein and mRNA. Southern blots of patient genomic DNA probed with an internal 1.0-kb GPIIIa cDNA suggested a large rearrangement of this gene but were normal when probed with small GPIIIa cDNA fragments that were outside the mutation. Cytogenetics and pulsed-field gel analysis of the GPIIIa gene were normal, making a translocation or a very large rearrangement unlikely. Additional Southern analyses suggested that the abnormality was not a small insertion. We constructed a patient genomic DNA library and isolated fragments containing the 5' and 3' breakpoints of the mutation. The nucleotide sequence from these genomic clones was determined and revealed that, relative to the normal gene, the mutant allele contained a 1-kb deletion immediately preceding a 15-kb inversion. The DNA breaks occurred in two inverted and one forward Alu sequence within the gene for GPIIIa and in the left, right, and left arms, respectively, of these sequences. There was a 5-bp repeat at the 3' terminus of the inversion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Trigramin, a highly specific inhibitor of fibrinogen binding to platelet receptors, was purified to homogeneity from Trimeresurus gramineus snake venom. Trigramin is a single chain (approximately 9 kDa) cysteine-rich peptide with the Glu-Ala-Gly-Glu-Asp-Cys-Asp-Cys-Gly-Ser-Pro-Ala NH2-terminal sequence. Chymotryptic fragmentation showed the Arg-Gly-Asp sequence in trigramin. Trigramin inhibited fibrinogen-induced aggregation of platelets stimulated by ADP (IC50 = 1.3 X 10(-7)M) and aggregation of chymotrypsin-treated platelets. It did not affect the platelet secretion. Trigramin was a competitive inhibitor of the 125I-fibrinogen binding to ADP-stimulated platelets (Ki = 2 X 10(-8) M). 125I-Trigramin bound to resting platelets (Kd = 1.7 X 10(-7) M; n = 16,500), to ADP-stimulated platelets (Kd = 2.1 X 10(-8) M; n = 17,600), and to chymotrypsin-treated platelets (Kd = 8.8 X 10(-8) M; n = 13,800) in a saturable manner. The number of 125I-trigramin binding sites on thrombasthenic platelets amounted to 2.7-5.4% of control values obtained for normal platelets and correlated with the reduced number of GPIIb-GPIIIa molecules on the platelet surface. EDTA, monoclonal antibodies directed against the GPIIb-GPIIIa complex, and synthetic peptides (Arg-Gly-Asp-Ser and Tyr-Gly-Gln-Gln-His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val) blocked both 125I-fibrinogen binding and 125I-trigramin binding to platelets. Fibrinogen binding was more readily inhibited by these compounds than was trigramin binding. Monoclonal antibodies directed either against GPIIb or GPIIIa molecules did not block the interaction of either ligand with platelets. Reduced, S-pyridylethyl, trigramin did not inhibit platelet aggregation and fibrinogen binding to platelets and it did not bind to platelets, suggesting that the secondary structure of this molecule is critical for expression of its biological activity.  相似文献   

20.
Based on previous reports in the literature and the high homology between platelet glycoprotein (GP) IIIa 217-231 and similar portions of other beta subunits of integrin receptors, we hypothesized that this region may participate in ligand binding. Using a polyclonal antibody against GPIIIa 217-231(YC), we tested the interaction of a synthetic peptide representing this region with fibrinogen (Fg), in the enzyme-linked immunosorbent assay (ELISA) system. Results show a calcium-independent, dose-related, direct interaction between GPIIIa 217-231(Y) and immobilized Fg. This peptide also bound to von Willebrand Factor (vWF) and fibronectin (Fn), but did not attach to a 50 kDa Fn fragment which is deficient in the cell attachment site. In addition, purified GPIIb/IIIa displaced GPIIIa 217-231(Y) from Fg and vWF. Binding of 125I-GPIIIa 217-231(Y) to Fg coated tubes was inhibited by soluble Fg and by the GPIIb/IIIa complex. We synthesized this peptide with several alterations; similar peptides with Pro-219 replaced with an Ala showed significantly reduced binding to Fg and vWF. The decreased binding of the peptides with Pro-219 substitutes suggests that the confirmation of GPIIIa 217-230 is important for its ability to bind to adhesive ligands. In conclusion, the amino acid residues between 217 and 231 of GPIIIa appear to be involved in ligand binding and Pro-219 probably plays a significant role in this interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号