首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Type A botulinum toxin on acetylcholine metabolism were studied using mouse brain slice and synaptosome preparations. Brain slices that had been incubated with the toxin for 2h exhibited a decreased release of acetylcholine into high K+ media. Botulinum toxin did not affect acetylcholine efflux from slices in normal K+ media. When labeled choline was present during the release incubation, a‘newly-synthesized’pool of acetylcholine was formed in the tissue. In toxin-treated slices exposed to high K+, both the production and the release of this‘newly-synthesized’acetylcholine were depressed. A possible explanation for these actions of botulinum toxin would be via an inhibition of the high affinity uptake of choline. This hypothesis was tested by measuring the high affinity uptake of [3H]choline into synaptosomes prepared from brain slices. Previous exposure of slices to botulinum toxin caused a significant reduction in the accumulation of label by the synaptosomes. These data are discussed in terms of our current understanding of the mechanism of action of botulinum toxin and the toxin's interaction with the mechanisms regulating acetylcholine turnover.  相似文献   

2.
Abstract— dl -Allylglycine, a potent inhibitor of glutamate decarboxylase in vivo when given intraperitoneally, causes a marked decrease in brain GABA concentration and at the same time a dramatic increase in l -ornithine decarboxylase activity and a simultaneous decrease in S -adenosyl- l -methionine decarboxylase activity followed by putrescine accumulation. It does not, however, alter the degree of GABA formation from putrescine. The timing of the recovery of glutamate decarboxylase activity after the injection of dl -allylglycine is concomitant with that of the GABA concentration, indicating that it is probably glutamate decarboxylase that is solely responsible for making up the GABA deficit caused by dl -allylglycine, and that the changes in polyamine metabolism are associated in some indirect way with the recovery process.  相似文献   

3.
—The subcutaneous administration of 2·0 mg DFP per kg to rats causes a diminution in the lysophosphatidylcholine content in the brain, which is followed by a decrease of glycerylphosphorylcholine concentration and by a reduced post mortem choline increase. This supports the hypothesis that a post mortem increase in choline is due to phosphatidylcholine breakdown. Since the amount of phosphatidylcholine in brains of di-isopropylfluorophosphate-treated rats increases, it is concluded that phospholipase A is inhibited by di-isopropylfluorophosphate, which corresponds to findings of other authors in vitro. The activity of glycerylphosphorylcholine diesterase (EC 3.1.4.2) is not altered.  相似文献   

4.
Abstract— The turnover of 5-hydroxytryptamine in the forebrain and of dopamine in the striatum was studied in mice fasted for 20 h. Such mice showed an increased tissue concentration of 5-hydroxyindoleacetic acid in the forebrain and an increased accumulation of this acid after probenecid. Fasted mice also showed a higher concentration of homovanillic acid in the striatum than fed mice. However, the administration of probenecid produced a smaller increase in homovanillic acid concentration in fasted than in fed mice. The decay of dopamine following α-methyl- p -tyrosine was reduced in fasted mice at 2 h, but not at 1 h or 6 h after administration of the inhibitor. The possibility that fasting increases the activity of some dopaminergic neurones while decreasing the activity of others is considered. The existence of a pool of homovanillic acid at a site within the striatum where the probenecid-sensitive transport is not effective is postulated.  相似文献   

5.
—The utilization of citrate by the cytoplasmic fraction of rat brain is inhibited in hypoxia and remains unaltered in anaesthesia. The addition of exogenous aspartate to the cytosolic fraction isolated from brains of hypoxic animals increases the rate of citrate removal. The level of cytosolic aspartate gradually decreases when the exposure period to low oxygen tension is increased and reaches a minimum after 30 min. The levels of mitochondrial aspartate and of cytoplasmic carbamyl aspartate remain constant. The low level of cytosolic aspartate is accompanied by an increase in the concentration of cytosolic urea and increase in the aspartate level in blood serum. It is suggested that the oxidation of citrate by the cytoplasmic fraction of brain is inhibited in hypoxia owing to the decrease in endogenous aspartate. The decrease in the level of cytoplasmic aspartate is caused by the diversion of this substrate toward urea synthesis and by the increased leakage across the cell/blood barrier to the blood stream. Anaesthesia prevents the changes induced by hypoxia.  相似文献   

