共查询到20条相似文献,搜索用时 15 毫秒
1.
The acid invertase (β‐fructosidase, EC 3·2·1·26) was localized at subcellular level via immunogold electron microscopy in the phloem‐unloading zone of developing apple fruit. The enzyme (immunogold particles) was found to reside predominantly in the cell walls of the sieve element/companion cell (SE/CC) complex, phloem parenchyma cells and other parenchyma cells. There was almost no gold particle found in cytoplasm and vacuole. This distribution pattern remained unchanged throughout the growing season, but the enzyme numbers varied. The density of immunogold particles increased during fruit development. The immunoblotting of soluble and insoluble acid invertases provided a supporting proof for the assays of immunolocalization. The biochemical analysis showed a predominantly cell‐wall‐distributed activity of acid invertase that corresponds essentially with its amount distribution. The ultrastructural observations showed that there were numerous plasmodesmata between the parenchyma cells, but almost no plasmodesmium between the SE/CC complex and its surrounding parenchyma cells, practically resulting in the symplasmic isolation of the SE/CC complex. It is therefore suggested that the unloading pathway of sucrose from the SE/CC complex may be predominantly apoplasmic in the developing apple fruit, and that the unloaded sucrose may be hydrolysed by the functional acid invertase localized in the cell wall before it is loaded in sink cells. 相似文献
2.
Zhang LY Peng YB Pelleschi-Travier S Fan Y Lu YF Lu YM Gao XP Shen YY Delrot S Zhang DP 《Plant physiology》2004,135(1):574-586
The phloem unloading pathway remains unclear in fleshy fruits accumulating a high level of soluble sugars. A structural investigation in apple fruit (Malus domestica Borkh. cv Golden Delicious) showed that the sieve element-companion cell complex of the sepal bundles feeding the fruit flesh is symplasmically isolated over fruit development. 14C-autoradiography indicated that the phloem of the sepal bundles was functional for unloading. Confocal laser scanning microscopy imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the sepal bundles from the basal to the apical region of the fruit. A 52-kD putative monosaccharide transporter was immunolocalized predominantly in the plasma membrane of both the sieve elements and parenchyma cells and its amount increased during fruit development. A 90-kD plasma membrane H(+)-ATPase was also localized in the plasma membrane of the sieve element-companion cell complex. Studies of [14C]sorbitol unloading suggested that an energy-driven monosaccharide transporter may be functional in phloem unloading. These data provide clear evidence for an apoplasmic phloem unloading pathway in apple fruit and give information on the structural and molecular features involved in this process. 相似文献
3.
Qiu-Hong Pan Mei-Jun Li Chang-Cao Peng Na Zhang Xun Zou Ke-Qin Zou Xiu-Ling Wang Xiang-Chun Yu Xiao-Fang Wang Da-Peng Zhang 《Physiologia plantarum》2005,125(2):157-170
Acid invertases play a key role in sugar metabolism, and the plant hormone abscisic acid (ABA) enhances sugar accumulation in crop sink organs, but information about the relationship between ABA and acid invertases has been limited. The present experiments were done with both in vivo pre-incubation of the grape ( Vitis vinifera × V . labrusca L.) berry tissues in ABA-containing medium and in vivo infiltration of ABA into the intact berries. The results show that ABA activates both the soluble and cell wall-bound acid invertases during fruit development by enhancing their activities and amounts as assessed by immunoblotting or enzyme-linked immunosorbent assay. This activation was pH, time course and ABA dose dependent. The serine/threonine protein kinase inhibitors K252a, staurosporine and H7 and acid phosphatase increased the activation of ABA-induced acid invertase, but the tyrosine protein kinase inhibitor quercetin strongly suppressed the ABA-induced effects, suggesting that a complex reversible protein phosphorylation is involved in the ABA-induced activation of acid invertases. The effects of the protein kinase inhibitors were dependent on the in vivo state of the tissues but independent of the expression of acid invertases. Two ABA analogues, (–)-ABA and trans-ABA, had no effect on acid invertases, showing that the ABA-induced activation of acid invertases is specific to the physiologically active form of ABA. These data suggest that ABA may be involved in fruit development by activating acid invertases. 相似文献
4.
