首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The metabolism of N-acetyl-l -aspartic acid (NAA) was studied in rat brain. [Aspartyl-U-14C]NAA was metabolized predominantly by deacylation. Studies of NAA biosynthesis from l -[U-14C]aspartic acid have confirmed previous reports that NAA turns over slowly in rat brain. However, intracerebrally-injected N-acetyl-l -[U-14C]asparticacid was rapidly metabolized. Exogenous NAA appears to be taken up rapidly into a small, metabolically-active pool. This pool serves as substrate for a tricarboxylic acid cycle associated with the production of glutamate for the biosynthesis of glutamine. The bulk of the NAA content in brain appears to be relatively inactive metabolically.  相似文献   

2.
Studies in vivo and in vitro of the distribution of label in C-1 of glutamate and glutamine and C-4 of aspartate in the free amino acids of brain were carried out. [1-14C]-Acetate was used both in vivo and in vitro and l -[U-14C]aspartate and l -[U-14C]glutamate were used in vitro.
  • 1 The results obtained with labelled acetate and aspartate suggest that CO2 and a 3-carbon acid may exchange at different rates on a COa-fixing enzyme.
  • 2 The apparent cycling times of both glutamate and glutamine show fast components measured in minutes and slow components measured in hours.
  • 3 With [1-14C]acetate in vitro glutamine is more rapidly labelled in C-1 than is glutamate at early time points; the curves cross over at about 7 min.
  • 4 The results support and extend the concept of metabolic compartmentation of amino acid metabolism in brain.
  相似文献   

3.
To obtain evidence of the site of conversion of [U-14C]glucose into glutamate and related amino acids of the brain, a mixture of [U-14C]glucose and [3H]glutamate was injected subcutaneously into rats. [3H]Glutamate gave rise to several 3H-labelled amino acids in rat liver and blood; only 3H-labelled glutamate, glutamine or γ-aminobutyrate were found in the brain. The specific radioactivity of [3H]glutamine in the brain was higher than that of [3H]glutamate indicating the entry of [3H]glutamate mainly in the ‘small glutamate compartment’. The 14C-labelling pattern of amino acids in the brain and liver after injection of [U-14C]glucose was similar to that previously reported (Gaitonde et al., 1965). The specific radioactivity of [14C]glutamine in the blood and liver after injection of both precursors was greater than that of glutamate between 10 and 60 min after the injection of the precursors. The extent of labelling of alanine and aspartate was greater than that of other amino acids in the blood after injection of [U-14C]glucose. There was no labelling of brain protein with [3H]glutamate during the 10 min period, but significant label was found at 30 and 60 min. The highest relative incorporation of [14C]glutamate and [14C]aspartate in rat brain protein was observed at 5 min after the injection of [U-14C]glucose. The results have been discussed in the context of transport of glutamine synthesized in the brain and the site of metabolism of [U-14C]glucose in the brain.  相似文献   

4.
—(1) The effects of aminooxyacetic acid, ouabain and Ca2+ on the compartmentation of amino acid metabolism have been studied in slices of brain incubated with sodium-[1-14C]acetate, l-[U-14C]glutamate and l-[U-14C]aspartate as tracer metabolites. (2) Aminooxyacetic acid (10-3 m) inhibited the labelling of aspartate from [14C]acetate and [14C]glutamate, as well as the incorporation of label from [14C]aspartate into glutamate and glutamine. It also inhibited the labelling of GABA from all three radioactive precursors, as would be anticipated if there was inhibition of several transaminases as well as glutamate decarboxylase. The RSA of glutamine labelled from [1-14C]acetate was increased. This finding indicated that the glutamate pool which is utilized for glutamine formation is associated with glutamate dehydrogenase, and this enzyme appears to be related to the ‘synthetic tricarboxylic acid cycle’. AOAA exerted its major inhibitory effects on the citric acid‘energy cycle’with which transaminases are associated. (3) Ouabain (10-5 m) inhibited the labelling of glutamine to a much greater extent than the labelling of glutamate from [1-14C]acetate. It also caused leakage of amino acids from the tissue into the medium. Its effect on the glutamate–glutamine system was interpreted to be a selective inhibition of the 'synthetic’citric acid cycle. (4) The omission of Ca2+ from the incubation medium was associated with formation of glutamine with RSA less than 1·0 when labelled from [U-14C]glutamate, [U-14C]aspartate and lower than normal when labelled from [1-14C]acetate.  相似文献   

