首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Rate and bromine-81 nmr spectroscopic investigations of the binding of bromide and chloride ions to bacterial L-glutamate decarboxylase have been carried out. A mild acceleration of the decarboxylation reaction by these anions is observed and the nmr results suggest that bromide and chloride bind competitively to the enzyme. Bromide ion binding appears to have the same pH dependence as the rate of the enzymatic reaction.  相似文献   

3.
Amino acid sequences of E. coli glutamate decarboxylase (GADa) and those of 36 GAD of different origin were compared by pairwise alignment using computer program CLUSTAL. GADalpha and plant enzymes showed 59.8-67.8% subunit homology, GADalpha and other bacterial GAD--49.8-77.6%, whereas GADalpha and animal enzymes--13.9-58.8%. Two PLP domains exhibited higher homology comparing to that of the whole subunit in the case of GAD67, plant (68.4-73.9%), and bacterial (46.7-83.2%) enzymes. The alignment of PLP-domains of 37 GAD, three group II decarboxylases, and two pyridoxal enzymes with known 3D structures (bacterial ORD and mAAT from chicken heart) allowed us to reveal conserved residues of the active sites. Their functional role is discussed. Modelling of the PLP-binding sites in active centers for GADalpha and human brain GAD67 was done using the Swiss-PdbViewer homology modelling program. Although the homology between GADalpha and GAD67 is rather low, structural similarity of their active sites allows us to consider here a functional convergence. Thus, glutamate decarboxylation by GADalpha may be helpful for understanding general mechanism of this reaction.  相似文献   

4.
L M Abell  M H O'Leary 《Biochemistry》1988,27(9):3325-3330
The nitrogen isotope effect on the decarboxylation of glutamic acid by glutamate decarboxylase from Escherichia coli has been measured by comparison of the isotopic composition of the amino nitrogen of the product gamma-aminobutyric acid isolated after 10-20% reaction with that of the starting glutamic acid. At pH 4.7, 37 degrees C, the isotope effect is k14/k15 = 0.9855 +/- 0.0006 when compared to unprotonated glutamic acid. Interpretation of this result requires knowledge of the equilibrium nitrogen isotope effect for Schiff base formation. This equilibrium isotope effect is k14/k15 = 0.9824 for the formation of the unprotonated Schiff base between unprotonated valine and salicylaldehyde. Analysis of the nitrogen isotope effect on decarboxylation of glutamic acid and of the previously measured carbon isotope effect on this same reaction [O'Leary, M.H., Yamada, H., & Yapp, C.J. (1981) Biochemistry 20, 1476] shows that decarboxylation and Schiff base formation are jointly rate limiting. The enzyme-bound Schiff base between glutamate and pyridoxal 5'-phosphate partitions approximately 2:1 between decarboxylation and return to the starting state. The nitrogen isotope effect also reveals that the Schiff base nitrogen is protonated in this intermediate.  相似文献   

5.
6.
A rapid test procedure for the enzyme glutamate decarboxylase was developed for detection of Escherichia coli. The assay procedure was able to confirm the presence of E. coli in enteric broth cultures with 95% specificity for both pure cultures and environmental samples. The procedure was capable of detecting survivors among chlorine-exposed cells.  相似文献   

7.
Phosphopantothenoylcysteine decarboxylase catalyzes the decarboxylation of 4'-phosphopantothenoylcysteine (2) to form 4'-phosphopanthetheine (3), an intermediate in the biosynthesis of Coenzyme A. In this study we investigated the stereochemistry of this reaction. Our results show that the decarboxylation proceeds with retention of stereochemistry, and that the pro-R proton at C(beta) of the cysteine moiety of 2 is removed during a reversible oxidation of the thiol to a thioaldehyde intermediate.  相似文献   

