首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gel to liquid-crystalline phase transition of aqueous dispersions of phospholipid mixtures was investigated by means of the repartition of the spin label 2,2,6,6-tetramethylpiperidine-I-oxyl between aqueous space and lipid hydrocarbon region. The dimyristoylphosphatidylcholine (DMPC)/dibehenoylphosphatidylcholine (DBPC) and dipalmitoylphosphatidylcholine (DPPC)/DBPC phase diagrams indicate gel phase immiscibility, whereas the distearoylphosphatidylcholine (DSPC)/DBPC phase diagram indicates non-ideal gel phase miscibility at low DBPC molar fractions. Aqueous dispersions of DMPC/DPPC/DBPC ternary mixtures show two distinct phase transitions, the first associated with the melting of a DMPC/DPPC phase and the second with the melting of a DBPC phase. Aqueous dispersions of DMPC/DSPC/DBPC ternary mixtures show to phase transitions at low DSPC molar fractions; the first is probably associated with the melting of a DMPC/DSPC phase, and the second with the melting of a DBPC/DSPC phase. At high DSPC molar fractions, only one phase transition is observed; this suggests that all the lipids are mixed in gel state membranes.  相似文献   

2.
Interaction of melittin with phosphatidylcholine molecules in pure vesicles, binary mixtures and a ternary mixture of dimyristoylphosphatidylcholine IDMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated by differential scanning calorimetry. Melittin binds preferentially with DMPC, and results in segregation of DMPC in binary mixtures of DMPC/DPPC and DMPC/DSPC and in a ternary mixture of DMPC/DPPC/DSPC. The results indicate that the hydrophobic part of peptide interacts preferentially with the phospholipid which has the same size of hydrophobic region or fatty acyl chains.  相似文献   

3.
A new method based on a sampling theorem is proposed for determining the phase in the X-ray diffraction analysis of the structure of phospholipid systems. The thickness of a lipid layer is changed by changing the length of hydrocarbon chains in order to rebuild the continuous transform from the scattering amplitudes. By employing this method, the phases were accurately determined in a structure analysis of nine phospholipid/alcohol systems at the interdigitated gel phase. The nine systems are dimyristoylphosphatidylcholine(DMPC)/propanol, DPPC/methanol, DPPC/ethanol, DPPC/propanol, DPPC/butanol, distearoylphosphatidylcholine(DSPC)/methanol, DSPC/ethanol, DSPC/propanol and DSPC butanol systems.  相似文献   

4.
Glycophorin from human erythrocytes has been incorporated into liposomes of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC). The thermal properties of unsonicated liposomes with glycophorin/lipid molar ratios up to 4·10?3 have been studied by differential scanning calorimetry and the numbers of lipids withdrawn from participation in the gel-to-lamellar phase transition were found to be 42±22 (DMPC), 197±28 (DPPC) and 240±64 (DSPC). The initial rates of agglutination of sonicated liposomes with glycophorin/lipid molar ratios up to 4·10?3 by wheat germ agglutinin in the concentration range 0–7 μM have been measured over a range of temperature. Below the gel-to-lamellar phase transition (Tc) the rates of agglutination increase with acyl chain length in the sequence DMPC < DPPC < DSPC. Agglutination is found to be second order in liposome concentration and is completely reversed on saturation of the wheat germ agglutinin-binding sites by N-acetylglucosamine. Agglutination rates decrease with increasing temperature below Tc and are largely independent of temperature above Tc. The results are discussed in relation to the clustering of glycophorin in the phospholipid bilayers and its effect on binding and subsequent interliposomal bridge formation by wheat germ agglutinin.  相似文献   

