首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The global population of individuals over the age of 65 is growing at an unprecedented rate and is expected to reach 1.6 billion by 2050. Most older individuals are affected by multiple chronic diseases, leading to complex drug treatments and increased risk of physical and cognitive disability. Improving or preserving the health and quality of life of these individuals is challenging due to a lack of well‐established clinical guidelines. Physicians are often forced to engage in cycles of “trial and error” that are centered on palliative treatment of symptoms rather than the root cause, often resulting in dubious outcomes. Recently, geroscience challenged this view, proposing that the underlying biological mechanisms of aging are central to the global increase in susceptibility to disease and disability that occurs with aging. In fact, strong correlations have recently been revealed between health dimensions and phenotypes that are typical of aging, especially with autophagy, mitochondrial function, cellular senescence, and DNA methylation. Current research focuses on measuring the pace of aging to identify individuals who are “aging faster” to test and develop interventions that could prevent or delay the progression of multimorbidity and disability with aging. Understanding how the underlying biological mechanisms of aging connect to and impact longitudinal changes in health trajectories offers a unique opportunity to identify resilience mechanisms, their dynamic changes, and their impact on stress responses. Harnessing how to evoke and control resilience mechanisms in individuals with successful aging could lead to writing a new chapter in human medicine.  相似文献   

2.

Background

The study of aging processes and the changes in morphological, physiological, and functional characteristics that are associated with aging is of great interest not only for researchers, but also for the general public. The aim of the present paper is to study the biological age and tempos of aging in women older than 60 years, including long-lived females (over 90-years-old), and their associations with morphofunctional characteristics.

Results

Somatic traits, body mass components, and functional characteristics were investigated in 119 elderly (between 60 and 74-years-old) and long-lived (over 90-years-old) women in Tiraspol. With the special PC software ‘Diagnostics of Aging: BioAge’ (National Gerontological Center, Moscow, Russia) the biological age and tempos of aging were evaluated in the study participants. The results show close connections between morphofunctional changes, particularly in body mass components, and biological age. The software demonstrated its validity in the estimation of biological age in the group of elderly women. In the homogenous (according to their chronological age) group of women, three subgroups were separated with different tempos of aging: those with lower rates of aging (biological age less than chronological age by two years or more); those consistent with their chronological age, and those with accelerated tempos of aging (biological age higher than chronological age by two years or more).

Conclusions

Morphofunctional characteristics in the studied groups of women demonstrate the trends of age-involutive changes which can be traced through all groups, from those with slow rates of aging, to those with average rates, to those with accelerated tempos of aging, and finally in long-lived women. The results of comparative analysis show that women with accelerated aging are characterized with such traits as lower skeletal muscle mass, lower hand grip strength, and higher metabolic rate. Canonical discriminant analysis revealed a number of morphofunctional characteristics which differentiate the early-aging women from women with average rates of aging: higher BMI values, excessive fat mass, lower skeletal muscle mass and low values of hand grip strength. Thus the presence of such characteristics in elderly women can be considered as additional risk factor towards the early onset of the aging process.  相似文献   

3.
Aging results in various deleterious changes in the human body that may lead to loss of function and the manifestation of chronic diseases. While diseases can generally be reliably diagnosed, the aging process itself requires more sophisticated approaches to evaluate its progression. Numerous attempts have been made to establish biomarkers to quantify human aging at the cellular, tissue, and organismal level. Here, an up‐to‐date overview of biomarkers related to human aging with an emphasis on biomarkers that take into account different mechanisms of aging between individuals is provided. Classical discrete molecular and non‐molecular biomarkers handpicked by researches on the base of their strong correlation with age, as well as emerging omics‐based biomarkers, are discussed and potential future directions and developments in the field of aging assessment are outlined.  相似文献   