6.
Abstract— The effect of increased exposure to ketone bodies in the developing rat brain suggest that intrauterine and postnatal hyperketonemia lead to an altered metabolism of glutamine and glutamate. It is postulated that this effect is related to the delayed development of glutaminase ( l -glutamine amido-hydrolase EC 3.5.1.2) and glutamate dehydrogenase ( l -glutamate: NAD oxidoreductase EC 1.4.1.2).
The specific activities of glutamate dehydrogenase (GDH), glutaminase and glutamine synthetase ( l -glutamate: ammonia ligase EC 6.3.1.2) in the brains of newborn rats increased during early development. A positive correlation was observed between the specific activity of glutaminase and the concentration of glutamate in the brain as well as between the concentrations of blood and brain glutamine and glutamate in both control and hyperketonemic pups. This indicates a different degree of permeability and metabolism for glutamine and glutamate in the brain during the neonatal period, as compared to adulthood.
In hyperketonemic pups, glutamine and glutamate metabolism were found to differ from that in control animals. The concentrations of glutamate were higher, and glutamine lower, in both the blood and brain as compared to that in controls. The concentrations of α-ketoglutarate were also lower in their brain. In the brains of hyperketonemic and control pups, the concentration of malate was the same. During the first 3 weeks of life the increase of spec. act. of GDH and glutaminase was found to be suppressed in the brains of hyperketonemic pups. However, the spec. act. of glutamine synthetase was similar to that of the control pups.  相似文献   

7.
EFFECTS OF ETHANOL ON SEROTONIN METABOLISM IN BRAIN   总被引:2,自引:0,他引:2  
The effect of ethanol on serotonin metabolism in brains of mice was determined both after a single injection and ‘chronic’ administration of ethanol. Behavioral effects were also monitored.‘Chronic’ administration of ethanol by inhalation to mice resulted in an increased susceptibility to Metrazole induced seizures. This susceptibility was evident for 48 h after ‘withdrawal’ of mice from ethanol chambers. No differences in brain 5-HT levels between control and ethanol treated mice were evident during withdrawal. However, a significant elevation in brain 5-HIAA levels was noted during this period. Short lived increases in brain 5-HIAA levels were also noted after a single injection of ethanol. Ethanol treatment produced no significant changes in the activity of brain MAO, aldehyde dehydrogenase, or aldehyde reductase. Other mechanisms for ethanol induced increases in brain 5-HIAA are discussed.  相似文献   

8.
9.
The effects of chronic administration of clorgyline and pargyline on rat brain monoamine metabolism have been examined. The inhibitory selectivity of these drugs towards serotonin deamina-tion (MAO type A) and phenylethylamine deamination (MAO type B) can be maintained over a 21-day period by proper selection of low doses of these drugs (0.5-1.0 mg/kg/24h). The results are consistent with MAO type A catalyzing the deamination of serotonin and norepinephrine and with MAO type B having little effect on these monoamines. Dopamine appears to be dcaminated in vivo principally by MAO type A. Clorgyline administration during a 3-week period was accompanied by persistent elevations in brain norepinephrine concentrations; serotonin levels were also increased during the first 2 weeks, but returned towards control levels by the third week of treatment. Low doses of pargyline did not increase brain monoamine concentrations, but treatment with higher doses for 3 weeks led to elevations in brain norepinephrine and 5-hydroxytryptamine; at this time significant MAO-A inhibition had developed. The changes in monoamine metabolism seen at the end of the chronic clorgyline regimen are not due to alterations in tryptophan hydroxylase activity. At this time tyrosine hydroxylase activity was also unaffected.  相似文献   

10.
Abstract— Following intracerebral inoculation of mouse adapted scrapie agent into mice, polyamine concentration in the brain decreases to about 75 per cent of the normal level during the first 2 months after intracerebral inoculation of the agent. Between 2 and 4 months after infection thelevel of spermidine and spermineincreased by 80 and 40 percent respectively to reach concentrations of 25 and 20 per cent higher than controls of the same age. During the same period the rate of incorporation of [14C]putrescine into spermidine is increased four-fold as compared with controls. The changes in polyamine levels correlate well with the pattern of astrocyte hypertrophy and are similar to those reported for human brain tumours. The concentration of polyamines in spleen increases soon after inoculation. Whilst changes in brain polyamines might be referred to the hypertrophic growth of astrocytes those in spleen are perhaps due to an increased metabolic activity of spleen cells associated with the replication of the agent. These results are derived from experimental mouse scrapie and not naturally occurring disease in sheep.  相似文献   