5.
In this paper we have investigated via x-ray diffraction the influence of dimethyl sulfoxide (DMSO), known for its biological and therapeutic properties, on the structure of lipid membranes of dipalmitoylphosphatidylcholine (DPPC) in excess of the solvent (DMSO/water) at mole DMSO fractions XDMSO in (0.1) and under equilibrium conditions. At small XDMSO </= 0.133 the repeat distance d is reduced remarkably, whereas wide-angle x-ray diffraction pattern remains almost unchanged with the increase in XDMSO. It agrees well with previous study (Yu and Quinn, 1995). At 0.133 < XDMSO < 0.3 the repeat period d reduces slowly; however, an orthorombic in-plane lattice of hydrocarbon chains transfers to a disordered quasihexagonal lattice. The increase in XDMSO from 0.3 up to approximately 0.9 leaves d almost unchanged, whereas it leads to less disordered packing of hydrocarbon chains. At XDMSO approximately 0.9, Lbeta' phase transfers into interdigitated phase. The chain-melting phase transition temperature of DPPC membranes increases by several degrees with the increase of DMSO concentration. It points to a strong concentration-dependent solvation of membrane surface by DMSO. Thus DMSO strongly interacts with the membrane surface, probably displacing water and modifying the structure of the lipid bilayer. It appears to determine some of the properties of DMSO as a biologically and therapeutically active substance.  相似文献   

6.
S Ali  D Zakim 《Biophysical journal》1993,65(1):101-105
The thermotropic properties of multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC), as a function of the concentration of bilirubin in the range of 0.1 to 1 mol%, were measured. The exact effects of bilirubin depended on the chain length of the polymethylene chains. But the general effects of bilirubin were the same in all systems. At the lowest concentrations tested (0.1 mol bilirubin/100 mol phospholipid (0.1 mol%)), bilirubin broadened and shifted to higher temperatures the main phase transitions of all bilayers. For DPPC and DSPC, but not DMPC, this concentration of bilirubin was associated with a new transition at 25 degrees C (DPPC) or 34 degrees C (DSPC). Bilirubin at 0.2 mol% was required for the detection of a similar transition (at 13.7 degrees C) in DMPC. Higher concentrations of bilirubin (> 0.2 mol%) suppressed completely the main phase transitions in all bilayers but increased the enthalpy of the new transition. Maximal values of delta H for these transitions were reached at 0.5, 0.25, and 0.2 mol% bilirubin in DMPC, DPPC, and DSPC, respectively. Values of delta H and delta S for these transitions were far larger than for the corresponding gel-to-liquid crystal transitions in pure lipid bilayers but were equal to those expected for a transition between crystalline and liquid crystalline phases.  相似文献   

7.
The solvation effects of dimethyl sulfoxide (DMSO) on the phase stability of dimyristoylphosphatidylcholine (DMPC) have been fully characterized using differential scanning calorimetry (DSC) and fluorescence spectroscopy with 1,6-diphenyl-1,3,5-hexatriene (DPH). The temperatures of the sub-, pre-, and main transitions of DMPC were found to increase linearly with increasing mole fraction of DMSO up to mole fraction X=0.13 DMSO/H(2)O. Beyond X=0.13, the pre-transition peak started to merge with the peak representing the main transition. Simultaneously, the subtransition peak began to disappear as its transition temperature also decreased. At X=0.18, with both the subtransition and pre-transition absent, the main transition between the planar gel and the liquid-crystalline phase was observed at 30.3 degrees C. Transition enthalpy values indicated that the subgel, planar gel and rippled gel phases are most stable at X=0.11, 0.16 and 0.20 DMSO/H(2)O, respectively. This demonstrates that DMSO exerts distinct effects on each respective phase and corresponding transition. Temperature-dependent fluorescence emission scans show an increase in hydration as the system proceeds from the subgel phase all the way to the liquid-crystalline phase and correlated well with the effects of DMSO on the transition temperatures of DMPC observed in our calorimetry data. Initial observations for the sub- and main transition are further confirmed by fluorescence anisotropy using DPH as a probe. The results illustrate the differences in the microviscosity of each phase and how DMSO affects the phase transitions. Ultimately, our results suggest the most likely mechanism governing the biological actions of DMSO may involve the regulation of the solvation effects of water on the phospholipid bilayer.  相似文献   