5.
(1) The metabolism of glucose and amino acids in vitro was compared in the rat cerebral cortex and the optic and vertical lobes of the octopus brain. (2) Specific activities and pool sizes of the five amino acids, glutamate, aspartate, glutamine, alanine and γ-aminobutyric acid (GABA), were determined in octopus and rat brain slices after 2 hr incubation with 10 mm -[U-14C]glucose, 10 mm -L-[U-14C]glutamate, and 10mm -L-[U-14C]glutamate with added 10 mM-glucose. Amino acid pool sizes were similar in rat and octopus brain, with the exception of alanine, which was higher in the octopus. Generally specific activities were from four- to 20-fold higher in rat brain. With [U-14C]glucose as substrate, specific activities of GABA and glutamate were highest in rat; those of alanine and glutamine highest in octopus brain. With L-[U-14C]glutamate the specific activities of GABA and aspartate were highest in rat, that of aspartate highest and GABA lowest in octopus. The addition of glucose to L-[U-14C]glutamate as substrate had little effect on the specific activities of any of the amino acids. (3) The uptake of some amino acids was determined by incubation with [U-14C]amino acids for 2 hr, and 14CO2 formation was also measured. The amount of label taken up by octopus was uniformly 20-25 per cent of that found for rat brain. The amount of 14CO2, however, differed according to the amino acid. Four times as much 14CO2 was generated from alanine by octopus optic lobe and twice as much by the vertical lobe than rat cortex, but from glutamate, only 24 per cent in the optic and 15 per cent in the vertical lobe. No 14CO2 was generated from [U-14C]GABA in the octopus, by contrast with the rat. (4) Activity of some of the enzymes involved in amino acid metabolism was determined in homogenates of rat cortex and octopus optic and vertical lobes, with and without activation by Triton X-100. Enzymic activities in the octopus, with the exception of alanine aminotransferase, were lower than in the rat, and glutamate decarboxylase could not be detected in octopus brain, in the absence of detergent.  相似文献   

6.
Mice were anaesthetized with nembutal and the effects of intraventricularly injected excitant amino acids on [U-14C]acetate metabolism were investigated. The natural excitant amino acids, l -glutamate and l -aspartate, reduced the incorporation of 14C from [U-14C]acetate into glutamine, GAB A and possibly alanine. The synthetic excitant amino acid, N-methyl-d -aspartate caused a reduction in the incorporation of 14C from intraventricularly injected [U-14C]acetate into all of the brain amino acids labelled by [U-14C]acetate within 5 min. It is suggested that these effects may be due to changes in pool sizes of tricarboxylic cycle intermediates, to inhibition of acetyl-CoA formation, or both. Differences in the metabolic effects of the synthetic and natural excitants are interpreted in terms of the uptake of the natural amino acids into glutamine-forming pool(s) of glutamate metabolism.  相似文献   

