首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In sickle cell disease, inflammatory activation of vascular endothelium and increased leukocyte-endothelium interaction may play an important role in the occurrence of vasoocclusion. In sickle mouse models, inflammatory stimuli (e.g., hypoxia-reoxygenation and cytokines) result in increased leukocyte recruitment and can initiate vasoocclusion, suggesting that anti-inflammatory therapy could be beneficial in management of this disease. We have tested the hypothesis that inhibition of endothelial activation in a transgenic mouse model by anti-inflammatory agents would lead to reduced leukocyte recruitment and improved microvascular blood flow in vivo. In transgenic sickle mice, hypoxia-reoxygenation resulted in greater endothelial oxidant production than in control mice. This exaggerated inflammatory response in transgenic mice, characterized by increased leukocyte recruitment and microvascular flow abnormalities, was significantly attenuated by antioxidants (allopurinol, SOD, and catalase). In contrast, control mice exhibited a muted response to antioxidant treatment. In addition, hypoxia-reoxygenation induced activation of NF-kappaB in transgenic sickle mice but not in control mice. In transgenic sickle mice, sulfasalazine, an inhibitor of NF-kappaB activation and endothelial activation, attenuated endothelial oxidant generation, as well as NF-kappaB activation, accompanied by a marked decrease in leukocyte adhesion and improved microvascular blood flow. Thus targeting oxidant generation and/or NF-kappaB activation may constitute promising therapeutic approaches in sickle cell disease.  相似文献   

2.
Endothelial cells play an essential role in immune responses by regulating the entry of leukocytes into lymphoid tissues and sites of inflammation. As an initial approach to analyzing endothelial cell specialization in relation to such immune function, we have produced monoclonal antibodies (MAB) against mouse lymph node endothelium. Three antibodies were selected: MECA-20, recognizing the endothelium of all blood vessels in lymphoid as well as non-lymphoid organs; MECA-217, which stains the endothelium lining large elastic arteries, but among small vessels is specific for post-capillary venules within lymphoid organs and tissues exposed to exogenous antigen, such as skin and uterus; and MECA-325, an antibody that demonstrates specificity for the specialized high endothelial venules (HEV) that control lymphocyte homing into lymph nodes and Peyer's patches. MECA-325 failed to stain vessels in any non-lymphoid organs tested. Immunoperoxidase studies of HEV in lymph node frozen sections, and of isolated high endothelial cells in suspensions, demonstrated that the antigens recognized by all three antibodies are expressed at the cell surface; those defined by MECA-20 and MECA-325 are also present in the cytoplasm. To study the regulation of the antigens defined by these MAB in relation to extra-lymphoid immune reactions, we assessed their expression in induced s.c. granulomas as a model for chronic inflammation. Small vessels in the granulomas were already stained by MECA-217 in the first days of development. In contrast MECA-325 detected postcapillary venules (which frequently displayed the morphologic characteristics of HEV) only from approximately 1 wk, in parallel with the development of a persistent mononuclear cell infiltrate including numerous lymphocytes. The selective appearance of the MECA-325 antigen on vascular endothelium supporting lymphocyte traffic in both lymphoid and extra-lymphoid sites suggests that this antigen may play an important role in the process of lymphocyte extravasation. The demonstration of lymphoid organ- and inflammation-specific microvascular antigens offers direct evidence for a complex specialization of endothelium in relation to immune stimuli, and supports the concept that microvascular differentiation may play an important role in local immune responses.  相似文献   

3.
4.
The microvascular endothelium plays an important role as a selectively permeable barrier to fluids and solutes. The adhesive junctions between endothelial cells regulate permeability of the endothelium, and many studies have indicated the important contribution of the actin cytoskeleton to determining junctional integrity1-5. A cortical actin belt is thought to be important for the maintenance of stable junctions1, 2, 4, 5. In contrast, actin stress fibers are thought to generate centripetal tension within endothelial cells that weakens junctions2-5. Much of this theory has been based on studies in which endothelial cells are treated with inflammatory mediators known to increase endothelial permeability, and then fixing the cells and labeling F-actin for microscopic observation. However, these studies provide a very limited understanding of the role of the actin cytoskeleton because images of fixed cells provide only snapshots in time with no information about the dynamics of actin structures5. Live-cell imaging allows incorporation of the dynamic nature of the actin cytoskeleton into the studies of the mechanisms determining endothelial barrier integrity. A major advantage of this method is that the impact of various inflammatory stimuli on actin structures in endothelial cells can be assessed in the same set of living cells before and after treatment, removing potential bias that may occur when observing fixed specimens. Human umbilical vein endothelial cells (HUVEC) are transfected with a GFP-β-actin plasmid and grown to confluence on glass coverslips. Time-lapse images of GFP-actin in confluent HUVEC are captured before and after the addition of inflammatory mediators that elicit time-dependent changes in endothelial barrier integrity. These studies enable visual observation of the fluid sequence of changes in the actin cytoskeleton that contribute to endothelial barrier disruption and restoration. Our results consistently show local, actin-rich lamellipodia formation and turnover in endothelial cells. The formation and movement of actin stress fibers can also be observed. An analysis of the frequency of formation and turnover of the local lamellipodia, before and after treatment with inflammatory stimuli can be documented by kymograph analyses. These studies provide important information on the dynamic nature of the actin cytoskeleton in endothelial cells that can used to discover previously unidentified molecular mechanisms important for the maintenance of endothelial barrier integrity.Download video file.(55M, mov)  相似文献   