8.
High sensitivity differential scanning calorimetry (DSC) was used to investigate the thermotropic phase properties of binary mixtures of disaturated phosphocholines (PCs) and alpha-bromoacyl taxane derivatives. The alpha-bromoacyl taxanes were synthesized as hydrolyzable hydrophobic prodrugs of paclitaxel. The PCs used were 1, 2-dimyristoyl-sn-glycero-3-phosphatidyl-choline (DMPC), 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1, 2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). The bromoacyl chain lengths of the taxane prodrugs were varied from 6 to 12 or 16 carbons. For comparison, paclitaxel and PC mixtures were also examined. DSC data from DPPC and bromoacyl taxane mixtures showed a complete abolition of the pretransition and significant broadening of the main phase transition with increasing amounts of bromoacyl taxane prodrugs. The effects were more pronounced with the long-chain compared to the short-chain prodrugs. Under equivalent DSC conditions, the short-chain DMPC showed greater changes in thermotropic phase behavior than with DPPC on taxane addition, suggesting an enhanced degree of association with the fluid-type bilayers. Under similar conditions, the long-chain DSPC bilayers showed a far less significant change in phase behavior on taxane addition than DPPC. These changes were also chain length-dependent for both the PCs and the taxane prodrugs. In contrast, PC and paclitaxel (lacking the acyl chain) mixtures under similar conditions showed insignificant changes in the endotherms, suggesting only slight insertion of the molecule into the PC bilayers. From the DSC data it is apparent that taxane prodrugs solvated in DMPC bilayers more than in DPPC and DSPC bilayers, and taxane prodrugs with longer acyl chains were able to associate with PCs better than those with shorter chain prodrugs. DSC data also suggest that paclitaxel was poorly associated with any of the PCs. In general, the amount of taxane association with bilayers decreased in order: DMPC > DPPC > DSPC. In contrast, the transition enthalpy (DeltaH) of DMPC, DPPC, and DSPC mixtures with paclitaxel showed significantly lower enthalpies than with taxane prodrugs. Taken together, the DSC data suggest that the acyl chains of paclitaxel prodrugs have some access into the bilayers via alignment with the acyl chain of the PC component.  相似文献   

9.
Structures and phase behavior of multilamellar vesicles of 1,2-dipalmitoyl-L-phosphatidylcholine (DPPC) containing various amount of ganglioside GM3 with a C18:1 sphingoid base and a 24:0 acyl chain (GM3(18,24)) were investigated by small-angle X-ray diffraction. Below 3.5 mol% GM3 content, the phase behavior was similar to that of pure DPPC except for a slight increase of lamellar repeat distance in the L(beta'), the P(beta') and the L(alpha) phases and a decrease of the pretransition temperature. In the range of 4-12 mol% GM3 content, another phase which has larger repeat distances coexisted with the phase observed below 3.5 mol% GM3 content. This has been interpreted that the phase separation into GM3-poor phase (denoted as A-phase) and GM3-rich phase (denoted as B-phase) took place. Above 13 mol% GM3 content, the B-phase became dominant. This phase separation may be related to the formation of GM3-enriched microdomains that had been observed on the cell surfaces which express large amounts of GM3, such as murine B16 melanoma (J. Biol. Chem. 260 (1985) 13328).  相似文献   

10.
An amphipatic liposaccharide, β16, has been synthesized by condensation of the glycoamino acid β of ovomucoid with the palmitic acid to serve as a model on which the properties of the saccharide chains can be studied. This paper reports the ternary system β16/dipalmitoylphosphatidylcholine (DPPC)/water. Using X-ray diffraction and freeze-fracture electron microscopy, it was shown that the ternary system exhibits mesomorphic structures in the temperature range over which the aliphatic chains of the DPPC are in a liquid-like conformation. A phase diagram of the system was drawn at 75°C in terms of the water concentration and of the β16 content. As the molar fraction in β16 increases from about 0.08 to 1, the ternary system displays successively two lamellar structures analogous to that exhibited by the system DPPC/H2O, then a hexagonal structure similar to that exhibited by the system β16/H2O. The two types of lamellar structure were shown to differ by the T or Y conformation adopted by their saccharide chains.  相似文献   