7.
Abstract— Hemisections of toad brains, when incubated in a physiological medium containing no glutamine. released considerable amounts of this amino acid into the medium. When glutamine was included in the medium at a concentration of 0.2 mm the net efflux from the tissue was reduced but not totally prevented. Although there was no net uptake of glutamine, the tissue did accumulate [U-14C]glu-tamine and some of this labelled glutamine was rapidly metabolized to glutamate, GABA and aspartate. The precursor-product relationship for the metabolism of glutamine to glutamate differed from the classic single compartment model in that the specific radioactivity of glutamate rose very quickly to approx one-tenth that of glutamine, but increased slowly thereafter. These data suggest that the [14C]glutamine was taken up into two metabolically distinct compartments and/or that some of the [14C]glutamine was converted to [14C]glutamate during the uptake process. The uptake of [14C]glutamine was diminished when the tissue was incubated in a non-oxygenated medium or when Na+ was omitted (substituted with sucrose) and K+ was concomitantly elevated. However, on a relative basis, the incorporation of radioactivity into glutamate and GABA was increased by these incubation conditions. The metabolism of glutamine to aspartate was greatly depressed when the tissue was not oxygenated. The glutamate formed from [U-14C]glutamine taken up by the tissue was converted to GABA at a faster rate than was glutamate derived from [U-14C]glucose. [U-14C]gly-cerol or exogenous [U-14C]glutamate. This suggests that glutamine was metabolized to GABA selectively; i.e. on a relative basis, glutamine served as a better source of carbon for the synthesis of GABA than did glucose, glycerol or exogenous glutamate. When the brain hemisections were incubated in the normal physiological medium with or without glutamine. there was very little efflux of glutamate, GABA or aspartate from the tissue. However when NaCl was omitted from the medium (substituted with sucrose) and K+ was elevated to 29 miu. a marked efflux of these three amino acids into the medium did occur, and over a period of 160min, the content of each amino acid in the tissue was depleted considerably. When glutamine (0.2 mm ) was included in the Na+ deficient-high K.+ medium, the average amount of glutamate, GABA and aspartate in the tissue plus the medium was greater than when glutamine was not included in the medium. Such data indicate that CNS tissues can utilize glutamine for a net synthesis of glutamate, GABA and aspartate. The results of this study provide further evidence in support of the concept that the functional (transmitter) pools of glutamate and GABA are maintained and regulated in part via biosynthesis from glutamine. One specific mechanism instrumental in regulating the content of glutamate in nerve terminals may be a process of glutamine uptake coupled to deamidation.  相似文献   

8.
Abstract: It has been proposed that hyperammonemia may be associated with valproate therapy. As astrocytes are the primary site of ammonia detoxification in brain, the effects of valproate on glutamate and glutamine metabolism in astrocytes were studied. It is well established that, because of compartmentation of glutamine synthetase, astrocytes are the site of synthesis of glutamine from glutamate and ammonia. The reverse reaction is catalyzed by the ubiquitous enzyme glutaminase, which is present in both neurons and astrocytes. In astrocytes exposed to 1.2 mM valproate, glutaminase activity increased 80% by day 2 and remained elevated at day 4; glutamine synthetase activity was decreased 30%. Direct addition of valproate to assay tubes with enzyme extracts from untreated astrocytes had significant effects only at concentrations of 10 and 20 mM, When astrocytes were exposed for 4 days to 0.3, 0.6, or 1.2 mM valproate and subsequently incubated with l -[U-14C]glutamate, label incorporation into [14C]glutamine was decreased by 11, 25, and 48%, respectively, and is consistent with a reduction in glutamine synthetase activity. Label incorporation from l -[U-14C]glutamate into [14C]aspartate also decreased with increasing concentrations of valproate. Following a 4-day exposure to 0.6 mM valproate, the glutamine levels increased 40% and the glutamate levels 100%. These effects were not directly proportional to valproate concentration, because exposure to 1.2 mM valproate resulted in a 15% decrease in glutamine levels and a 25% increase in glutamate levels compared with control cultures. Intracellular aspartate was inversely proportional to all concentrations of extracellular valproate, decreasing 60% with exposure to 1.2 mM valproate. These results indicate that valproate increases glutaminase activity, decreases glutamine synthetase activity, and alters Krebs-cycle activity in astrocytes, suggesting a possible mechanism for hyperammonemia in brain during valproate therapy.  相似文献   

9.
One of the forms of phosphate activated glutaminase (PAG) is associated with the inner mitochondrial membrane. It has been debated whether glutamate formed from glutamine in the reaction catalyzed by PAG has direct access to mitochondrial or cytosolic metabolism. In this study, metabolism of [U-13C]glutamine (3 mM) or [U-13C]glutamate (10 mM) was investigated in isolated rat brain mitochondria. The presence of a functional tricarboxylic (TCA) cycle in the mitochondria was tested using [U-13C]succinate as substrate and extensive labeling in aspartate was seen. Accumulation of glutamine into the mitochondrial matrix was inhibited by histidine (15 mM). Extracts of mitochondria were analyzed for labeling in glutamine, glutamate and aspartate using liquid chromatography-mass spectrometry. Formation of [U-13C]glutamate from exogenous [U-13C]glutamine was decreased about 50% (P < 0.001) in the presence of histidine. In addition, the 13C-labeled skeleton of [U-13C]glutamine was metabolized more vividly in the tricarboxylic acid (TCA) cycle than that from [U-13C]glutamate, even though glutamate was labeled to a higher extent in the latter condition. Collectively the results show that transport of glutamine into the mitochondrial matrix may be a prerequisite for deamidation by PAG. Special issue article in honor of Dr. Frode Fonnum. Lasse K. Bak and Elżbieta Ziemińska contributed equally to the experimental work described in this paper.  相似文献   