植物体内光合同化物韧皮部装载和卸出研究进展 总被引:2,自引:0,他引:2
近年来研究表明,植物体内光合同化物的韧皮部装载和卸出均有其本途径和质外体途径,装载转运的糖类主要有:(2)棉子糖及其人类似物(以共质体方式装载);(2)蔗糖(以质外体方式装载)。同化物的共质体卸出可通过扩散和集中作用实现,而质外体卸出则根据蔗糖在质外体是否水解而分为两种类型。卸出和装载的途径、机理因植物种类及库源关系而不同,也会受生长发育阶段及环境的变化而调整。深入研究韧皮部装载和帛出调控机制,对 相似文献
5.
Abscisic acid (ABA) specific-binding sites localized in the cytosol were identified and characterized in the flesh of developing apple (Malus pumila L. cv. Starkrimon) fruit. ABA binding activity was scarcely detectable in the microsomes but high ABA binding activity in the cytosolic fraction was detected. The ABA-binding sites possessed a protein nature with both active serine residues and thiol-groups of cysteine residues in their functional binding sites. ABA binding was shown to be saturable, reversible and of high affinity. A Scatchard plot provided evidence for two different ABA binding proteins, one with higher affinity (K(d)=2.3 nM) and the other with lower affinity (K(d)=58.8 nM). Phaseic acid, trans-ABA and (-)-ABA had essentially no affinity for the binding proteins, indicating their stereo-specificity to bind physiologically active cis-(+)-ABA. The time-course, pH- and temperature-dependence of the ABA-binding proteins were determined. It is hypothesized that the detected ABA-binding proteins may be putative ABA-receptors that mediate ABA signals during fruit development. 相似文献
6.
Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. Based on previously reported in vitro assays, β-amylase is considered one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was shown often extrachloroplastic in living cells. The present experiment showed that β-amylase activity was progressively increasing concomitantly with decreasing starch concentrations during apple (Malus domestica Borkh cv. Starkrimson) fruit development. The apparent amount of β-amylase assessed by Western blotting also increased during the fruit development, which is consistent with the seasonal changes in the enzyme activity. The subcellular-localization studies via immunogold electron-microscopy technique showed that β-amylase visualized by gold particles was predominantly located in plastids especially at periphery of starch granules, but the gold particles were scarcely found in other subcellular compartments. These data proved for the first time that the enzyme is compartmented in its functional sites in plant living cells. The predominantly plastid-distributed pattern of β-amylase in cells was shown unchanged throughout the fruit development. The density of gold particles (β-amylase) in plastids was increasing during the fruit development, which is consistent with the results of Western blotting. So it is considered that β-amylase is involved in starch hydrolysis in plastids of the fruit cells. 相似文献
7.
A morphometric analysis of developing leaves of Nicotiana tabacum L. was conducted to determine whether imported photoassimilates could be unloaded by symplastic transport and whether interruption of symplastic transport could account for termination of import. Five classes of veins were recognized, based on numbers of cells in transverse section. Photoassimilate is unloaded primarily from Class III veins in tissue nearing the end of the sink phase of development. Smaller veins (Class IV and V) do not transport or unload photoassimilate in sink tissue because the sieve elements of these veins are immature until after the tissue stops importing. In Class III veins the sieve element-companion cell (SE-CC) complexes are surrounded by phloem parenchyma which abuts the bundle sheath. Along the most obvious unloading route, from SE-CC complex to phloem parenchyma to bundle sheath to mesophyll cells, the frequency of plasmodesmata at each interface increases. To determine whether this pattern of plasmodesmatal contact is consistent with symplastic unloading we first demonstrated, by derivation from Fick's law that the rate of diffusion from a compartment is proportional to a number N which is equal to the ratio of surface area to volume of the compartment multiplied by the frequency of pores (plasmodesmata) which connect it to the next compartment. N was calculated for each compartment within the vein which has the SE-CC complex as its center, and was shown to be statistically the same in all cases except one. These observations are consistent with a symplastic unloading route. As the leaf tissue matures and stops importing, plasmodesmatal frequency along the unloading route decreases and contact area between cells also decreases as intercellular spaces enlarge. As a result, the number of plasmodesmata between the SE-CC complex and the first layer of mesophyll cells declines in nonimporting tissue to 34% of the number found in importing tissue, indicating that loss of symplastic continuity between the phloem and surrounding cells plays a role in termination of photoassimilate unloading.Abbreviation SE-CC
sieve element-companion cell 相似文献
8.
