首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The analysis of lipoprotein synthesis and secretion in primary hepatocytes has been restricted by the short-term viability and low proliferative response of hepatocytes in vitro. During this investigation a serum-free medium formulation was developed that supports long-term maintenance (>70 d) and active proliferation of primary baboon hepatocytes. Examination of proliferating cells by electron microscopy revealed a distinctive hepatocyte ultrastructure including intercellular bile canaliculi and numerous surface microvilli. High levels of secreted apolipoproteins A-I and E were detected in the tissue culture medium by gel electrophoresis and immunoblot analysis. Immunoprecipitation of proteins from [35S]-methionine labeled tissue culture medium revealed the synthesis and secretion of numerous plasma proteins. Metabolic labeling of cells with [35S]-methionine followed by single-spin density gradient flotation of the media demonstrated that apolipoproteins were being secreted in the form of lipoprotein particles with buoyant densities corresponding to the very low density lipoprotein and low density lipoprotein range, and to the high density lipoprotein range. The labeled apolipoproteins included B h , E, and A-I. This system for primary hepatocyte culture should prove very useful in future investigations on the regulation of lipoprotein production by hepatocytes. This investigation was supported in part by a research grant from the Southwest Foundation Forum, by program project HL 28972 from the National Heart, Lung and Blood Institute, Bethesda, MD, and by grants to R. V. H. from the National Institutes of Health (HL 15062), the American Heart Association, and the Louis Block Fund.  相似文献   

3.
4.
Hepatocyte transplantation is considered an alternative to whole organ transplantation. However, the availability of human cadaveric livers for the isolation of transplantation-quality hepatocytes is increasingly restricted. Xenogeneic porcine hepatocytes may therefore serve as an alternate cell ressource. The propagation of hepatocytes is often necessary to yield a sufficient cell number for downstream applications in xenotransplantation and in, for example, bioartificial liver support or pharmacological and toxicological studies. Our goal has been to propagate primary porcine hepatocytes in vitro and to determine the functional maintenance of the propagated cells. Porcine hepatocytes were cultured under serum-free conditions in the presence of hepatocyte growth factor and epidermal growth factor and passaged several times. The viability, proliferation and maintenance of liver-specific functions were determined as culture proceeded. Total cell number increased by 12-fold during four sequential passages, although the proliferative capacity was higher in primary cells and early passages as compared with late passages. Xenobiotics metabolism and urea synthesis gradually decreased with ongoing culture but could be restored by treatment with appropriate stimuli such, as β-naphthoflavone and cAMP. The expression of hepatocyte-specific genes was generally lower at the beginning than at later time-points of culture of individual passages. Porcine hepatocytes can thus be propagated in vitro. The partial loss of hepatocyte function may be restored in vitro by appropriate stimuli. This may also be achieved in a recipient liver after hepatocyte transplantation provided that the proper physiological environment for the maintenance of the differentiated hepatocyte phenotype is present. This study was supported by grants to B. Christ from the German Ministry of Education and Research (01 ZZ 0109 and NBL3-NG4) as well as by grants from the Federal State of Saxonia-Anhalt through the Wilhelm-Roux-Program at the Medical Faculty of the Martin-Luther-University of Halle-Wittenberg to B. Christ (09/07 and 04/03).  相似文献   

5.
6.
A series of simian virus 40 (SV40)-immortalized hepatocyte cell lines were characterized for albumin production, the regulation of albumin production, and the expression of other liver-specific genes. This series of cell lines is particularly useful for studying the regulation of hepatocyte gene expression because the cell lines express liverlike levels of a number of liver-specific functions and do so while growing in a chemically defined medium. SV40-immortalized hepatocyte cell lines were derived from colonies of albumin-producing epithelial cells that arose after primary hepatocytes maintained in chemically defined medium were transfected with SV40 DNA. Some cell lines secreted albumin at levels equal to or greater than those secreted by freshly plated primary hepatocytes, and all but one line continued to produce albumin for more than 20 passages. The variation in albumin secretion among cell lines reflected differences in the amount of albumin produced per cell and not in the percentage of albumin-producing cells in each line. The characterization of selected cell lines showed that albumin production was regulated by cell density during the growth cycle. Albumin production in most cell lines was also regulated by dexamethasone; however, one cell line continued to produce high levels of albumin when the cells were grown in medium lacking dexamethasone, demonstrating that although glucocorticoid can induce albumin production in some cell lines, it is not required for high levels of albumin production by all cells in culture. Regulation of albumin production measured at the level of protein secretion was paralleled by changes in steady-state levels of a 2.3-kilobase albumin RNA. Albumin-producing SV40-immortalized hepatocytes secreted a variety of other plasma proteins, including transferrin, hemopexin, and the third component of complement. These cells also expressed tyrosine aminotransferase activity that was inducible by dexamethasone. Alpha-fetoprotein production was not detected in any of the cell lines examined.  相似文献   