10.
—Glucose is a major precursor of glutamate and related amino acids in the retina of adult rats. 14C from labelled glucose appears to gain access to a large glutamate pool, and the resulting specific activity of glutamate labelled from glucose is always higher than that of glutamine or the other amino acids. Radioactive acetate appeared to label a small glutamate pool. The specific activity of glutamine labelled from acetate relative to that of glutamate was always greater than 1.0. Other precursors of the small glutamate pool were found to include glutamate, aspartate, GABA, serine, leucine and sodium bicarbonate. The level of radioactivity present in retinae incubated with [U-14C]glucose or [1-14C]sodium acetate was reduced in the presence of 10?5m -ouabain. Under these conditions, the relative specific activity of glutamine labelled from [1-14C]sodium acetate was lowered, but it was raised when [U-14C]glucose was used as substrate. Ouabain also considerably reduced the synthesis of GABA from [1-14C]sodium acetate. In all cases ouabain caused a fall in the tissue levels of the amino acids. Aminooxyacetic acid (10?4m ) almost completely abolished the labelling of GABA from both [U-14C]glucose and [1-14C]sodium acetate, while the RSA of glutamine labelled from the latter substrate was significantly increased. Aminooxyacetic acid raised the tissue concentration of glutamate, but caused a fall in the tissue concentrations of glutamine, aspartate and GABA. The results suggest that there are separate compartments for the metabolism of glutamate in retina and that these can be modified in different ways by different drugs.  相似文献   

11.
(1) The in vitro metabolism of [U-14C]glucose and [U-14C]glutamate was compared in snail, octopus and locust ganglia, and in rat cerebral cortex. (2) The metabolic patterns are quantitatively similar. The major labelled metabolites formed from glucose or glutamate by rat cortex and the invertebrate systems were CO2, aspartate, glutamate, glutamine and alanine. γ-Aminobutyric acid (GABA) was formed in substantial amounts only by locust and rat. (3) A much larger proportion of labelled glucose and glutamate was converted to alanine by the invertebrates compared with rat cortex, although 14CO2 production was lower. (4) The effect of glucose in reducing aspartate formation and stimulating glutamine formation from [U-14C]glutamate in mammalian cortex was observed in the locust but not in the molluscs. (5) Labelled citric acid cycle intermediates were formed in substantial quantities from glucose and glutamate only by snail and locust.  相似文献   

12.
Metabolism of glutamine was determined under a variety of conditions to study compartmentation in cortical synaptosomes. The combined intracellular and extracellular amounts of [U-13C]GABA, [U-13C]glutamate and [U-13C]glutamine were the same in synaptosomes incubated with [U-13C]glutamine in the presence and absence of glucose. However, the concentration of these amino acids was decreased in the latter group, demonstrating the requirement for glucose to maintain the size of neurotransmitter pools. In hypoglycemic synaptosomes more [U-13C]glutamine was converted to [U-13C]aspartate, and less glutamate was re-synthesized from the tricarboxylic acid (TCA) cycle, suggesting use of the partial TCA cycle from -ketoglutarate to oxaloacetate for energy. Compartmentation was studied in synaptosomes incubated with glucose plus labeled and unlabeled glutamine and glutamate. Incubation with [U-13C]glutamine plus unlabeled glutamate gave rise to [U-13C]GABA but not labeled aspartate; however, incubation with [U-13C]glutamate plus unlabeled glutamine gave rise to [U-13C]aspartate, but not labeled GABA. Thus the endogenous glutamate formed via glutaminase in synaptic terminals is preferentially used for GABA synthesis, and is metabolized differently than glutamate taken up from the extracellular milieu.  相似文献   