The phloem, a miracle of ingenuity 总被引:24,自引:2,他引:24
A. J. E. VAN BEL 《Plant, cell & environment》2003,26(1):125-149
This review deals with aspects of the cellular and molecular biology of the sieve element/companion cell complex, the functional unit of sieve tubes in angiosperms. It includes the following issues: (a) evolution of the sieve elements; (b) the specific structural outfit of sieve elements and its functional significance; (c) modes of cellular and molecular interaction between sieve element and companion cell; (d) plasmodesmal trafficking between sieve element and companion cell as the basis for macromolecular long‐distance signalling in the phloem; (e) diversity of sieve element/companion cell complexes in the respective phloem zones (collection phloem, transport phloem, release phloem); (f) deployment of carriers, pumps and channels on the plasma membrane of sieve element/companion cell complexes in various phloem zones; and (g) implications of the molecular‐cellular equipment of sieve element/companion cells complexes for mass flow of water and solutes in a whole‐plant frame. 相似文献
9.
A new system has been developed to study hormone-directed transport in intact plants during parthenocarpic fruit set induced by gibberellins. Gibberellic acid (GA3 ) and gibberellin A1 (GA1 ) applied to unpollinated ovaries of pea ( Pisum sativum L. cv. Alaska) promoted sucrose transport from the leaf to the site of hormone application. In vivo experiments showed an early (30 min) accumulation of [14 C]-sucrose in ovaries of pea stimulated by gibberellins. This activation of sucrose transport appears to be mediated by gibberellins (GA1 , GA3 ), increasing both loading of phloem with sucrose in the leaf (source) and sucrose unloading in the ovary (sink). The ability of pea tissue segments to take up sucrose in vitro was not affected by the hormonal treatment. 相似文献
10.
Abscisic acid inhibits phloem loading of sucrose 总被引:2,自引:0,他引:2
D. Vreugdenhil 《Physiologia plantarum》1983,57(4):463-467
The effect of abscisic acid (ABA) on the uptake of sucrose by discs from castor bean ( Ricinus communis L. cv. Zanzibarensis) cotyledons was investigated. Incubation on ABA solutions for one hour or longer significantly inhibited sucrose uptake. The effect was measurable at ABA concentrations as low as 0.1 μ M . The inhibition was due to a lowering of the apparent Vmax of the sucrose-carrier system, the Km being unaffected. Uptake of sucrose was coupled to proton uptake but ABA had no detectable effect on the latter process. It is suggested that ABA exerts an effect on the phloem loading of sucrose by enhancing the efflux of sucrose. In leaf discs from three other plant species ( Beta vulgaris L., Petunia hybrida L. and Phaseolus vulgaris L.) ABA exerted a similar effect. The results are discussed with respect to source-sink relationships. 相似文献
11.
Sugar and amino acid transport into empty ovules of Pisum sativum L. cv. Marzia was examined. In fruits containing 4–6 developing seeds, the embryo was removed from four ovules. After this surgical treatment, each empty seed coat was filled with a solution (pH 5.5) containing a low (0, 50 or 200 m M ), medium (350, 400 or 500 m M ) or high (0.7 or 1 M ) concentration of sucrose and/or mannitol. In pulse-labelling experiments with sucrose and α-aminoisobutyric acid (AIB), transport of sucrose and AIB into an empty ovule filled with a solution containing a high sucrose concentration was the same as transport into an ovule filled with a mannitol solution of similar osmolarity, demonstrating that a high sucrose concentration in the seed coat apoplast affects phloem transport of sucrose and AIB into the seed coat only by the osmotic effect. The osmolarity of a given solution filling the seed coat cavity appeared to be important for phloem transport of sucrose and AIB into empty ovules.
