首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研究Mesothenlin在大鼠胰腺发育阶段的表达和细胞定位。方法:运用RT-PCR和Western Blot技术分别检测Mesothenlin在大鼠胰腺发育阶段的mRNA和蛋白表达水平;运用免疫荧光检测不同时期Mesothenlin在胰腺的组织细胞学定位。结果:RT-PCR结果显示E18.5 Mesothelin mRNA的表达水平显著增高,至P14达到高峰,成年较低。Western Blot结果显示其蛋白表达趋势与mRNA完全相同。免疫荧光结果显示在不同发育时期Mesothenlin与胰岛β细胞和间充质细胞共表达。结论:Mesothenlin在大鼠胚胎胰岛形成及生后结构重塑中出现显著性高表达,并表达于胰岛β细胞和间充质细胞。  相似文献   

2.
3.
目的:探讨碳酸氢钠协同转运载体(NBC1)在大鼠胰腺胚胎发育期不同阶段核酸、蛋白水平的动态变化以及在腺泡和β细胞的定位表达。方法:采用高密度寡核苷酸芯片对孕12.5 d(E12.5)、E15.5、E18.5、新生和成年胰腺进行基因转录水平分析,用RT-PCR和Western blot分别验证了NBC1核酸和蛋白在E15.5、E18.5、新生和成年时期胰腺中的表达情况,用Double fluorescence immunohistochemistry分析了NBC1在E18.5、新生和成年时期胰腺腺泡和β细胞的定位表达。结果:在大鼠胰腺胚胎发育过程中,NBC1核酸、蛋白在E18.5时特异高表达,新生下降直至成年最低;在腺泡基底侧膜和β细胞膜有强烈的阳性信号,且在成年胰腺中β细胞膜阳性信号较腺泡基底侧膜强。NBC1的表达变化与其功能近似基因的表达趋势相反,而与其协同发挥作用的基因及胰腺特异基因的表达趋势一致。结论:NBC1在胰腺发育过程中不仅与结构形成而且与功能发挥相关。  相似文献   

4.
There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a "tet-on" inducible system (mice expressing rat insulin promoter-reverse tetracycline activator transgene and a tet-operon-angiogenic factor transgene) to increase the β cell production of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (Ang1), or angiopoietin-2 (Ang2) during islet cell differentiation and islet development. In VEGF-A overexpressing embryos, ECs began to accumulate around epithelial tubes residing in the central region of the developing pancreas (associated with endocrine cells) as early as embryonic day 12.5 (E12.5) and increased dramatically by E16.5. While α and β cells formed islet cell clusters in control embryos at E16.5, the increased EC population perturbed endocrine cell differentiation and islet cell clustering in VEGF-A overexpressing embryos. With continued overexpression of VEGF-A, α and β cells became scattered, remained adjacent to ductal structures, and never coalesced into islets, resulting in a reduction in β cell proliferation and β cell mass at postnatal day 1. A similar impact on islet morphology was observed when VEGF-A was overexpressed in β cells during the postnatal period. In contrast, increased expression of Ang1 or Ang2 in β cells in developing or adult islets did not alter islet differentiation, development, or morphology, but altered islet EC ultrastructure. These data indicate that (1) increased EC number does not promote, but actually impairs β cell proliferation and islet formation; (2) the level of VEGF-A production by islet endocrine cells is critical for islet vascularization during development and postnatally; (3) angiopoietin-Tie2 signaling in endothelial cells does not have a crucial role in the development or maintenance of islet vascularization.  相似文献   

5.
6.
目的:研究原癌基因c—met及其相关基因在大鼠胰腺发育及细胞功能完善过程中的表达。方法:采用高密度寡核苷酸芯片(Affymetrix芯片)对孕12.5(E12.5)、E15.5和E18.5、新生、成年胰腺进行基因转录水平分析,并用RT—PCR验证基因在大鼠胰腺不同发育时期的表达。结果:c—met基因在E15.5、E18.5较成年特异高表达。芯片中c—met转录调控基因和信号传导通路相关基因的表达趋势与c—met高度相似。RT—PCR(所用引物设计区域与芯片相同)验证,c—met表达趋势与芯片结果相符;与芯片c—met探针所用引物不同RT—PCR,结果却在各发育阶段呈现与芯片不同的表达趋势。结论:提示c—met可能在胰腺发育细胞功能完善的关键阶段起调控作用,参与胚胎胰腺发育中晚期细胞功能完善的信号传导过程。并且c—met在胰腺发育中发挥作用有可能存在不同转录本。  相似文献   