13.
Abstract— Thiamine deficiency produced by administration of pyrithiamine to rats maintained on a thiamine-deficient diet resulted in a marked disturbance in amino acid and glucose levels of the brain. In the two pyrithiamine-treated groups of rats (Expt. A and Expt. B) there was a significant decrease in the levels of glutamate (23%, 9%) and aspartate (42%, 57%), and an increase in the levels of glycine (26%, 27%) in the brain, irrespective of whether the animals showed signs of paralysis (Expt. A) or not (Expt. B). as a result of thiamine deficiency. A significant decrease in the levels of γ-aminobutyrate (22%) and serine (28%) in the brain was also observed in those pyrithiamine-treated rats which showed signs of paralysis (Expt. A). Threonine content increased by 57% in Expt. A and 40% in Expt. B in the brain of pyrithiamine-treated rats, but these changes were not statistically significant. The utilization of [U-14C]glucose into amino acids decreased and accumulation of glucose and [U-14C]glucose increased significantly in the brain after injection of [U-14C]glucose to pyrithiamine-treated rats which showed abnormal neurological symptoms (Expt. A). The decrease in 14C-content of amino acids was due to decreased conversion of [U-14C]glucose into alanine, glutamate, glutamine, aspartate and γ-aminobutyrate. The flux of [14C]glutamate into glutamine and γ-aminobutyrate also decreased significantly only in the brain of animals paralysed on treatment with pyrithiamine. The decrease in the labelling of, amino acids was attributed to a decrease in the activities of pyruvate dehydrogenase and α-oxoglutarate dehydrogenase in the brain of pyrithiamine-treated rats. The measurement of specific radioactivity of glucose, glucose-6-phosphate and lactate also indicated a decrease in the activities of glycolytic enzymes in the brain of pyrithiamine-treated animals in Expt. A only. It was suggested that an alteration in the rate of oxidation in vivo of pyruvate in the brain of thiamine-deficient rats is controlled by the glycolytic enzymes, probably at the hexokinase level. The lack of neurotoxic effect and absence of significant decrease in the metabolism of [U-14C]glucose in the brain of pyrithiamine-treated animals in Expt. B were probably due to the fact that animals in Expt. B were older and weighed more than those in Expt. A, both at the start and the termination of the experiments.  相似文献   

14.
Compartmentation of glutamic acid metabolism in brain slices   总被引:12,自引:4,他引:8  
— (1) Compartmentation of glutamate metabolism in brain cortex previously observed only in vivo, has now been demonstrated in vitro.This was shown by using [U-14C]aspartate and [U-14C]glutamate as tracer substrates. (2) Preparation and maintenance of the slices at 0° resulted in reversible inhibition of glutamine synthesis. Preincubation at 37° for 10 min or preparation of the slices at room temperature partially overcame this inhibition. (3) Transfer to fresh medium after preincubation had an added stimulatory effect on glutamine synthesis. (4) Incubation in high K+ medium (27 mm ) altered the relative specific activity of glutamine. (5) The data are in keeping with the postulate of the existence of at least two different pools of citric acid cycle intermediates in the cerebral cortex.  相似文献   

15.
—The uptake of [U-14C]glutamate into the amphibian brain was studied in vitro using brains from toads (Bufo boreas) adapted either to a fresh water (FWA) or an hyperosmotic saline (HOA) environment. Initial rates of 14C-glutamate uptake showed a single apparent Km of about 0·2 mm . Uptake by HOA brains was slower than that by FWA brains, reflecting perhaps a non-competitive type of inhibition by the higher content of glutamate in the HOA brains. Although the glutamate content of HOA brains was maintained during prolonged incubation at twice the level found in FWA toads, other metabolic parameters measured in the two types of brain preparations were surprisingly similar. Tissue to medium concentration ratios of greater than 3000:1 were generated by both FWA and HOA brains. In both brain systems the clearance of glutamate from the medium was accompanied by a rapid conversion of the amino acid to glutamine and its release into the medium. In both the FWA and HOA toad brain systems some [U-14C]glutamate was metabolized to aspartate and GABA; in both systems the specific radioactivity (SA) of glutamine in the tissue was from two to four times greater than that of glutamate; also the SA of glutamine released into the medium was higher by several orders of magnitude than the SA of glutamine in brain tissues. These and other findings support the concept that, in both the FWA and HOA toad brains, transport processes are instrumental in preserving low extracellular levels of glutamate but that mechanisms other than transport are responsible for the maintenance of different levels of glutamate in the FWA and HOA toad brains.  相似文献   