4.
Paleodemographic analyses based on estimates of skeletal age at death consistently report high levels of young adult mortality with few individuals living in excess of 50 years. Critics assert these data indicate systematic underaging of adults and justifiably remark that criteria for estimating skeletal age at death may be unreliable, age determinations are too frequently based on one or two criteria alone, and adult paleodemographic age profiles often mimic the age distribution of the modern population from which an age indicator's standards were originally derived. This study reports a series of tests based on well-documented biological aging phenomena that can be used to investigate potential effects of systematic underaging in adults, assuming the skeletal population is of sufficient size to permit such tests. These include patterns of third decade sternal clavicular epiphyseal fusion, multiple age and sex criteria associated with cortical bone dynamics, and fractures known to occur throughout the entire adult ages range. These phenomena are examined here for the Libben site skeletal population where adult age at death was determined by the multifactorial summary age technique. None of the biological criteria reported here were used in the Libben summary age analysis and thus serve as an independent test of accuracy in age determination. In addition, the summary age method has recently been applied to a series of modern skeletons of known age (Todd samples 1 and 2). Age standards for criteria employed with Libben and Todd 1 were identical. Since Todd 1 displayed underaging in older adults, a second Libben age distribution adjusted for Todd 1 bias was generated for comparison. A third Libben adult survivorship profile based on a Coale and Demeny West level 3 mortality experience, considered by some to be a more realistic model for skeletal populations, was produced for comparison. For all criteria examined, original Libben summary ages provided superior concordance with known patterns of biological aging in human populations. While Libben ages adjusted for Todd 1 bias were slightly better in the third decade, both Todd 1 adjusted and Coale and Demeny West level 3 age distributions produced unrealistic patterns of biological aging for individuals greater than 35 years. Implications of these results are discussed.  相似文献   

5.
The actual level of the true aging of an organism is characterized by its biological age. By the means of measuring the function ability of its physiological systems, it is possible to evaluate the biological age and use it as an indicator of premature aging. Inclusion of the biological age screening among the basic health precautions should offer yet another viewpoint on how to objectively measure the changes in an organism corresponding to aging. The article presents a comparison of age dependency of selected biomarkers between groups of healthy men and paraplegics. The measurement of the battery of biomarkers was run in a group of 25 healthy male adults between 36 and 54 years of age. The second group was formed by 20 paraplegics - men between 33 and 50 years of age. In spite of small size of the groups, significant differences were found in 4 of 6 biomarkers.  相似文献   

6.
Aging induces morphological changes of the kidney and reduces renal function. We analyzed the low molecular weight urinary proteome of 324 healthy individuals from 2–73 years of age to gain insight on human renal aging. We observed age‐related modification of secretion of 325 out of over 5000 urinary peptides. The majority of these changes were associated with renal development before and during puberty, while 49 peptides were related to aging in adults. We therefore focussed the remainder of the study on these 49 peptides. The majority of these 49 peptides were also markers of chronic kidney disease, suggesting high similarity between aging and chronic kidney disease. Blinded evaluation of samples from healthy volunteers and diabetic nephropathy patients confirmed both the correlation of biomarkers with aging and with renal disease. Identification of a number of these aging‐related peptides led us to hypothesize that reduced proteolytic activity is involved in human renal aging. Finally, among the 324 supposedly healthy individuals, some had urinary aging‐related peptide excretion patterns typical of an individual significantly older than their actual age. In conclusion, these aging‐related biomarkers may allow noninvasive detection of renal lesions in healthy persons and show high resemblance between human aging and chronic kidney disease. This similarity has to be taken into account when searching for biomarkers of renal disease.  相似文献   

7.
A population of healthy middle-aged (n = 69) and elderly men (n = 12), who participated in a health promotion program, was studied to determine whether really physically fit individuals are in good biological condition, and also whether improvement of physical fitness in the middle-aged and the elderly reduces their "rate of aging". Biological and physical fitness ages of the individuals studied were estimated from the data for 18 physiological function tests and 5 physical fitness tests, respectively, by a principal component model. The correlation coefficient between the estimated biological and physical fitness ages was 0.72 (p less than 0.01). Detailed analyses of the relationship between the estimated biological and physical fitness ages revealed that those who manifested a higher ("older") physical fitness age did not necessarily have a higher biological age, but those who manifested a lower ("younger") physical fitness age were also found to have a lower biological age. These results suggested that there were considerable individual variations in the relationship between biological condition and physical fitness among individuals with an old physical fitness age, but those who were in a state of high physical fitness maintained a relatively good biological condition. The data regarding the elderly men who had maintained a regular exercise program indicated that their estimated biological ages were considerably younger than the expected values. This might suggest that in older individuals regular physical activity may provide physiological improvements which in turn might reduce "the rate of aging".  相似文献   