5.
Leukocyte recruitment in response to inflammatory signals is in part governed by interactions between endothelial cell receptors belonging to the Ig superfamily and leukocyte integrins. In our previous work, the human Ig superfamily glycoprotein Thy-1 (CD90) was identified as an activation-associated cell adhesion molecule on human dermal microvascular endothelial cells. Furthermore, the interaction of Thy-1 with a corresponding ligand on monocytes and polymorphonuclear cells was shown to be involved in the adhesion of these leukocytes to activated Thy-1-expressing endothelial cells. In this study, we have identified the specific interaction between human Thy-1 and the leukocyte integrin Mac-1 (CD11b/CD18; alphaMbeta2) both in cellular systems and in purified form. Monocytes and polymorphonuclear cells were shown to adhere to transfectants expressing human Thy-1 as well as to primary Thy-1-expressing human dermal microvascular endothelial cells. Furthermore, leukocyte adhesion to activated endothelium as well as the subsequent transendothelial migration was mediated by the interaction between Thy-1 and Mac-1. This additional pathway in leukocyte-endothelium interaction may play an important role in the regulation of leukocyte recruitment to sites of inflammation.  相似文献   

6.
The calcineurin inhibitor cyclosporine A (CsA) modulates leukocyte cytokine production but may also effect nonimmune cells, including microvascular endothelial cells, which regulate the inflammatory process through leukocyte recruitment. We hypothesized that CsA would promote a proinflammatory phenotype in human intestinal microvascular endothelial cells (HIMEC), by inhibiting inducible nitric-oxide synthase (iNOS, NOS2)-derived NO, normally an important mechanism in limiting endothelial activation and leukocyte adhesion. Primary cultures of HIMEC were used to assess CsA effects on endothelial activation, leukocyte interaction, and the expression of iNOS as well as cell adhesion molecules. CsA significantly increased leukocyte binding to activated HIMEC, but paradoxically decreased endothelial expression of cell adhesion molecules (E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule-1). In contrast, CsA completely inhibited the expression of iNOS in tumor necrosis factor-alpha/lipopolysaccharide-activated HIMEC. CsA blocked p38 MAPK phosphorylation in activated HIMEC, a key pathway in iNOS expression, but failed to inhibit NFkappaB activation. These studies demonstrate that CsA exerts a proinflammatory effect on HIMEC by blocking iNOS expression. CsA exerts a proinflammatory effect on the microvascular endothelium, and this drug-induced endothelial dysfunction may help explain its lack of efficacy in the long-term treatment of chronically active inflammatory bowel disease.  相似文献   

7.
Annexin 1 (ANX1), a calcium-binding protein, participates in the regulation of early inflammatory responses. Whereas some of its effects depend on intracellular interactions, a growing number of observations indicate that ANX1 may also act via autocrine/paracrine functions following externalization to the outer side of the plasma membrane. We studied the effects of ANX1 on leukocyte adhesion to endothelial cells using as a model system the monocytic cell line U937 and human bone marrow microvascular endothelial cells. Exogenous rANX1, as well as endogenous ANX1 externalized by U937 differentiated in vitro, inhibited monocyte firm adhesion to vascular endothelium. Both binding of ANX1 to U937 cells and ANX1-mediated inhibition of cell adhesion involved the short N-terminal domain of the ANX1 molecule. Under experimental conditions in which ANX1 inhibited U937 adhesion to human bone marrow microvascular endothelial cells, this protein specifically colocalized with the alpha 4 integrin, and a direct interaction between ANX1 and the alpha 4 integrin could be documented by immunoprecipitation experiments. Moreover, ANX1 competed with the endothelial integrin counterreceptor, VCAM-1, for binding to alpha 4 integrin. These results indicate that ANX1 plays an important physiological role in modulating monocyte firm adhesion to the endothelium.  相似文献   