16.
Some neurochemical aspects of fluorocitrate intoxication   总被引:3,自引:3,他引:0  
Abstract— Some metabolic and biochemical effects of fluorocitrate were studied in vivo in rat brain and cat spinal cord. During the preconvulsant and convulsant phases of fluorocitrate poisoning the contents of free glutamate, glutamine and aspartate declined progressively, while that of alanine increased. Incorporation of 14C from [U-14C]glucose into these amino acids also decreased, although somewhat more gradually. GABA exhibited a biphasic change, its content rising after an initial decrease while its relative specific activity rose initially and subsequently diminished. Incorporation of 14C from [U-14C]glucose and [U-14C]lysine into neural protein declined sharply. The citric acid content rose markedly in rat brain and cat spinal cord. In rat brain the glycogen content declined but ATP and ammonia contents were unchanged. The significance of these results with respect to energy metabolism and the possible mechanism of the convulsions during fluorocitrate poisoning is discussed.  相似文献   

17.
—Rat pups undernourished through 21 days of age show abnormal patterns of cerebral amino acid metabolism. The pattern of incorporation of radioactivity from l -[U-14C]leucine into amino acids derived from tricarboxylic acid cycle intermediates was altered, with significantly more 14C being incorporated into glutamate and aspartate in the underfed rats than in controls. Glutamate compartmentation, manifested in the ratio of specific radioactivities of glutamine to glutamate, developed more slowly in the. diet-restricted group. These results are similar to those seen in neonatally-thyroidectomized rats and suggest decreased growth of neuronal processes. This impairment of amino acid metabolism returns to normal after a 7-week period of adequate nutrition.  相似文献   

18.
The levels and specific radioactivities (SA) of glucose, lactate, pyruvate, α-oxoglutarate and seven amino acids in the brain of toads adapted to fresh water or to an hyperosmotic environment were analysed at various times (5 min–4 h) after an injection of [U-14C]glucose into the bloodstream. The concentrations and SA of glucose, lactate and five amino acids in blood plasma also were measured. In addition, the SA of glutamine, glutamate, aspartate and GABA in brain were determined 30 min after an injection of [1,5-14C]citrate into the cisterna magna. The flow of labelled carbon atoms from glucose to amino acids and related metabolites in the toad brain was qualitatively similar to that in the mammalian brain, but quantitatively less than one-tenth of the rate in the brain of rats. Hyperosmotic adaptation induced a large increase in the levels of glucose and amino acids in the brain without affecting the rate of glucose utilization. The SA of several amino acids relative to the SA of glucose were initially lower in hyperosmotically-adapted toads than in toads adapted to fresh water, presumably because of a greater dilution of isotope by the larger amino acid pools in the hyperosmotically-adapted toads. The rates of synthesis of alanine and glutamine from pyruvate and glutamate, respectively, appeared to increase with hyperosmotic adaptation, but the rate of GABA synthesis from glutamate was unaltered. The SA of α-oxoglutarate and glutamate were similar at all time periods in both groups of toads, an indication that these compounds were interconverted much more rapidly than the rate at which α-oxoglutarate was formed from isocitrate. The SA of lactate in comparison to that of glucose varied but was always considerably lower, even at 4 h after the [14C]glucose injection. After[U-14C]glucose, glutamine had a SA lower than that of glutamate, whereas after the injection of [14C]citrate, glutamine was formed with a SA much higher than that of glutamate. Hence, glutamate in the toad brain exhibited metabolic compartmentation similar to that in rat brain.  相似文献   