8.
9.
10.
谷氨酸脱羧酶(glutamate decarboxylase,GAD)是一种磷酸吡哆醛(pyridoxal-5′-phosphate,PLP)依赖性酶,广泛存在于自然界的动植物和微生物中,在酸性环境下发生结构变化,不可逆地催化L-谷氨酸或谷氨酸盐α-脱羧生成γ-氨基丁酸(γ-aminobutyric acid,GABA)。γ-氨基丁酸在人体中作为一种抑制性神经递质,具有重要的生理功能,可以被广泛应用于食品和制药工业中。本文就谷氨酸脱羧酶结构及催化机制的研究进展进行概述。  相似文献   

11.
L-threo-3-Fluoroglutamate and L-erythro-3-fluoroglutamate were tested with glutamate decarboxylase from Escherichia coli. Both isomers were substrates: the threo isomer was decarboxylated into optically active 4-amino-3-fluorobutyrate, whereas the erythro isomer lost the fluorine atom during the reaction, yielding succinic semialdehyde after hydrolysis of the unstable intermediate enamine. The difference between the two isomers demonstrates that the glutamic acid-pyridoxal phosphate Schiff base is present at the active site under a rigid conformation. Furthermore, although the erythro isomer lost the fluorine atom, yielding a reactive aminoacrylic acid in the active site, no irreversible inactivation of E. coli glutamate decarboxylase was observed.  相似文献   

12.
13.
Bioprocess and Biosystems Engineering - Biological synthesis of succinic acid at low pH values was favored since it not only decreased investment cost but also simplified downstream purification...  相似文献   

14.
To examine the idea that glutamate decarboxylase from E. coli can be a convenient source for the study of the effects of compounds on GABA synthesis in the nervous system, a series of substrate analogues and divalent cations were tested as potential inhibitors of the bacterial enzyme. Those analogues exhibiting inhibitor activity did so in a competitive manner. The most effective inhibitors were 3-mercaptopropionic acid, 4-bromoisophthalic acid and isophthalic acid which exhibited Ki values of 0.13 mM, 0.22 mM and 0.31 mM, respectively. Eight other analogues produced lesser degrees of inhibition. In addition, seven divalent metal cations were tested as inhibitors of the enzyme. However, only Hg2+, Cd2+, Cu2+ and Zn2+ were effective at a concentration of 0.1mM. When these results were compared to the patterns of inhibition of glutamate decarboxylase from mouse brain, certain differences in the manner in which the enzymes responded to the inhibitors, emerged. Consequently, the bacterial decarboxylase may not be a good model for the study of drug action on brain GABA synthesis.  相似文献   

15.
Glutamate decarboxylase is a vitamin B6-dependent enzyme, which catalyses the decarboxylation of glutamate to gamma-aminobutyrate. In Escherichia coli, expression of glutamate decarboxylase (GadB), a 330 kDa hexamer, is induced to maintain the physiological pH under acidic conditions, like those of the passage through the stomach en route to the intestine. GadB, together with the antiporter GadC, constitutes the gad acid resistance system, which confers the ability for bacterial survival for at least 2 h in a strongly acidic environment. GadB undergoes a pH-dependent conformational change and exhibits an activity optimum at low pH. We determined the crystal structures of GadB at acidic and neutral pH. They reveal the molecular details of the conformational change and the structural basis for the acidic pH optimum. We demonstrate that the enzyme is localized exclusively in the cytoplasm at neutral pH, but is recruited to the membrane when the pH falls. We show by structure-based site-directed mutagenesis that the triple helix bundle formed by the N-termini of the protein at acidic pH is the major determinant for this behaviour.  相似文献   

16.
17.
18.
The amino acid sequence of glutamate decarboxylase from Escherichia coli was solved by a combination of automated Edman degradation of peptide fragments derived by proteolytic and chemical cleavage and sequencing of DNA. Correct alignment of three peptides, for which no peptide overlaps were available, was achieved by sequencing a 1.1-kbp fragment of DNA produced by a polymerase-chain reaction using primers corresponding to sequences known to be in amino-terminal and carboxy-terminal regions of the protein. Sequence similarity (24% identity) with mammalian glutamate decarboxylase was found to be limited to a 55-residue sequence around the lysine residue that binds the coenzyme. Stronger similarity (38% identity), again confined to the same region, is seen with bacterial pyridoxal-phosphate-dependent histidine decarboxylase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号