11.
The effect of some biogenic amines and amino acids on the level of N-acetyl-asparticacid and N-acetyl-aspartyl-glutamic acid has been investigated in mouse brain tissue slices. The amines all caused a significant decrease in the levels of N-acetyl-aspartic acid and N-acetytl-aspartyl-glutamic acid within 5 min of incubation, while the amino acids, in spite of being possible transmitter candidates, had no such effect.  相似文献   

12.
Abstract— Following intracerebral injection, [14C]palmitic acid was rapidly incorporated into a variety of brain lipids. After 12 hr, 78 per cent of the lipid radioactivity was in phospholipids, 15 per cent was in triacylglycerols, 1 per cent each was in free fatty acids and galactolipids, and the remainder was in other neutral glycerides. Over 65 per cent of the phospholipid radioactivity was found in the choline phosphoglycerides but this proportion decreased substantially with time. At later times, increasing portions of the radioactivity were present in the monounsaturated acyl groups and the alkenyl groups but no radioactivity was detected in cholesterol or polyunsaturated acyl groups. These results indicate that most of the extensive recycling of radioactivity took place without oxidative degradation of the palmitoyl groups. The relative rates of incorporation of radioactivity were compared at 12 hr after injection. The specific radioactivities of the serine, ethanolamine, and choline phosphoglycerides had ratios of 6:3:2 based on the palmitoyl group content and 1:2:4 based on their phosphorus content. The specific radioactivities of galactolipids with O -acyl groups were higher than the specific radioactivitiesof cerebrosides or cerebroside sulphates. A new solvent mixture for thin-layer chromatography of brain galactolipids was described (chloroform-acetone-methanol-water, 60:20:20:1, by vol.).  相似文献   

13.
14.
何小瑞  徐文伯 《生理学报》1992,44(3):222-228
实验在麻醉大鼠上进行。用肾小管微穿刺技术观察到,脑室内注射高张盐水(icv.HS)后:(1)近曲小管末段钠残留分数从53.0±2.1%升高至66.0±2.9%(P<0.01);氯残留分数从65.4±3.4%升高至78.2±3.9%(P<0.05);钾残留分数和小管液渗透克分子浓度无显著变化。(2)远曲小管起始段钠残留分数从8.2±0.9%升高至13.6±1.8%(P<0.05);氯残留分数从5.4±0.8%升高至9.5±1.4%(P<0.05);小管液渗透克分子浓度从139.8±6.9mOsm/kg H_2O升高至181.3±15.6mOsm/kgH_2O(P<0.05);钾残留分数无显著变化。静脉注射速尿能消除icv.HS引起的尿钾增多反应,但不能消除icv.HS引起的利尿和尿钠增多反应。上述结果表明,刺激脑内渗透压感受器能抑制近曲小管中钠和氯的重吸收,并促进远曲小管及其以后部位的钠钾交换,导致尿钠排出增多和尿钾排出增多。  相似文献   

15.
Incubation of brain cell suspensions with 14 mM-phenylalanine resulted in rapid alterations of amino acid metabolism and protein synthesis. Both thc rate of uptake and the final intracellular concentration of several radioactively-labelled amino acids were decreased by high concentrations oi phenylalanine. By prelabelling cells with radioactive amino acids, phenylalanine was also shown to effect a rapid loss of the labelled amino acids from brain cells. Amino acid analysis after the incubation of the cells with phenylalanine indicated that several amino acids were decreased in their intracellular concentrations with effects similar to those measured with radioisotopic experiments (large neutral > small and large basic > small neutral > acidic amino acids). Although amino acid uptake and efflux were altered by the presence of 14 mwphenylalanine, little or no alteration was detected in the resulting specific activity of the intracellular amino acids. High levels of phenylalanine did not significantly altcr cellular catabolism of either alanine, lysine, leucine or isoleucine. As determined by the isolation of labcllcd aminoacyl-tRNA from cells incubated with and without phenylalanine, there was little or no alteration in the level of this precursor for radioactive alanine and lysine. There was, however, a detectable decrease in thc labelling of aminoacyl-tRNA for leucine and isoleucine. Only aftcr correcting for the changes of the specific activity of the precursors and thcir availability to translational events, could the effects of phenylalanine on protein synthesis be established. An inhibition of the incorporation into protein for each amino acid was approximately 20%.  相似文献   