19.
1. The effect of fluoroacetate and fluorocitrate on the compartmentation of the glutamate-glutamine system was studied in brain slices with l-[U-(14)C]glutamate, l-[U-(14)C]aspartate, [1-(14)C]acetate and gamma-amino[1-(14)C]butyrate as precursors and in homogenates of brain tissue with [1-(14)C]acetate. The effect of fluoroacetate was also studied in vivo in mouse brain with [1-(14)C]acetate as precursor. 2. Fluoroacetate and fluorocitrate inhibit the labelling of glutamine from all precursors but affect the labelling of glutamate to a much lesser extent. This effect is not due to inhibition of glutamine synthetase. It is interpreted as being due to selective inhibition of the metabolism of a small pool of glutamate that preferentially labels glutamine.  相似文献   

20.
Abstract—
  • 1 The metabolism of three substrates, [U-14C]glucose, [U-14C]pyruvate and [U-14C]glutamate has been studied in vitro in neuronal and glial cell fractions obtained from rat cerebral cortex by a density gradient technique.
  • 2 The mixed cell suspension, after washing, metabolized glucose and glutamate in a manner essentially similar to the tissue slice. Exceptions were a reduced ability to generate lactate from glucose and alanine from glutamate, and a lowered effect of added glucose in suppressing the production of aspartate from glutamate.
  • 3 After 2 hr incubation with [U-14C]glucose, the concentration of the amino acids glutamate, glutamine, GABA, aspartate and alanine were raised in the neuronal, compared to the glial fraction to 234 per cent, 176 per cent, 202 per cent, 167 per cent and 230 per cent respectively although both were lower than in the tissue slice. Incorporation of radio-activity was absolutely lower in the neuronal fraction, however, and the specific activities of the amino acids were: glutamate 12 per cent, GABA 18 per cent, aspartate 34 per cent, and alanine 33 per cent of those in the glial fraction.
  • 4 After the incubation with [U-14C]pyruvate, the pool size of the amino acids were higher than after incubation with glucose, except for GABA, which was reduced to one-third. The concentrations of the amino acids glutamate, glutamine, GABA, aspartate, and alanine in the neuronal fraction were respectively 46 per cent, 143 per cent, 105 per cent, 97 per cent, and 57 per cent of those in the glial. Thus, with the exception of alanine, the specific activity of the neuronal amino acids compared to the glial was little increased when pyruvate replaced glucose as substrate.
  • 5 After 2 hr incubation with [U-14C]glutamate in the presence of non-radioactive glucose, the pool sizes of all the amino acids were increased in both neuronal and glial fractions, with the exception of neuronal alanine and glial glutamine. The concentrations of the amino acids glutamine, GABA, aspartate and alanine were raised in the neuronal fraction, compared to the glial, to 425 per cent, 187 per cent, 222 per cent, and 133 per cent respectively. The specific activities of all the amino acids were higher than with glucose alone with the exception of alanine, and neuronal GABA. Neuronal glutamine and aspartate had specific activities respectively 102 per cent and 84 per cent of glial.
  • 6 An unidentified amino acid, with RF comparable to that of alanine and specific activity close to that of glutamate, was also present after incubation. It was relatively concentrated in the neuronal fraction.
  • 7 The distribution of the enzymes glutamate dehydrogenase, aspartate aminotransferase, glutamate decarboxylase and glutamine synthetase between the cell fractions was studied. With the exception of glutamine synthetase, none of the enzymes was lost from the cell fractions during their preparation. Only 14 per cent of the glutamine synthetase, compared with 75 per cent of total protein, was recovered in the fractions. Of the enzymes, glutamate dehydrogenase activity was 406 per cent, and glutamate synthetase activity 177 per cent in the neuronal fraction compared to the glial in the absence of detergent. In the presence of detergent, glutamate dehydrogenase control was 261 per cent, aspartate aminotransferase activity 237 per cent is the neuronal as compared to the glial fraction.
  • 8 Incorporation of radioactivity into acid-insoluble material from either glutamate or pyruvate was twice as high into the neuronal as the glial fraction.
  • 9 The extent to which these differences may be extrapolated back to the intact tissue is considered, and certain correction factors calculated. The significance of the observations for an understanding of the compartmentation of amino acid pools and metabolism in the brain, and the possible identification of such compartments, is discussed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号