In our experiments, 350 m M appeared to be the optimal concentration for sucrose and AIB transport into the cavity within an empty ovule, giving results comparable with transport into intact ovules. A lower osmolarity of the solution induced less transport. Very high sucrose or mannitol concentrations caused a strong inhibition of sucrose and AIB unloading from the seed coat, so that transport into the empty ovules was inhibited. A low (strongly negative) but not too low osmotic potential of the solution in the seed coat apoplast seems necessary to maintain a normal rate of phloem transport into developing seeds. Apparently, the "sink strength" of developing seeds is turgor-sensitive. 相似文献
In our experiments, 350 m M appeared to be the optimal concentration for sucrose and AIB transport into the cavity within an empty ovule, giving results comparable with transport into intact ovules. A lower osmolarity of the solution induced less transport. Very high sucrose or mannitol concentrations caused a strong inhibition of sucrose and AIB unloading from the seed coat, so that transport into the empty ovules was inhibited. A low (strongly negative) but not too low osmotic potential of the solution in the seed coat apoplast seems necessary to maintain a normal rate of phloem transport into developing seeds. Apparently, the "sink strength" of developing seeds is turgor-sensitive. 相似文献
12.
Ecophysiology of phloem loading in source leaves 总被引:4,自引:2,他引:4
The nature of phloem loading of photosynthesis products – either symplastic or apoplastic – has been a matter of debate over the last two decades. This controversy was reconciled by proposing a multiprogrammed loading mechanism. Different modes of phloem loading were distinguished on the basis of the variety of plasmodesmatal connectivity between the minor vein elements. Physiological evidence for at least two phloem loading mechanisms as well as recent support for coincidence between plasmodesmatal connectivity and the loading mechanism is shortly reviewed. The present paper attempts to correlate the plasmodesmatal connectivity between sieve element/companion cell complex and the adjacent cells (the minor vein configuration) – and implicitly the associate phloem loading mechanisms – with different types of climate. The minor vein configuration is a family characteristic. This enables one to relate vein configuration with ecosystem using the family distribution over the globe. The uneven distribution of vein types between terrestrial ecosystems indicates that apoplastic phloem loading predominates in cold and dry climate zones. Projection of the minor vein configuration on the Takhtajan system of flowering plants suggests evolution from apoplastic to symplastic phloem loading. Accordingly, the distribution of minor vein configurations suggests that drought and temperature stress have led to the transformation of the ancient symplastic mode into the more advanced apoplastic mode of loading. 相似文献
13.
G. F. Antonova V. V. Stasova T. N. Varaksina 《Russian Journal of Plant Physiology》2009,56(2):190-199
Changes in the levels of ascorbic acid (AA), its oxidized form, dehydroascorbic acid (DHA), and uronic acids as initial precursors for the AA synthesis were studied as related to the degree of xylem and phloem cell development in the course of early and late wood formation in the trunks of Scots pine (Pinus sylvestris L.). The cells of mature and conducting phloem, cambial zone, differently developed cells in the zones of cell enlargement and maturation were obtained by successive scraping tissue layers from trunk segments of 20–25-year-old trees; tissue identification was checked anatomically and histochemically. The contents of compounds tested were calculated per dry weight and per cell basis. We found great differences in the contents of AA and DHA and also in their ratio in dependence of the wood type developing in the pine trunks during growth period and on the stage of differentiation of xylem and phloem cells. Changes in the AA content during xylem cell differentiation were accompanied by changes in the content of uronic acids. The amounts of AA, DHA, and uronic acids were the highest at the stage of early lignification and reduced with tracheid maturation. The AA to DHA ratio changed differently in the course of early and late xylem lignification. It reduced from the start of lignification to the formation of early mature xylem and, in contrast, increased in mature late wood; this indicates a difference in the level of redox processes in these tissues. 相似文献
14.