8.
Endothelial lipase (EL), a new member of the lipoprotein lipase gene family, plays a central role in high density lipoprotein metabolism. Previous studies indicated that EL is expressed in endothelial cells, macrophages, and smooth muscle cells in atherosclerotic lesions in human coronary arteries. However, the functional role of EL in the local vessel wall remains obscure. In this study, we evaluated the ability of EL to modulate monocyte adhesion to the endothelial cell surface. EL mRNA and protein levels were markedly increased in tissues of the mouse model of inflammation induced by lipopolysaccharide injection. Adhesion assays in vitro revealed that overexpression of EL in COS7 or Pro5 cells enhanced monocyte bindings to the EL-expression cells. Heparin or heparinase treatment inhibited EL-mediated increases of monocyte adhesion in a dose-dependent manner. Moreover, ex vivo adhesion assays revealed that the number of adherent monocytes on aortic strips was significantly increased in EL transgenic mice and decreased in EL knock-out mice as compared with wild-type mice. These results suggest that EL on the endothelial cell surface can promote monocyte adhesion to the vascular endothelium through the interaction with heparan sulfate proteoglycans. Thus, the up-regulation of EL by inflammatory stimuli may be involved in the progression of inflammation.  相似文献   

9.
BST2 is a type II transmembrane protein that had been initially identified as a surface molecule expressed on terminally differentiated B cells. Here, we characterize the expression of BST2 in human endothelial cells, HUVECs. IFN-γ, among various inflammatory stimuli, dramatically upregulates BST2 expression in HUVECs. We also address a novel putative role of BST2 in IFN-γ-stimulated HUVECs as an intercellular adhesion-related molecule. We show that purified extracellular domain of BST2 protein specifically and significantly decreased the adhesion of human monocytes to HUVECs, which suggests that IFN-γ-induced BST2 expression may be involved in monocyte migration from blood through the endothelium to the inflammation site. Furthermore, we show that the monocytic cell line U937 can directly adhere to BST2 extracellular domain-coated tissue culture wells. These results provide experimental evidence to support a novel role for BST2 in the interaction between human monocyte and IFN-γ-stimulated endothelium.  相似文献   

10.
11.
12.
Microvascular endothelial cells are protagonists in inflammation and angiogenesis. They contribute to the integrity of microvasculature by synthesizing a large array of cytokines, growth factors and mediators active on the endothelium itself, on smooth muscle cells and circulating leukocytes. Because space flight (i) associates with vascular impairment and (ii) modulates the cytokine network, we evaluated the effect of modeled microgravity on microvascular 1G11 cells. We found that modeled microgravity reversibly inhibits endothelial growth and this correlates with an upregulation of p21, a cyclin-dependent kinases inhibitor. By protein array, we found that microgravity inhibits the synthesis of interleukin 6, an event that may contribute to growth retardation. We also detected increased amounts of nitric oxide, a mediator of inflammatory responses, a potent vasodilator and a player in angiogenesis. The increased synthesis of nitric oxide is due, at least in part, to an upregulation of endothelial nitric oxide synthase. Because low levels of IL-6 might contribute to endothelial growth retardation as well as to the enhancement of nitric oxide synthesis, we hypothesize a central role of IL-6 in modulating microvascular endothelial cell behaviour in modeled microgravity.  相似文献   

13.
The surface of vascular endothelium bears a glycocalyx comprised, in part, of a complex mixture of oligosaccharide chains attached to cell-surface proteins and membrane lipids. Importantly, understanding of the structure and function of the endothelial glycocalyx is poorly understood. Preliminary studies have demonstrated structural differences in the glycocalyx of pulmonary artery endothelial cells compared with pulmonary microvascular endothelial cells. Herein we begin to probe in more detail structural and functional attributes of endothelial cell-surface carbohydrates. In this study we focus on the expression and function of sialic acids in pulmonary endothelium. We observed that, although pulmonary microvascular endothelial cells express similar amounts of total sialic acids as pulmonary artery endothelial cells, the nature of the sialic acid linkages differs between the two cell types such that pulmonary artery endothelial cells express both α(2,3)- and α(2,6)-linked sialic acids on the surface (i.e., surficially), whereas microvascular endothelial cells principally express α(2,3)-linked sialic acids. To determine whether sialic acids play a role in endothelial barrier function, cells were treated with neuraminidases to hydrolyze sialic acid moieties. Disruption of cell-cell and cell-matrix adhesions was observed following neuraminidase treatment, suggesting that terminal sialic acids promote endothelial barrier integrity. When we measured transendothelial resistance, differential responses of pulmonary artery and microvascular endothelial cells to neuraminidase from Clostridium perfringens suggest that the molecular architecture of the sialic acid glycomes differs between these two cell types. Collectively our observations reveal critical structural and functional differences of terminally linked sialic acids on the pulmonary endothelium.  相似文献   