7.
To identify genes that might play a role in growth and differentiation of pancreatic beta-cells, we have applied the technique of differential mRNA display to the lineage-related, but functionally distinct rat insulinoma (RIN) cell lines RIN-5AH and RIN-A12. Direct comparison of PCR-generated RIN-5AH and RIN-A12 cDNAs on DNA sequencing gels revealed 31 differentially expressed bands. By Northern blot hybridization, authentic differential expression was confirmed for three cDNAs derived from RIN-5AH cells and four cDNAs from RIN-A12 cells. Nucleotide sequences were determined for these cDNAs and database searches identified one known gene that encoded heat stable antigen CD24. Of the remaining six genes, three matched with established sequence tags from fetal tissue, and three were potentially novel. By RT-PCR analysis, five of the seven genes were expressed in normal fetal and/or adult pancreas. In a detailed survey of CD24 protein expression in the pancreas using the CD24-specific monoclonal antibody J11d, CD24 was predominantly expressed in ductal epithelial cells (E13.5-15.5), developing endocrine (alpha, beta and delta) and exocrine cells (E15.5-20.5) and mature exocrine and peripheral islet delta-cells post E20.5. The retention of CD24 expression in a large proportion of delta-cells but only in a minority of alpha- and beta-cells leads us to hypothesize that CD24 may mark a pool of precursor endocrine cells within adult islets.  相似文献   

8.
MicroRNAs (miRNA) are small non-coding RNAs that inhibit gene expression through binding to complementary messenger RNA sequences. miRNAs have been predicted to target genes important for pancreas development, proper endocrine cell function and metabolism. We previously described that miRNA-7 (miR-7) was the most abundant and differentially expressed islet miRNA, with 200-fold higher expression in mature human islets than in acinar tissue. Here we have analyzed the temporal and spatial expression of miR-7 in human fetal pancreas from 8 to 22 weeks of gestational age (wga). Human fetal (8–22 wga) and adult pancreases were processed for immunohistochemistry, in situ hybridization, and quantitative RT-PCR of miRNA and mRNA. miR-7 was expressed in the human developing pancreas from around 9 wga and reached its maximum expression levels between 14 and 18 wga, coinciding with the exponential increase of the pancreatic endocrine hormones. Throughout development miR-7 expression was preferentially localized to endocrine cells and its expression persisted in the adult pancreas. The present study provides a detailed analysis of the spatiotemporal expression of miR-7 in developing human pancreas. The specific localization of miR-7 expression to fetal and adult endocrine cells indicates a potential role for miR-7 in endocrine cell differentiation and/or function. Future functional studies of a potential role for miR-7 function in islet cell differentiation and physiology are likely to identify novel targets for the treatment of diabetes and will lead to the development of improved protocols for generating insulin-producing cells for cell replacement therapy.  相似文献   

9.
 PACE4 is a mammalian Kexin family protease that is involved in the maturation of precursor proteins. Four PACE4 isoforms have been identified. We identified a novel PACE4 isoform, PACE4E, from a human cerebellum cDNA library, which possesses a hydrophobic cluster in its C-terminus participating in membrane association. The size of PACE4E mRNA from adult rat brain was estimated by Northern blotting to be 4.4 kb. In situ hybridization histochemistry revealed that the highest level of PACE4E mRNA was expressed in the mitral cells of the adult rat olfactory bulb (OB). The OB is a unique sensory organ in that it has a lifelong regenerating capacity and it affects brain development. We further analyzed the expression of PACE4E mRNA in the developing olfactory system. On day 13.5 of gestation, PACE4E mRNA was expressed at high levels in the neuroepithelium of the forebrain vesicle (FV), olfactory epithelium, and cells in the fiber bundles projecting to the FV. As development proceeded, PACE4E mRNA was expressed in developing mitral cells but decreased in the olfactory epithelium. In the newborn, its expression was confined to the mitral cells in both the main and accessory OB and in some periglomerular cells, as shown in adult rats. The spatio-temporal expression of PACE4E suggests that it plays a role in the establishment and maintenance of the olfactory receptor system. Accepted: 15 April 1997  相似文献   