Control of phloem unloading by action potentials in Mimosa 总被引:2,自引:0,他引:2
Jörg Fromm 《Physiologia plantarum》1991,83(3):529-533
In the sensitive plant, Mimosa pudica , action potentials arise when the leaves are touched and they trigger a sudden decrease in turgor of the pulvinar motor cells, which causes the leaf to close. These potentials may travel through the phloem and they appear to influence pulvinar phloem unloading after stimulation. Mature leaves were exposed to 14 CO2 and phloem translocation was observed by autoradiography. In unstimulated pulvini, labeled photoassimilates were restricted to the phloem. However, after stimulation, the 14 C-label appeared to be concentrated in the extensor region of the motor cortex. Since stimulation elicits an action potential, it is suggested that it also triggers phloem unloading of sucrose in the pulvini. 相似文献
15.
Fruit development is a process involving various signals and gene expression. Protein phosphorylation catalysed by protein kinases is known to play a key role in eukaryotic cell signalling and so may be involved in the regulation of fruit development. Using the method of exogenous substrate phosphorylation, the activity of calcium-dependent and calmodulin-independent protein kinase (CDPK) that was stimulated by phosphatidylserine, and the myelin basic protein (MBP)-phosphorylating activity that could be due to a calcium-independent mitogen-activated protein kinase-like (MAPK-like) activity in the developing apple fruits were identified. The CDPK activity was shown to be predominantly localized in the plasma membrane, whereas in the presence of phosphatidylserine, the high activity of CDPK was detected in both plasma membrane and endomembranes. The MAPK-like activity was predominantly associated with endomembranes. The assays of bivalent cation requirement showed that Mn2+ could replace Mg2+ in the incubation system for the protein kinase activities and stimulate CDPK activity more than Mg2+ . Heat treatment abolished CDPK but stimulated MAPK-like activity. The activities of the phosphatidylserine-stimulated CDPK and of the MAPK-like were fruit developmental stage-specific with higher activities of both enzymes in the early and middle developmental stages in comparison with the late developmental stage. These data suggest that the detected protein kinases may play an important role in the fruit development. 相似文献
16.
T. Yokota M. Nakayama I. Harasawa M. Sato M. Katsuhara S. Kawabe 《Plant Growth Regulation》1994,15(2):125-128
Putrescine, spermidine, spermine and cadaverine have been identified and quantified in rice phloem sap and shoot extracts by HPLC. It is suggested that diamines, putrescine and cadaverine, easily migrate into the phloem, while movement of a triamine, spermidine, and a tetramine, spermine, tend to be restricted. Spermine especially seems to be the most immobile among polyamines. Thus it is indicated that movement of polyamines into phloem is decreased with increasing number of amino groups. Indole-3-acetic acid and abscisic acid in rice phloem sap were also analyzed by HPLC and it is suggested that indole-3-acetic acid is transported freely into phloem, while abscisic acid is much more actively exuded into phloem. 相似文献
17.
Acid invertase (EC 3.2.1.26) is one of the key enzymes involved in the carbohydrate sink-organ development and the sink strength modulation in crops. The experiment conducted with 'Starkrimson' apple (Malus domestica Borkh) fruit showed that, during the fruit development, the activity of acid invertase gradually declined concomitantly with the progressive accumulation of fructose, glucose and sucrose, while Western blotting assay of acid invertase detected a 30 ku peptide of which the immuno-signal intensity increased during the fruit development. The im-muno-localization via immunogold electron microscopy showed that, on the one hand, acid invertase was mainly located on the flesh cell wall with numbers of the immunosignals present in the vacuole at the late stage of fruit development; and on the other hand, the amount of acid invertase increased during fruit development, which was consistent with the results of Western blotting. The in vivo pre-incubation of fruit discs with soluble sugars showed that 相似文献
18.