7.
We have identified the liver-regulating protein (LRP), a cell surface protein involved in the maintenance of hepatocyte differentiation when cocultured with rat liver epithelial cells (RLEC). LRP was defined by immunoreactivity to a monoclonal antibody (mAb L8) prepared from RLEC. mAb L8 specifically detected two polypeptides of 85 and 73 kD in immunoprecipitation of both hepatocyte- and RLEC-iodinated plasma membranes. The involvement of these polypeptides, which are integral membrane proteins, in cell interaction-mediated regulation of hepatocytes was assessed by evaluating the perturbing effects of the antibody on cocultures with RLEC. Several parameters characteristic of differentiated hepatocytes were studied, such as liver-specific and house-keeping gene expression, cytoskeletal organization and deposition of extracellular matrix (ECM). An early cytoskeletal disturbance was evidenced and a marked alteration of hepatocyte functional capacity was observed in the presence of the antibody, together with a loss of ECM deposition. By contrast, cell-cell aggregation or cell adhesion to various extracellular matrix components were not affected. These findings suggest that LRP is distinct from an extracellular matrix receptor. The fact that early addition of mAb L8 during cell contact establishment was necessary to be effective may indicate that LRP is a novel plasma membrane protein that plays an early pivotal role in the coordinated metabolic changes which lead to the differentiated phenotype of mature hepatocytes.  相似文献   

8.
Summary Immortalized human hepatocytes that can retain functions of drug-metabolizing enzymes would be useful for medical and pharmacological studies and for constructing an artificial liver. The aim of this study was to establish immortalized human hepatocyte lines having differentiated liver-specific functions. pSVneo deoxyribonucleic acid, which contains large and small T genes in the early region of simian virus 40, was introduced into hepatocytes that had been obtained from the liver of a 21-wk-old fetus. Neomycin-resistant immortalized colonies were cloned and expanded to mass cultures to examine hepatic functions. Cells were cultured in a chemically defined serum-free medium, ASF104, which contains no peptides other than recombinant human transferrin and insulin. As a result, an immortal human hepatocyte cell line (OUMS-29) having liver-specific functions was established from one of the 13 clones. Expression of CYP 1A1 and 1A2 messenger ribonucleic acid by the cells was induced by treatment with benz[a]pyrene, 3-methylcholanthrene, and benz[a]anthracene. OUMS-29 cells had both the polycyclic aromatic hydrocarbon receptor (AhR) and AhR nuclear translocator. Consequently, 7-ethoxyresorufin deethylase activity of the cells was induced time- and dose-dependently by these polycyclic aromatic hydrocarbons. This cell line is expected to be instrumental as an alternative method in animal experiments for studying hepatocarcinogenesis, drug metabolisms of liver cells, and hepatic toxicology.  相似文献   

9.
10.
11.
A large number of hepatoma cell lines has been used to study expression and regulation of liver-specific function. However these cells, even the most differentiated, are morphologically far from hepatocytes. In no case is the typical hepatocyte cell polarity well maintained. Cell hybridization has been used as a potential means for turning on specific genes. From hybrids between well differentiated Fao rat hepatoma cells and WI 38 human fibroblasts, we have attempted to isolate segregated cells that are highly differentiated and polarized. Such cells, detected in aged cultures of only one hybrid (WIF12), were isolated by subcloning. One subclone, WIF12-1 was analyzed. Expression of liver-specific functions extinguished in the original hybrid is restored in all WIF12-1 cells at a very high level, similar to that of hepatocytes and 5-30 times higher that that of parental cells. Moreover human genes coding for liver-specific proteins (albumin, fibrinogen, and alcohol dehydrogenase) are actively expressed. WIF12-1 cells have acquired a polarized phenotype as attested by the presence of bile canaliculi between adjacent cells and by the asymmetrical localization of apical (Mg(2+)-ATPase, gamma-glutamyl transpeptidase) and basolateral membrane markers. The bile canaliculi formed are dynamic and functional structures, characterized by long periods of expansion followed by rapid contractions. The ability to polarize is a general and permanent property of WIF12-1 cells. These cells appear to constitute a valid model for the in vitro study of hepatocyte cell polarity, membrane domain formation and mechanisms of membrane protein sorting.  相似文献   