10.
11.
A tyrosine phosphatase-like protein, IA-2, is a major autoantigen in Type 1 diabetes but its role in islet function is unclear. Tyrosine phosphorylation mediates regulation of cellular processes such as exocytosis, cell growth, and cell differentiation. To investigate the potential involvement of IA-2 in islet differentiation and insulin secretion, we analyzed by immunohistochemistry expression of IA-2 during islet development in fetal rats and during the maturation of insulin secretory responses after birth. In the fetus, IA-2 immunoreactivity was detected in primitive islets positive for insulin and glucagon at 12 days' gestation. Subsequently, IA-2 was only weakly detectable in the fetal pancreas. In neonatal rat, a progressive increase in IA-2 immunoreactivity was observed in islets from very low levels at 1 day of age to moderate labeling at 10 days. In the adult, relatively high levels of IA-2 were detected in islets, with heterogeneous expression in individual cells within each islet. IA-2 marks a population of endocrine cells that transiently appear early in pancreatic ontogeny. Islet IA-2 expression reappears after birth concomitant with the development of mature insulin secretory responses, consistent with a role for this protein in regulated hormone secretion.  相似文献   

12.
The chronological appearance of PP cells in fetal pancreatic islets was studied using specific anti-PP serum and the direct peroxidase method. The presence of A and B cells was also studied, using the same immunocytochemical technique, as a reference pattern related to data previously reported. Our data confirm that the A cell is the earliest endocrine cell type, appearing on the 12th day of gestation, followed by B cells (14th day) and later on by PP cells (19th day). Primitive islets were identified in the pancreas after the 15th day. However, the spatial cell disposition observed in the adult islet was only recognized at the 20th day of gestation. The data reported provide the necessary information to establish the complete chronology in the rat fetus. Consequently, the development of pancreatic islets in the rat fetus could be employed as a useful model to study the existence of factors that control the sequential appearance of endocrine cells and the possible changes occurring in the islets of animals with genetic diabetes during the fetal period.  相似文献   

13.
14.
15.
Ghrelin is a peptide hormone that has been implicated in the regulation of food intake and energy homeostasis. Ghrelin is predominantly produced in the stomach, but is also expressed in many other tissues where its functions are not well characterized. In the rodent and human pancreas, ghrelin levels peak at late gestation and gradually decline postnatally. Several studies have suggested that ghrelin regulates beta cell function during embryonic development and in the adult. In addition, in a number of mouse models, ghrelin cells appear to replace insulin- and glucagon-producing cells in the islet. In this analysis, we investigated whether the absence or overexpression of ghrelin influenced the development and differentiation of the pancreatic islet during embryonic development. These studies revealed that ghrelin is dispensable for normal pancreas development during gestation. Conversely, we demonstrated that elevated ghrelin in the Nkx2.2 null islets is not responsible for the absence of insulin- and glucagon-producing cells. Finally, we have also determined that in the absence of insulin, ghrelin cells form in their normal numbers and ghrelin is expressed at wild type levels.  相似文献   