11.
Mixtures of 1,2-dipalmitoyl- and 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DPPC and DHPC) in dispersion with excess water were studied by differential scanning calorimetry (DSC) and X-ray diffraction techniques. The transition parameters of the main gel-to-liquid crystalline transition show a monotonous dependence on the composition, indicating ideal miscibility of the two lipids, in keeping with the closely similar structures of the pure, hydrated lipids in the P beta' and L alpha states. The pre-transition shows a depression to a minimum temperature of 23 degrees C occurring around equimolar mixtures. Below the pre-transition temperatures, the L beta' gel phase of DPPC maintains bimolecular structure up to DHPC admixtures of 50 mol%, with adaptations in hydrocarbon chain packing and multilayer periodicity. On the side of DHPC, the interdigitated gel structure shows full solubility for DPPC up to equimolarity without major structural changes. The crystalline Lc-phase of DPPC exhibits immiscibility with DHPC, demonstrated by the fact that the subtransition is abolished already at less than 15 mol% DHPC. DHPC, below its subtransition, can accommodate up to 50 mol% DPPC within an interdigitated layer structure with unperturbed, crystalline hydrocarbon chain packing.  相似文献   

12.
This letter presents our first results on the structural changes in DPPC multilamellar vesicles dispersed in water in the presence of the anti-cancer agent Ellipticine. The thermotropic phase transitions of the lamellar packing inside lipid vesicles were characterized in situ by small angle X ray diffraction. The results lead to the determination of a critical concentration value for drug loading on the vesicle system around 4% molar fraction of Ellipticine, an indication of the localization of the drug in the alkyl chains and the influence of the drug on the decreasing rate of the bilayer period after the main phase transition.  相似文献   

13.
V Schram  H N Lin    T E Thompson 《Biophysical journal》1996,71(4):1811-1822
The influence of the lipid mixing properties on the lateral organization in a two-component, two-phase phosphatidylcholine bilayer was investigated using both an experimental (fluorescence recovery after photobleaching (FRAP)) and a simulated (Monte Carlo) approach. With the FRAP technique, we have examined binary mixtures of 1-stearoyl-2-capryl-phosphatidylcholine/1,2-distearoyl-phosphat idylcholine (C18C10PC/DSPC), and 1-stearoyl-2-capryl-phosphatidylcholine/1,2-dipalmitoyl-phospha tid ylcholine (C18C10PC/DPPC). Comparison with the 1,2-dimyristoyl-phosphatidylcholine/1,2-distearoyl-phosphatidylcholine (DMPC/DSPC) previously investigated by FRAP by Vaz and co-workers (Biophys. J., 1989, 56:869-876) shows that the gel phase domains become more effective in restricting the diffusion coefficient when the ideality of the mixture increases (i.e., in the order C18C10PC/DSPC-->C18C10PC/DPPC-->DMPC/DSPC). However, an increased lipid miscibility is accompanied by an increasing compositional dependence: the higher the proportion of the high-temperature melting component, the less efficient the gel phase is in compartmentalizing the diffusion plane, a trend that is best accounted for by a variation of the gel phase domain shape rather than size. Computer-simulated fluorescence recoveries obtained in a matrix obstructed with obstacle aggregates of various fractal dimension demonstrate that: 1) for a given obstacle size and area fraction, the relative diffusion coefficient increases linearly with the obstacle fractal dimension and 2) aggregates with a lower fractal dimension are more efficient in compartmentalizing the diffusion plane. Comparison of the simulated with the experimental mobile fractions strongly suggests that the fractal dimension of the gel phase domains increases with the proportion of high-temperature melting component in DMPC/DSPC and (slightly) in C18C10PC/DPPC.  相似文献   

14.
The structure of aggregates formed due to DNA interaction with dioleoylphosphatidylcholine (DOPC) vesicles in presence of Ca(2+) and Mg(2+) cations was investigated using synchrotron small-angle X-ray diffraction. For DOPC/DNA=1:1 mol/base and in the range of concentration of the cation(2+) 0-76.5 mM, the diffractograms show the coexistence of two lamellar phases: L(x) phase with repeat distance d(Lx) approximately 8.26-7.39 nm identified as a phase where the DNA strands are intercalated in water layers between adjacent lipid bilayers, and L(DOPC) phase with repeat distance d(DOPC) approximately 6.45-5.65 nm identified as a phase of partially dehydrated DOPC bilayers without any divalent cations and DNA strands. The coexistence of these phases was investigated as a function of DOPC/DNA molar ratio, length of DNA fragments and temperature. If the amount of lipid increases, the fraction of partially dehydrated L(DOPC) phase is limited, depends on the portion of DNA in the sample and also on the length of DNA fragments. Thermal behaviour of DOPC+DNA+Ca(2+) aggregates was investigated in the range 20-80 degrees C. The transversal thermal expansivities of both phases were evaluated.  相似文献   