12.
Primary human hepatocytes were immortalized by stable transfection with a recombinant plasmid containing the early region of simian virus (SV) 40. The cells were cultured in serum-free, hormonally defined medium during the immortalization procedure. Foci of dividing cells were seen after 3 months. Albumin- and fibrinogen-secreting cells were selected and cloned by limiting dilution to obtain homologous cell populations. The established IHH (immortalized human hepatocyte) cell lines were evaluated for their usefulness in studying the regulation of cell growth and of certain differentiated hepatocyte functions.IHH cells retain several differentiated features of normal hepatocytes. They display albumin secretion at a level comparable to cultured primary human hepatocytes (30 µg albumin/ml per day). A portion of the IHH cells are polarized, forming bile canaliculi-like vacuoles where exogeneous organic anions accumulate. The multidrug resistance (MDR) P-glycoprotein, known to be localized at the canalicular membrane, is also present in these vacuoles. The polarized features allowed the use of IHH cells for the study of localization of the newly characterized multidrug resistance protein MRP1. The homologues of MRP were found in hepatocytes, MRP1 and MRP2 (cMOAT), both functioning in ATP-dependent excretion of anionic conjugates. In differentiated hepatocytes, MRP1 expression is extremely low. In contrast, MRP1 is highly expressed in proliferating IHH cells, where it is localized in lateral membranes. A highly differentiated feature of short-term cultured primary hepatocytes which is not detectable in IHH cells is active uptake of the bile salt taurocholate. Furthermore, IHH cells secrete triglyceride (TG)-rich lipoproteins, apolipoprotein B (0.6 µg/ml per day), and apolipoprotein A-I (1 µg/ml per day). However, they secrete apoB-containing TG-rich lipoproteins mainly in the LDL density range, while short-term cultured primary hepatocytes mainly secrete TG-rich lipoproteins in the VLDL density range.In conclusion, functions that are rapidly lost in short-term hepatocyte cultures are, in general, not displayed by IHH cells. Immortalized human hepatocytes provide a valuable tool for studying the regulation of hepatocyte proliferation-related phenomena.  相似文献   

13.
Summary— Human hepatocytes cultured with a hormonally defined medium on non-adherent poly-(2-hydroxyethyl methacrylate) coated surface were able to form spheroids. The maintenance of liver-specific functions was assessed by following secretion of albumin, transferrin and α-antitrypsin that were still detectable after 4 months of spheroidal culture. Moreover, cytochrome P-450 IA was induced by methylcholanthrene for up to 2 weeks. This cell system is very promising for long-term in vitro studies of human hepatocyte functions.  相似文献   

14.
Hepatic differentiation of murine embryonic stem cells.   总被引:49,自引:0,他引:49  
Murine embryonic stem (ES) cells can replicate indefinitely in culture and can give rise to all tissues, including the germline, when reimplanted into a murine blastocyst. ES cells can also be differentiated in vitro into a wide range of cell types. We have utilized a liver-specific marker to demonstrate that murine ES cells can differentiate into hepatocytes in vitro. We have used ES cells carrying a gene trap vector insertion (I.114) into an ankyrin repeat-containing gene (Gtar) that we have previously shown provides an exclusive beta-galactosidase marker for the early differentiation of hepatocytes in vivo. beta-Galactosidase-positive cells were differentiated from I.114 ES cells in vitro. The identity of these cells was confirmed by the expression of the proteins alpha-fetoprotein, albumin, and transferrin and by the fact that they have an ultrastructural appearance consistent with that of embryonic hepatocytes. We propose that this model system of hepatic differentiation in vitro could be used to define factors that are involved in specification of the hepatocyte lineage. In addition, human ES cells have recently been derived and it has been proposed that they may provide a source of differentiated cell types for cell replacement therapies in the treatment of a variety of diseases.  相似文献   

15.
Hepatocyte transplantation (HTX) could be an attractive treatment for patients with liver failure and liver-based metabolic disease. Human primary hepatocytes are ideal in this modality, but the shortage of human livers available for hepatocyte isolation severely limits the use of this form of therapy. A tightly regulated human hepatocyte cell line that grows economically in culture and exhibits differentiated liver functions would be an attractive alternative to the primary human hepatocytes. To test the feasibility, human hepatocytes were immortalized by a retroviral vector expressing simian virus 40 large T antigen and herpes simplex virus-thymidine kinase. A highly differentiated immortal hepatocyte line NKNT-3 was established. NKNT-3 cells grew in chemically defined serum-free medium, retained highly differentiated liver functions, and were sensitivity to ganciclovir as a prodrug. Essentially unlimited availability of NKNT-3 cells may be clinically useful for HTX and bioartificial liver.  相似文献   