16.
—The long term effects on accumulation of 14C-labelled dopamine and noradrenaline after [14C]tyrosine administration and on the endogenous levels of catecholamines in mouse brain were studied after treatment with a new potent thioxanthene neuroleptic, teflutixol. The drug was given as a single dose (5 mg/kg i.p.), as repeated daily doses (1·25 mg/kg p.o.), or as a single dose of the palmitic ester in Viscoleo® (20 mg/kg s.c). After a single dose, teflutixol increased catecholamine synthesis (100%). Noradrenaline synthesis rapidly returned to normal, whereas decreased dopamine synthesis was seen from the third to sixth day, after which it was normal. When the receptors were continuously exposed to teflutixol, either by daily dosage or by the depot preparation, catecholamine synthesis was increased for the first few days but then returned to normal, indicating development of tolerance. Endogenous concentrations of catecholamines were only decreased during the first few days, when the increase in synthesis was greatest. The findings are in accordance with results obtained by Møller Nielsen & Christensen (1975), who found that receptor blockade was followed by receptor supersensitivity after treatment with a neuroleptic compound. The receptor blockade may activate a feedback mechanism that induces increased nervous firing with increased amine synthesis as a consequence. The resulting supersensitivity, if sufficiently great, may lead to reduced nervous firing, followed by slowing of dopamine synthesis.  相似文献   

17.
18.
Abstract— The effects of LiCl on cholinergic function in rat brain in vitro and in vivo have been investigated. The high affinity transport of choline and the synthesis of acetylcholine in synaptosomes were reduced when part (25-75%) of the NaCl in the buffer was replaced with LiCl or sucrose. This appeared to be due to lack of Na+ rather than to Li+, as addition of LiCl to normal buffer had little effect. Following an injection of LiCl (10mmol/kg, i.p.) into rats the concentration of a pulsed dose of [2H4]choline (20 μmol/kg, i.v., 1 min) and its conversion to [2H4]acetylcholine, and the concentrations of [2H2]acetylcholine and [2H0]choline were measured in the striatum, cortex, hippocampus and cerebellum. The [2H4]choline and [2H4]acetylcholine were initially (15 min after LiCl) reduced (to ?30% in the cortex) and later (24 h after LiCl) increased (to + 50% in the striatum). There was a corresponding initial increase (to +50% in the cerebellum) and later decrease (to ?30% in the hippocampus) of the endogenous acetylcholine and choline. These results indicate an initial decrease and later increase in the utilization of acetylcholine after acute treatment with LiCl. Following 10 days of treatment with LiCl there was an increased rate of synthesis of [2H4]acetylcholine from pulsed [2H4]choline in the striatum, hippocampus and cortex (P < 0.05). The high affinity transport of [2H4]choline and its conversion to [2H4]acetylcholine was activated (131% of control; P < 0.01) in synaptosomes isolated from brains of 10-day treated rats. Investigation of synaptosomes isolated from striatum, hippocampus and cortex revealed that only striatal [2H4]acetylcholine synthesis was significantly stimulated. Kinetic analysis demonstrated that the apparent KT for choline was decreased by 30% in striatal synaptosomes isolated from rats treated for 10 days with LiCl. Striatal synaptosomes from 10-day treated rats compared to striatal synaptosomes from untreated rats also released acetylcholine at a stimulated rate in a medium containing 35 mM-KCl. These results indicate that LiCl treatment stimulates cholinergic activity in certain brain regions and this may play a significant role in the therapeutic effect of LiCl in neuropsychiatric disorders.  相似文献   

19.
20.
EFFECTS OF HYPOPHYSECTOMY ON RNA METABOLISM IN RAT BRAIN STEM   总被引:3,自引:2,他引:1  
Abstract— Ribosomal aggregates were isolated from rat brain stem and characterized as polysomes by sedimentation analysis and by their sensitivity to RNase and EDTA treatment.
Three weeks following hypophysectomy there was a significant decrease in the content of large polysomes in the rat brain stem. The incorporation of radioactive uridine into RNA was studied using a double-labelling technique with [3H]- and [14C]uridine and labelling periods of 70 and 180 min. It was found that after hypophysectomy the incorporation of radioactive uridine into total, nuclear and cytoplasmic RNA and in polysomes was decreased after 70 and 180 min. Information on the nature of the rapidly-labelled RNA in the various subcellular fractions was obtained by sucrose gradient sedimentation analysis.
After 70 min of labelling the nucleus contained heterogeneous RNA with a considerable fraction of RNA sedimenting faster than 28 S. In the cytoplasmic fraction heterogeneous 4 to 30 S RNA was found, presumably associated with RNP particles, whereas after 180 min the polyribosomal aggregates were also labelled.
The present results indicate a profound effect of hypophysectomy on the metabolism of all species of brain RNA investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号