8.
Critics of paleodemography have suggested that the science is so fraught with error that its demise must be close at hand. Among the problems suggested as unsolvable are representativeness of skeletal samples and inaccuray of skeletal aging techniques. A historical skeletal sample with supportive vital registration might afford the opportunity to test the validity of such criticism or at least to examine the extent of the above problems. In 1984, a skeletal sample of 296 individuals was excavated from a 19th century American poorhouse cemetery. Age at death was determined by macroscopic multivariate examination. Mortality records of 247 individuals who died during four years of the poorhouse's operation provide data for demographic comparisons with the skeletal sample. A comparison of life tables generated from each sample demostrates that there are no significant differences in the age at death structure, life expectancy (at birth: 30.7 in the mortality records and 32.6 from the skeletal sample), or survivorship between the two samples. Skeletal aging techniques can, therefore, provide a demographic picture that is similar in accuracy to that presented by vital registration records.  相似文献   

9.
Around the world, human populations have experienced large increases in average lifespan over the last 150 years, and while individuals are living longer, they are spending more years of life with multiple chronic morbidities. Researchers have used numerous laboratory animal models to understand the biological and environmental factors that influence aging, morbidity, and longevity. However, the most commonly studied animal species, laboratory mice and rats, do not experience environmental conditions similar to those to which humans are exposed, nor do we often diagnose them with many of the naturally occurring pathologies seen in humans. Recently, the companion dog has been proposed as a powerful model to better understand the genetic and environmental determinants of morbidity and mortality in humans. However, it is not known to what extent the age‐related dynamics of morbidity, comorbidity, and mortality are shared between humans and dogs. Here, we present the first large‐scale comparison of human and canine patterns of age‐specific morbidity and mortality. We find that many chronic conditions that commonly occur in human populations (obesity, arthritis, hypothyroidism, and diabetes), and which are associated with comorbidities, are also associated with similarly high levels of comorbidity in companion dogs. We also find significant similarities in the effect of age on disease risk in humans and dogs, with neoplastic, congenital, and metabolic causes of death showing similar age trajectories between the two species. Overall, our study suggests that the companion dog may be an ideal translational model to study the many complex facets of human morbidity and mortality.  相似文献   

10.
Little is known about the functions of miRNAs in human longevity. Here, we present the first genome-wide miRNA study in long-lived individuals (LLI) who are considered a model for healthy aging. Using a microarray with 863 miRNAs, we compared the expression profiles obtained from blood samples of 15 centenarians and nonagenarians (mean age 96.4 years) with those of 55 younger individuals (mean age 45.9 years). Eighty miRNAs showed aging-associated expression changes, with 16 miRNAs being up-regulated and 64 down-regulated in the LLI relative to the younger probands. Seven of the eight selected aging-related biomarkers were technically validated using quantitative RT-PCR, confirming the microarray data. Three of the eight miRNAs were further investigated in independent samples of 15 LLI and 17 younger participants (mean age 101.5 and 36.9 years, respectively). Our screening confirmed previously published miRNAs of human aging, thus reflecting the utility of the applied approach. The hierarchical clustering analysis of the miRNA microarray expression data revealed a distinct separation between the LLI and the younger controls (P-value < 10(-5) ). The down-regulated miRNAs appeared as a cluster and were more often reported in the context of diseases than the up-regulated miRNAs. Moreover, many of the differentially regulated miRNAs are known to exhibit contrasting expression patterns in major age-related diseases. Further in silico analyses showed enrichment of potential targets of the down-regulated miRNAs in p53 and other cancer pathways. Altogether, synchronized miRNA-p53 activities could be involved in the prevention of tumorigenesis and the maintenance of genomic integrity during aging.  相似文献   

11.
Age at death of a single skeletal individual or a group is essential information in archaeological, paleoanthropological, and forensic contexts. Dental remains are the most commonly used age indicators, but when the dentition is not available, or too few teeth are present for an accurate age assessment, other age indicators such as skeletal maturation must be used. Of particular utility in this regard is the fusion of the epiphyses of the infracranial skeleton. Here we present new aging standards based on the infracranial maturation of individuals from the known age and sex collection from Coimbra, Portugal. We scored infracranial epiphyseal fusion and spheno-occipital synchondrosis closure (64 loci of ossification in total) on 137 skeletons from individuals between 7 and 29 years old. We further discuss developmental differences between the sexes and similarities and differences between the Coimbra documented collection and other published aging standards.  相似文献   