16.
To identify proteins involved in pancreatic development, we used a differential proteomics approach by comparing pancreatic extracts from four biologically significant stages of development: embryonic day (E) 15.5, E18.5, postnatal (P) days 0 and adult. By two-dimensional gel electrophoresis (2D-E) and MALDI-TOF MS (Matrix Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry) following database searching and protein annotation, 15 proteins were identified as being differently expressed in the pancreas between the four phases. The expression pattern and the localization of alpha-fetoprotein (AFP), one of significant changed proteins observed, were further determined. Four isoforms of AFP (72 kDa, 60 kDa, 48 kDa and 37 kDa) were found by Western blotting in the pancreas tested, most of them showed a stronger signal in E18.5 followed by a steady decrease and only a 60-kDa isoform was detected in the adult pancreas. Immunolocalization for AFP revealed that a positive reactivity was detectable at E15.5 pancreas, became stronger in the cytoplasm of mesenchyme cells at E18.5, and declined after birth to a nearly undetectable level in adults. The dynamic expression of AFP in rat pancreas from different stages indicates that AFP might be involved in some aspects of pancreatic development.  相似文献   

17.
Studies were undertaken to provide information regarding cell-specific expression of mucin genes and their relation to developmental and neoplastic patterns of epithelial cytodifferentiation. In situ hybridization was used to study mRNA expression of mucin genes in duodenum and accessory digestive glands (liver, gallbladder, pancreas) of 13 human embryos and fetuses (6. 5-27 weeks' gestation), comparing these with normal and neoplastic adult tissues. These investigations demonstrated that the pattern of mucin gene expression in fetal duodenum reiterated the patterns we observed during gastric and intestinal ontogenesis, with MUC2 and MUC3 expression in the surface epithelium and MUC6 expression associated with the development of Brünner's glands. In embryonic liver, MUC3 was already expressed at 6.5 weeks of gestation in hepatoblasts. As in adults, MUC1, MUC2, MUC3, MUC5AC, MUC5B, and MUC6 were expressed in fetal gallbladder, whereas MUC4 was not. In contrast, MUC4 was strongly expressed in gallbladder adenocarcinomas. MUC5B and MUC6 were expressed in fetal pancreas, from 12 weeks and 26 weeks of gestation, respectively. Surprisingly, MUC3 which is strongly expressed in adult pancreas, was not detected in developmental pancreas. Taken together, these data show complex spatio-temporal regulation of the mucin genes and suggest a possible regulatory role for mucin gene products in gastroduodenal epithelial cell differentiation.  相似文献   

18.
19.
利用高密度寡核苷酸芯片技术对大鼠胚胎胰腺发育中晚期(E12.5,E18.5,E15.5)调节内外分泌部细胞发育分化及功能代谢的基因的表达趋势进行研究。并用RT-PCR进行验证。用获得的基因信息对:NCBI等公共数据库进行检索,结果发现对细胞的分化、增殖和凋亡起调节作用的BTG2基因在大鼠胚胎胰腺E12.5、E15.5、E18.5天及成年、新生大鼠胰腺中均有表达,且E18.5天的表达量高于其他时期5倍多。推测BTG2可能在大鼠胚胎胰腺内外分泌细胞分化发育的不同阶段起到了促进作用,并参与胚胎胰腺发育晚期的功能代谢完善过程。  相似文献   

20.
Pituitary gland development is controlled by numerous signaling molecules, which are produced in the oral ectoderm and diencephalon. A newly described family of heparin-binding growth factors, namely midkine (MK)/pleiotrophin (PTN), is involved in regulating the growth and differentiation of many tissues and organs. Using in situ hybridization with digoxigenin-labeled cRNA probes, we detected cells expressing MK and PTN in the developing rat pituitary gland. At embryonic day 12.5 (E12.5), MK expression was localized in Rathke’s pouch (derived from the oral ectoderm) and in the neurohypophyseal bud (derived from the diencephalon). From E12.5 to E19.5, MK mRNA was expressed in the developing neurohypophysis, and expression gradually decreased in the developing adenohypophysis. To characterize MK-expressing cells, we performed double-staining of MK mRNA and anterior pituitary hormones. At E19.5, no MK-expressing cells were stained with any hormone. In contrast, PTN was expressed only in the neurohypophysis primordium during all embryonic stages. In situ hybridization clearly showed that MK was expressed in primitive (immature/undifferentiated) adenohypophyseal cells and neurohypophyseal cells, whereas PTN was expressed only in neurohypophyseal cells. Thus, MK and PTN might play roles as signaling molecules during pituitary development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号