14.
The vascular endothelium is integrally involved in the host response to infection and in organ failure during acute inflammatory disorders such as sepsis. Gram-negative and Gram-positive bacterial lipoproteins circulate in sepsis and can directly activate the endothelium by binding to endothelial cell (EC) TLR2. In this report, we perform the most comprehensive analysis to date of the immune-related genes regulated after activation of endothelial TLR2 by bacterial di- and triacylated lipopeptides. We found that TLR2 activation specifically induces the expression of the genes IL-6, IL-8, CSF2, CSF3, ICAM1 and SELE by human umbilical vein ECs and human lung microvascular ECs. These proteins participate in neutrophil recruitment, adherence and activation at sites of inflammation. Significantly, our studies demonstrate that TLR2-mediated EC responses are specifically geared towards recruitment, activation, and survival of neutrophils and not mononuclear leukocytes, that ECs do not require priming by other inflammatory stimuli to respond to bacterial lipopeptides and, unlike mononuclear leukocytes, TLR2 agonists do not induce ECs to secrete TNF-α. This study suggests that endothelial TLR2 may be an important regulator of neutrophil trafficking to sites of infection in general, and that direct activation of lung endothelial TLR2 may contribute to acute lung injury during sepsis.  相似文献   

15.
The adherence of cells to microvascular endothelium is important in a number of processes, including inflammatory responses and metastasis. It has been demonstrated that in human models, cytokines such as TNF, IL-1, IFN-gamma increase the adhesiveness of endothelium for cells of the immune and inflammatory system by stimulating the expression of cell adhesion molecules on endothelial cell surfaces. We and others have shown similar cytokine-induced endothelial adhesiveness for tumor cells in murine and human models. In contrast to the effect of those modulators, transforming growth factor-beta (TGF-beta) has been shown to inhibit the binding of human neutrophils and T lymphocytes to human endothelium, although the mechanism of TGF-beta action remains unknown. Little is known about the effect of TGF-beta on tumor cell-endothelial interaction. In the present study, we demonstrate that TGF-beta inhibits basal and TNF-enhanced binding of murine P815 mastocytoma cells to murine microvascular endothelium (MME). The alterations in MME mediated by TGF-beta, also lead to the inhibition of adherence of murine splenocytes, thymocytes, and human lymphoblastoid cells but do not inhibit adherence of murine B16 melanoma cells. The effect of TGF-beta is transient and inhibition of the endothelial adhesive phenotype is strongest 12 to 24 h after addition of the factor to MME. The TGF-beta-mediated inhibition of P815 basal binding to endothelium is dependent on protein synthesis because cycloheximide reverses the TGF-beta effect. TGF-beta does not appear to activate classical signal transduction pathways. Inhibitors of G proteins do not abolish TGF-beta action, protein kinase C and protein kinase A activators elicit an effect opposite to that of the factor, TGF-beta does not increase intracellular cAMP levels, and finally calcium-mobilizing agents do not mimic, but rather inhibit the effect of TGF-beta. However, TGF-beta-mediated inhibition of both basal binding and TNF-enhanced P815 binding to MME is completely abolished in the presence of the protein phosphatase inhibitor okadaic acid which suggests that TGF-beta may elicit its effect by stimulating protein phosphatase activity.  相似文献   

16.
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder characterized by increased leukocyte recruitment and subsequent tissue damage. An increase in the density of the microvasculature of the colon during IBD has been suggested, leading to the concept that angiogenesis may play a pathological role in IBD. Increased tissue and serum levels of the angiogenic cytokine VEGF-A have been reported in cases of active IBD. In this study, we examined the hypothesis that VEGF-A exerts a proinflammatory effect on colon microvascular endothelium that contributes to colonic inflammation. Leukocyte adhesion to VEGF-A-stimulated colon microvascular endothelial cells was examined using a parallel-plate hydrodynamic flow chamber. ICAM-1 adhesion molecule expression on colonic microvascular endothelium also was determined in response to VEGF-A stimulation, along with characterization of leukocyte adhesion molecule expression. High-dose VEGF-A (50 ng/ml) stimulation increased neutrophil and T cell adhesion to and decreased rolling velocities on activated endothelium, whereas low-dose VEGF-A (10 ng/ml) was without effect. Colonic endothelium constitutively expressed ICAM-1, which was significantly increased by treatment with 50 ng/ml VEGF-A or 10 ng/ml TNF-alpha but not 10 ng/ml VEGF-A. T cells expressed CD18 and CD11a with no expression of CD11b, whereas neutrophils expressed CD18, CD11a, and CD11b. Finally, VEGF-A-dependent leukocyte adhesion was found to occur in a CD18-dependent manner. These results demonstrate that VEGF-A levels found in IBD exert a proinflammatory effect similar to other inflammatory agents and suggest that this cytokine may serve as an intermediary between angiogenic stimulation and cell-mediated immune responses.  相似文献   