12.
Because people age differently, age is not a sufficient marker of susceptibility to disabilities, morbidities, and mortality. We measured nineteen blood biomarkers that include constituents of standard hematological measures, lipid biomarkers, and markers of inflammation and frailty in 4704 participants of the Long Life Family Study (LLFS), age range 30–110 years, and used an agglomerative algorithm to group LLFS participants into clusters thus yielding 26 different biomarker signatures. To test whether these signatures were associated with differences in biological aging, we correlated them with longitudinal changes in physiological functions and incident risk of cancer, cardiovascular disease, type 2 diabetes, and mortality using longitudinal data collected in the LLFS. Signature 2 was associated with significantly lower mortality, morbidity, and better physical function relative to the most common biomarker signature in LLFS, while nine other signatures were associated with less successful aging, characterized by higher risks for frailty, morbidity, and mortality. The predictive values of seven signatures were replicated in an independent data set from the Framingham Heart Study with comparable significant effects, and an additional three signatures showed consistent effects. This analysis shows that various biomarker signatures exist, and their significant associations with physical function, morbidity, and mortality suggest that these patterns represent differences in biological aging. The signatures show that dysregulation of a single biomarker can change with patterns of other biomarkers, and age‐related changes of individual biomarkers alone do not necessarily indicate disease or functional decline.  相似文献   

13.

Background

Psychological stress is suggested to accelerate the rate of biological aging. We investigated whether work-related exhaustion, an indicator of prolonged work stress, is associated with accelerated biological aging, as indicated by shorter leukocyte telomeres, that is, the DNA-protein complexes that cap chromosomal ends in cells.

Methods

We used data from a representative sample of the Finnish working-age population, the Health 2000 Study. Our sample consisted of 2911 men and women aged 30–64. Work-related exhaustion was assessed using the Maslach Burnout Inventory - General Survey. We determined relative leukocyte telomere length using a quantitative real-time polymerase chain reaction (PCR) -based method.

Results

After adjustment for age and sex, individuals with severe exhaustion had leukocyte telomeres on average 0.043 relative units shorter (standard error of the mean 0.016) than those with no exhaustion (p = 0.009). The association between exhaustion and relative telomere length remained significant after additional adjustment for marital and socioeconomic status, smoking, body mass index, and morbidities (adjusted difference 0.044 relative units, standard error of the mean 0.017, p = 0.008).

Conclusions

These data suggest that work-related exhaustion is related to the acceleration of the rate of biological aging. This hypothesis awaits confirmation in a prospective study measuring changes in relative telomere length over time.  相似文献   

14.
《Epigenetics》2013,8(1):28-33
DNA methylation gradiently changes with age and is likely to be involved in aging-related processes with subsequent phenotype changes and increased susceptibility to certain diseases. The Hutchinson-Gilford Progeria (HGP) and Werner Syndrome (WS) are two premature aging diseases showing features of common natural aging early in life. Mutations in the LMNA and WRN genes were associated to disease onset; however, for a subset of patients the underlying causative mechanisms remain elusive. We aimed to evaluate the role of epigenetic alteration on premature aging diseases by performing comprehensive DNA methylation profiling of HGP and WS patients. We observed profound changes in the DNA methylation landscapes of WRN and LMNA mutant patients, which were narrowed down to a set of aging related genes and processes. Although of low overall variance, non-mutant patients revealed differential DNA methylation at distinct loci. Hence, we propose DNA methylation to have an impact on premature aging diseases.  相似文献   

15.
16.
There is unequivocal evidence that alpha-synuclein plays a pivotal pathophysiological role in neurodegenerative diseases, and in particular in synucleinopathies. These disorders present with a variable extent of cognitive impairment and alpha-synuclein is being explored as a biomarker in CSF, blood serum and plasma. Considering key events of aging that include proteostasis, alpha-synuclein may not only be useful as a marker for differential diagnosis but also for aging per se. To explore this hypothesis, we developed a highly specific ELISA to measure alpha-synuclein. In healthy males plasma alpha-synuclein levels correlated strongly with age, revealing much lower concentrations in older (avg. 58.1 years) compared to younger (avg. 27.6 years) individuals. This difference between the age groups was enhanced after acidification of the plasmas (p<0.0001), possibly reflecting a decrease of alpha-synuclein-antibody complexes or chaperone activity in older individuals. Our results support the concept that alpha-synuclein homeostasis may be impaired early on, possibly due to disturbance of the proteostasis network, a key component of healthy aging. Thus, alpha-synuclein may be a novel biomarker of aging, a factor that should be considered when analyzing its presence in biological specimens.  相似文献   