15.
By use of neutron diffraction for structural analysis, the temperature-pressure phase diagrams of several fully hydrated single-component phospholipid bilayers have been explored up to hydrostatic pressures of 2 kbars. The gel to liquid-crystalline phase transition temperature Tm increases linearly with pressure over a 10(-3)-2 kbar range in accordance with the Clausius-Clapeyron relationship giving dTm/dP values of 23.0 degrees C/kbar for 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 28.0 degrees C/kbar for 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). The so-called pretransition was not observed in the isothermal pressure experiments, suggesting that no appreciable volume change occurs at this transition. These results are in good agreement with those reported using other techniques. In addition, at pressures higher than the isothermal liquid-crystalline to gel transition pressure, a new pressure-induced phase transition was observed for DPPC and DSPC in which the hydrocarbon chains from apposing monolayers become interdigitated with the chains occupying a cross-sectional area approximately equal to 5% less than in the gel phase. The temperature-pressure phase diagrams show the gel-interdigitated phase boundaries to be highly curved and the minimum pressure at which interdigitation occurs to decrease with increasing hydrocarbon chain length.  相似文献   

16.
In this work we have investigated model lipid mixtures simulating a lipid component of oral stratum corneum (OSC). Neutron diffraction experiments on oriented samples have revealed that SM (bovine brain)/dipalmitoylphosphatidylethanolamine/dipalmitoylphosphatidylcholine (DPPE/DPPC) mixtures at molar ratios of 1/2/1 and 1/1/1 are one-phase membranes. The incorporation of low concentrations of ceramide 6 and cholesterol into SM/DPPC/DPPE bilayers does not result in a phase separation, affecting membrane hydration. The model OSC membrane composed of ceramide 6/cholesterol/fatty acids/cholesterol sulfate/SM (bovine brain)/DPPE/DPPC is characterized by coexistence of several lamellar phases, that behave differently during their hydration in water excess. The phase with lamellar repeat distance of about 45 Å is likely a ceramide-rich phase and shows a restricted swelling in water, while another phase with repeat distance of 50 Å swells very quickly on 15 Å and then disappears. Our results indicate that phospholipid-rich and ceramide-rich domains could possibly coexist in the intercellular space of oral epithelium.  相似文献   

17.
A phenomenological model is proposed to describe the membrane phase equilibria in binary mixtures of saturated phospholipids with different acyl-chain lengths. The model is formulated in terms of thermodynamic and thermomechanic properties of the pure lipid bilayers, specifically the chain-melting transition temperature and enthalpy, the hydrophobic bilayer thickness, and the lateral area compressibility modulus. The model is studied using a regular solution theory made up of a set of interaction parameters which directly identify that part of the lipid-lipid interaction which is due to hydrophobic mismatch of saturated chains of different lengths. It is then found that there is effectively a single universal interaction parameter which, in the full composition range, describes the phase equilibria in mixtures of DMPC/DPPC, DPPC/DSPC, DMPC/DSPC, and DLPC/DSPC, in excellent agreement with experimental measurements. The model is used to predict the variation with temperature and composition of the specific heat, as well as of the average membrane thickness and area in each of the phases. Given the value of the universal interaction parameter, the model is then used to predict the phase diagrams of binary mixtures of phospholipids with different polar head groups, e.g., DPPC/DPPE, DMPC/DPPE and DMPE/DSPC. By comparison with experimental results for these mixtures, it is shown that difference in acyl-chain lengths gives the major contribution to deviation from ideal mixing. Application of the model to mixtures with non-saturated lipids is also discussed.  相似文献   