16.
Primary hepatocytes cultured as monolayers or as spheroids were studied to compare the effects of four different culture media (Williams' E, Chee's, Sigma Hepatocyte, and HepatoZYME medium). Rat hepatocytes were cultured as conventional monolayers for 3 d or as spheroids for 2 wk. For spheroid formation a method was emplOyed that combined the use of a nonadherent substratum with rotation of cultures. Hepatocyte integrity and morphology were assessed by light and electron microscopy and by reduced glutathione content. Hepatocyte function was measured by albumin secretion and 7-ethoxycoumarin metabolism. Chee's medium was found to be optimal for maintenance of hepatocyte viability and function in monolayers, but it failed to support spheroid formation. For spheroid formation and for the maintenance of spheroid morphology and function, Sigma HM was found to be optimal. These results demonstrate that the medium requirements of hepatocytes differ markedly depending on the culture model employed. Spheroid culture allowed better preservation of morphology and function of hepatocytes compared with conventional monolayer culture. Hepatocytes in spheroids formed bile canaliculi. and expressed an actin distribution resembling that found in hepatocytes in vivo. Albumin secretion was maintained at the same level as that found during the first d in primary culture, and 7-ethoxycoumarin metabolism was maintained over 2 wk in culture at approximately 30% of the levels found in freshly isolated hepatocytes. The improved morphology and function of hepatocyte cultures as spheroids may provide a more appropriate in vitro model for certain applications where the maintenance of liver-specific functions in long-term culture is crucial.  相似文献   

17.
Although hepatocyte transplantation and bioartificial liver support system provide new promising opportunities for those patients waiting for liver transplantation, hepatocytes are easily losing liver-specific functions by using the common in vitro cultured methods. The co-culture strategies with mimicking the in vivo microenvironment would facilitate the maintenance of liver-specific functions of hepatocytes. Considering that hepatocytes and endothelial cells (ECs) account for 80–90% of total cell populations in the liver, hepatocytes and ECs were directly co-cultured with hepatic stellate cells (HSCs) or adipose tissue-derived stem cells (ADSCs) at a ratio of 700:150:3 or 14:3:3 in the present study, and the liver-specific functions were carefully analyzed. Our results showed that the two co-culture systems presented the enhanced liver-specific functions through promoting secretion of urea and ALB and increasing the expressions of ALB, CYP3A4 and HNF4α, and the vessel-like structure in the co-culture system consisted of hepatocytes, ECs and ADSCs. Hence, our results suggested that the directly co-culture of hepatocytes and ECs with HSCs or ADSCs could significantly improve liver-specific functions of hepatocytes, and the co-culture system could further promote angiogenesis of ECs at a later stage. Therefore, this study provides potential interesting in vitro strategies for enhancing liver-specific functions of hepatocytes.  相似文献   

18.
19.
Summary We have established the human hepatoma cell line, HepG2, in a defined, serum-free medium. These cells were maintained and studied over a 100-generation period (i.e. 10 serial transfers). Cells maintained in serum-free medium exhibited growth parameters (i.e. saturation density, efficiency of plating, and population doubling time) similar to those obtained with HepG2 cells maintained in serum-supplemented medium. Serum-free cells were also similar to their serum-supplemented counterparts with respect to the expression of cathepsin B activity and the induction of aryl hydrocarbon hydroxylase by 2,3,7,8-tetra-chlorodibenzo-p-dioxin. Significantly, HepG2 cells maintained in serum-free conditions also retained the ability to synthesize and secrete proteins, including the liver plasma protein, apo-lipoprotein B. These results indicate that the serum-free medium used in this study supports the long-term growth and maintenance of human hepatoma, HepG2, cells in culture. Inasmuch as these cells retain phenotypes, including differentiated markers previously reported for their serum-supplemented counterparts, they may provide a more reliable, standardized culture system to study the expression, secretion, and regulation of proteins during biological and pathologic processes.  相似文献   

20.
A number of therapeutic plasma proteins are synthesized by human hepatocytes. Since many of these proteins undergo liver-specific post-translational modifications which are required for full biological activity, it may therefore be necessary to develop hepatocyte-based expression systems for their production. Using transgenic mice we have developed a transimmortalisation technique for the isolation of differentiated hepatic cell lines, already engineered to secrete human alpha 1 antitrypsin (alpha 1 AT), a plasma protein which is produced mainly in liver cells. This was achieved by co-expression of the mouse c-myc proto-oncogene and a genomic copy of the human alpha 1 AT gene, both under the control of the human alpha 1 AT promoter. Transgenic mice carrying this construct developed hepatomas producing human alpha 1 AT. Under defined culture conditions, cell lines secreting active alpha 1 AT were derived from these tumours. These cells maintain a differentiated hepatic phenotype and continue to secrete human alpha 1 AT for at least 40 generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号