17.
The vascular endothelium plays a critical role in vascular homeostasis. Inflammatory cytokines and non-laminar blood flow induce endothelial dysfunction and confer a pro-adhesive and pro-thrombotic phenotype. Therefore, identification of factors that mediate the effects of these stimuli on endothelial function is of considerable interest. Kruppel-like factor 4 expression has been documented in endothelial cells, but a function has not been described. In this communication we describe the expression in vitro and in vivo of Kruppel-like factor 4 in human and mouse endothelial cells. Furthermore, we demonstrate that endothelial Kruppel-like factor 4 is induced by pro-inflammatory stimuli and shear stress. Overexpression of Kruppel-like factor 4 induces expression of multiple anti-inflammatory and anti-thrombotic factors including endothelial nitric-oxide synthase and thrombomodulin, whereas knockdown of Kruppellike factor 4 leads to enhancement of tumor necrosis factor alpha-induced vascular cell adhesion molecule-1 and tissue factor expression. The functional importance of Kruppel-like factor 4 is verified by demonstrating that Kruppel-like factor 4 expression markedly decreases inflammatory cell adhesion to the endothelial surface and prolongs clotting time under inflammatory states. Kruppel-like factor 4 differentially regulates the promoter activity of pro- and anti-inflammatory genes in a manner consistent with its anti-inflammatory function. These data implicate Kruppel-like factor 4 as a novel regulator of endothelial activation in response to pro-inflammatory stimuli.  相似文献   

18.
Human microvascular endothelial cell-1 (HMEC-1) generated by transfection with SV40 large T antigen has been the prevailing model for in vitro studies on endothelium. However, the transduction of SV40 may lead to unwanted cell behaviors which are absent in primary cells. Thus, establishing a new microvascular endothelial cell line, which is capable of maintaining inherent features of primary endothelial cells, appears to be extremely important. Here, we immortalized primary human microvascular endothelial cells (pHMECs) by engineering the human telomerase catalytic protein (hTERT) into the cells. Endothelial cell-specific markers were examined and the angiogenic responses were characterized in these cells (termed as HMVECs, for human microvascular endothelial cells). We found that VEGF receptor 2 (Flk-1/KDR), tie1, and tie2 expression is preserved in HMVEC, whereas Flk-1/KDR is absent in HMEC-1. In addition, HMVEC showed similar angiogenic responses to VEGF as HMEC-1. Furthermore, the HMVEC line was found to generate a prominent angiogenic response to periostin, a potent angiogenic factor identified recently. The data indicate that HMVEC may serve as a suitable in vitro endothelium model.  相似文献   

19.
Chemotherapeutic agents are very well evident extrinsic stimuli for causing damage to endothelial cells. Methotrexate is an antimetabolite commonly used to treat solid tumours and paediatric cancers. However, studies on the effect(s) of methotrexate on bone marrow microvascular system are inadequate. In the current study, we observed a significant bone marrow microvascular dilation following methotrexate therapy in rats, accompanied by apoptosis induction in bone marrow sinusoidal endothelial cells, and followed by recovery of bone marrow sinusoids associated with increased proliferation of remaining bone marrow sinusoidal endothelial cells. Our in vitro studies revealed that methotrexate is cytotoxic for cultured sinusoidal endothelial cells and can also induce apoptosis which is associated with upregulation of expression ratio of Bax and Bcl-2 genes and Bax/Bcl-2 expression ratio. Furthermore, it was shown that methotrexate can negatively affect proliferation of cultured sinusoidal endothelial cells and also inhibit their abilities of migration and formation of microvessel like tubes. The data from this study indicates that methotrexate can cause significant bone marrow sinusoidal endothelium damage in vivo and induce apoptosis and inhibit proliferation, migration and tube-forming abilities of sinusoidal endothelial cells in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号