17.
Accurate age estimations are essential to archaeological and forensic analyses. However, reliability for adult skeletal age estimations is poor, especially for individuals over the age of 40 years. This is the first study to show that body size influences skeletal age estimation. The ??can et al., Lovejoy et al., Buckberry and Chamberlain, and Suchey‐Brooks age methods were tested on 764 adult skeletons from the Hamann‐Todd and William Bass Collections. Statures ranged from 1.30 to 1.93 m and body masses ranged from 24.0 to 99.8 kg. Transition analysis was used to evaluate the differences in the age estimations. For all four methods, the smallest individuals have the lowest ages at transition and the largest individuals have the highest ages at transition. Short and light individuals are consistently underaged, while tall and heavy individuals are consistently overaged. When femoral length and femoral head diameter are compared with the log‐age model, results show the same trend as the known stature and body mass measurements. The skeletal remains of underweight individuals have fewer age markers while those of obese individuals have increased surface degeneration and osteophytic lipping. Tissue type and mechanical loading have been shown to affect bone turnover rates, and may explain the differing patterns of skeletal aging. From an archaeological perspective, the underaging of light, short individuals suggests the need to revisit the current research consensus on the young mortality rates of past populations. From a forensic perspective, understanding the influence of body size will impact efforts to identify victims of mass disasters, genocides, and homicides. Am J Phys Anthropol 156:35–57, 2015 © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Longevity and healthy aging are among the most complex phenotypes studied to date. The heritability of age at death in adulthood is approximately 25 %. Studies of exceptionally long-lived individuals show that heritability is greatest at the oldest ages. Linkage studies of exceptionally long-lived families now support a longevity locus on chromosome 3; other putative longevity loci differ between studies. Candidate gene studies have identified variants at APOE and FOXO3A associated with longevity; other genes show inconsistent results. Genome-wide association scans (GWAS) of centenarians vs. younger controls reveal only APOE as achieving genome-wide significance (GWS); however, analyses of combinations of SNPs or genes represented among associations that do not reach GWS have identified pathways and signatures that converge upon genes and biological processes related to aging. The impact of these SNPs, which may exert joint effects, may be obscured by gene-environment interactions or inter-ethnic differences. GWAS and whole genome sequencing data both show that the risk alleles defined by GWAS of common complex diseases are, perhaps surprisingly, found in long-lived individuals, who may tolerate them by means of protective genetic factors. Such protective factors may ‘buffer’ the effects of specific risk alleles. Rare alleles are also likely to contribute to healthy aging and longevity. Epigenetics is quickly emerging as a critical aspect of aging and longevity. Centenarians delay age-related methylation changes, and they can pass this methylation preservation ability on to their offspring. Non-genetic factors, particularly lifestyle, clearly affect the development of age-related diseases and affect health and lifespan in the general population. To fully understand the desirable phenotypes of healthy aging and longevity, it will be necessary to examine whole genome data from large numbers of healthy long-lived individuals to look simultaneously at both common and rare alleles, with impeccable control for population stratification and consideration of non-genetic factors such as environment.  相似文献   

19.
Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10−4), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.  相似文献   

20.

Background

Although hearing loss may be caused by various factors, it is also a natural phenomenon associated with the aging process. This study was designed to assess the contributions of diabetes mellitus (DM) and hypertension, both chronic diseases associated with aging, as well as aging itself, to hearing loss in health screening examinees.

Methods

This study included 37,773 individuals who underwent health screening examinations from 2009 to 2012. The relationships between hearing threshold and subject age, hearing threshold at each frequency based on age group, the degree of hearing loss and the presence or absence of hypertension and DM were evaluated.

Results

The prevalence of hearing loss increased with age, being 1.6%, 1.8%, 4.6%, 14.0%, 30.8%, and 49.2% in subjects in their twenties, thirties, forties, fifties, sixties, and seventies, respectively (p<0.05). Hearing value per frequency showed aging-based changes, in the order of 6000, 4000, 2000, 1000 and 500 Hz, indicating greater hearing losses at high frequencies. The degree of hearing loss ranged from mild to severe. Aging and DM were correlated with the prevalence of hearing loss (p<0.05). There was no statistically significant association between hearing loss and hypertension after adjusting for age and DM.

Conclusions

The prevalence of hearing loss increases with age and the presence of DM. Hearing loss was greatest at high frequencies. In all age groups, mild hearing loss was the most common form of hearing loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号