18.
In this study, we evaluate the effect of phospholipid on the adjuvanicity and protective efficacy of liposome vaccine carriers against visceral leishmaniasis (VL) in a hamster model. Liposomes prepared with distearyol derivative of L-alpha-phosphatidyl choline (DSPC) having liquid crystalline transition temperature (Tc) 54 C were as efficient as dipalmitoyl (DPPC) (Tc 41 C) and dimyristoyl (DMPC) (Tc 23 C) derivatives in their ability to entrap Leishmania donovani membrane antigens (LAg) and to potentiate strong antigen-specific antibody responses. However, whereas LAg in DPPC and DMPC liposomes stimulated inconsistent delayed type hypersensitivity (DTH) responses, strong DTH was observed with LAg in DSPC liposomes. The heightened adjuvant activity of DSPC liposomes corresponded with 95% protection, with almost no protectivity with LAg in DPPC and DMPC liposomes, 4 mo after challenge with L. donovani. These data demonstrate the superiority of DSPC liposomes for formulation of L. donovani vaccine. In addition, they demonstrate a correlation of humoral and cell-mediated immunity with protection against VL in hamsters.  相似文献   

19.
Gramicidin A was studied by continuous wave electron spin resonance (CW-ESR) and by double-quantum coherence electron spin resonance (DQC-ESR) in several lipid membranes (using samples that were macroscopically aligned by isopotential spin-dry ultracentrifugation) and vesicles. As a reporter group, the nitroxide spin-label was attached at the C-terminus yielding the spin-labeled product (GAsl). ESR spectra of aligned membranes containing GAsl show strong orientation dependence. In DPPC and DSPC membranes at room temperature the spectral shape is consistent with high ordering, which, in conjunction with the observed high polarity of the environment of the nitroxide, is interpreted in terms of the nitroxide moiety being close to the membrane surface. In contrast, spectra of GAsl in DMPC membranes indicate deeper embedding and tilt of the NO group. The GAsl spectrum in the DPPC membrane at 35 degrees C (the gel to Pbeta phase transition) exhibits sharp changes, and above this temperature becomes similar to that of DMPC. The dipolar spectrum from DQC-ESR clearly indicates the presence of pairs in DMPC membranes. This is not the case for DPPC, rapidly frozen from the gel phase; however, there are hints of aggregation. The interspin distance in the pairs is 30.9 A, in good agreement with estimates for the head-to-head GAsl dimer (the channel-forming conformation), which matches the hydrophobic thickness of the DMPC bilayer. Both DPPC and DSPC, apparently as a result of hydrophobic mismatch between the dimer length and bilayer thickness, do not favor the channel formation in the gel phase. In the Pbeta and Lalpha phases of DPPC (above 35 degrees C) the channel dimer forms, as evidenced by the DQC-ESR dipolar spectrum after rapid freezing. It is associated with a lateral expansion of lipid molecules and a concomitant decrease in bilayer thickness, which reduces the hydrophobic mismatch. A comparison with studies of dimer formation by other physical techniques indicates the desirability of using low concentrations of GA (approximately 0.4-1 mol %) accessible to the ESR methods employed in the study, since this yields non-interacting dimer channels.  相似文献   

20.
The effect of a series of n-alcohols on the permeability of small, unilamellar dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC) and distearoyl phosphatidylcholine (DSPC) vesicles at the gel-to-liquid crystal phase transition temperature was investigated. It was found that the permeability took the form of the transient lysis of a fraction of the population of vesicles. The effect on this lysis of the n-alcohols was seen to be very chain-length dependent, with a minimum at n = 8 (octan-1-ol) for DPPC vesicles. A similar minimum was observed in the presence of 0.1 mM Triton X-100, but the detergent could then interact with certain of the alcohols to produce permanent channels. The results are discussed in terms of the semi-empirical model of Brasseur et al. (1985) Biochim. Biophys. Acta 814, 227-236, for the interaction of the n-alcohols with a DPPC membrane. The effect of various n-alcohols on the outer and inner monolayers of DPPC vesicles was also studied and the results related to their fluidising effect, allowing channels to open at the phase transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号