Acid invertase (EC 3.2.1.26) is one of the key enzymes involved in the carbohydrate sinkorgan development and the sink strength modulation in crops. The experiment conducted with ‘Starkrimson’ apple (Malus domestica Borkh) fruit showed that, during the fruit development, the activity of acid invertase gradually declined concomitantly with the progressive accumulation of fructose, glucose and sucrose, while Western blotting assay of acid invertase detected a 30 ku peptide of which the immuno-signal intensity increased during the fruit development. The immunolocalization via immunogold electron microscopy showed that, on the one hand, acid invertase was mainly located on the flesh cell wall with numbers of the immunosignals present in the vacuole at the late stage of fruit development; and on the other hand, the amount of acid invertase increased during fruit development, which was consistent with the results of Western blotting. The in vivo preincubation of fruit discs with soluble sugars showed that the activity of extractible acid invertase was inhibited by fructose or glucose, while Western blotting did not detect any changes in apparent quantity of the enzyme nor other peptides than 30 ku one. So it is considered that fructose and glucose induced the post-translational or translocational inhibitory regulation of acid invertase in developing apple fruit. The mechanism of the post-translational inhibition was shown different from both the two previously reported ones that proposed either the inhibition by hexose products in the in vitro chemical reaction equilibrium system or the inhibition by the proteinaceous inhibitors. It was hypothesized that fructose and glucose might induce acid invertase inhibition by modulating the expression of some inhibition-related genes or some structural modification of acid invertase. 相似文献
19.
Abscisic acid (ABA) levels in seeds from three cultivars of apple (Malus domestica Borkh.) which have substantially different chilling requirements were investigated by gas chromatography mass-spectrometry selected ion monitoring (GCMS-SIM) during stratification. The ABA content of dormant unchilled seeds was similar in the three cultivars, suggesting no relationship between the chilling requirement of those seeds and their ABA status. That chilling is not related to ABA changes during stratification was confirmed by warm (20°C) and cold (5°C) stratification experiments. ABA content dropped rapidly and nearly identically under both temperature regimes, but only cold stratification promoted germination. The decline in ABA during stratification was due in large part to leaching from the seed coat and nucellar membrane; the ABA content of the embryo remained nearly constant. The radicle in intact seeds stratified at 5°C began growing 20–30 days after the ABA in the seed coat and nucellar membrane had nearly disappeared. Radicle growth did not occur in unchilled seeds, even though ABA had leached from them as well. It is possible that the leaching of ABA from the seed allows certain promotive forces to develop, but if so, these can develop only at chilling temperatures. Studies were also conducted on 2-trans ABA relationships to apple seed dormancy, but no association was evident.Report No. 12, Department of Fruit and Vegetable Science, Cornell University. 相似文献
20.
In Sinapis alba , a long-day plant (LDP) which can be induced by a single long day (LD), it has been suggested that cytokinins may be part of a multicomponent floral stimulus. In order to determine cytokinin fluxes during floral transition, we developed a technique to collect phloem sap reaching the apical part of the shoot, close to the target bud. Exudates collected from roots, leaves, and the apical part of the shoot were analysed by radioimmunoassay for cytokinins. Such analyses confirm previous observations, obtained using the Amaranthus bioassay. indicating thai cytokinin export from the roots and mature leaves is enhanced 2–5 fold during floral transition. The flux of cytokinins directed to the upper part of the shoot through the phloem is also rapidly increased (ca 1.5–2 fold) by the inductive treatment, between 9 and 25 h after start of the LD. We suggested that the shoot apical merislem of 2-month-old Sinapis plants probably has a low cytokinin level. Induced leaves rapidly produce a signal which is transported to the roots where it alters cytokinin production and/or export. In addition, or as a consequence, leaf-cytokinins are exported via the phloem to the apical meristem where they induce a mitotic peak and some other events normally associated with the floral transition. 相似文献