首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In contrast with previous results that indicate that Saccharomyces cerevisiae fructose-1,6-bisphosphatase is a dimer of 56,000 molecular weight subunits, we find that the subunit Mr of the enzyme purified from baker's yeast is 40,000. The same subunit Mr was observed in immunoprecipitates of crude supernatants of baker's yeast and S. cerevisiae cultures, as well as in acid-extracts of cells detected by immunoblotting, suggesting that the native subunit indeed has a Mr of 40,000 and it has not been produced from a larger polypeptide. Complete immunoprecipitation of fructose-1,6-bisphosphatase activity with saturating concentrations of specific antibody suggests that there is only one fructose-1,6-bisphosphatase isozyme in S. cerevisiae. The Mr of the purified enzyme determined by size exclusion HPLC suggests that it has a tetrameric structure characteristic of fructose-1,6-bisphosphatases from a broad phylogenetic spectrum.  相似文献   

2.
Homogeneous preparations of fructose-1,6-bisphosphatase from mouse, man, rabbit, pig, and rat were tested as substrates for cyclic AMP-dependent protein kinase. Up to 1 mol of [32P]phosphate per mole enzyme subunit was incorporated into fructose-1,6-bisphosphatase from pig and rabbit liver, which should be compared with 2.6 mol of phosphate per mole enzyme subunit in the case of the rat liver enzyme. The phosphorylation of fructose-1,6-bisphosphatase from the livers of man and mouse was negligible. Phosphorylation of pig and rabbit fructose-1,6-bisphosphatase decreased the apparent Km for fructose-1,6-bisphosphate, but in contrast to the case of the rat liver enzyme it did not change the inhibition constants for AMP and fructose-2,6-bisphosphate. The phosphorylation sites in rabbit and pig liver fructose-1,6-bisphosphatase were located close to the carboxyterminal of the polypeptide chains, since trypsin treatment of the phosphorylated enzyme quantitatively removed all of the protein-bound radioactivity without significantly altering the subunit molecular weight and with a maintained neutral pH optimum.  相似文献   

3.
Rat liver fructose 1,6-bisphosphatase appears to be unique in that it extends 24-26 residues beyond the COOH-terminal amino acid of other mammalian fructose 1,6-bisphosphatases and this extension contains phosphorylation sites. Using as a frame of reference the 335-residue sequence of pig kidney fructose 1,6-bisphosphatase (Marcus, F., Edelstein, I., Reardon, I., and Heinrikson, R. L. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 7161-7165), the rat liver enzyme would extend to residue 361. Limited proteolysis in the COOH-terminal region of the molecule with chymotrypsin, trypsin, or both sequentially, led us to establish that the phosphorylation sites are located at Ser residues 341 and 356. The in vitro phosphorylation of purified rat liver fructose 1,6-bisphosphatase by the catalytic subunit of cyclic AMP-dependent protein kinase results in modification at both residues, although the major site of phosphorylation (61%) is at Ser-341. In contrast, rat liver fructose 1,6-bisphosphatase purified from animals that had been injected with [32P] phosphate contains most of the label (81%) at Ser-356.  相似文献   

4.
《Gene》1998,212(2):295-304
By applying a newly developed method, cDNAs for the human muscle isoform of fructose-1,6-bisphosphatase were isolated from phage- and plasmid-derived libraries. From these cDNAs and an EST clone, a composite sequence (1302 bp) was deduced that contains an open reading frame encoding a polypeptide of 339 amino acids with an estimated molecular weight of 36 755. After overexpression in E. coli, recombinant human muscle fructose-1,6-bisphosphatase was found to be active in cell-free extracts and could be strongly inhibited by AMP and fructose 2,6-bisphosphate. Sequence comparisons revealed that (1) all amino acids thought to be in contact with substrate molecules, regulatory molecules or metal ions in mammalian liver fructose-1,6-bisphosphatases are, with one exception, conserved in the human muscle enzyme and (2) the human muscle isoform is more homologous to the mouse intestine fructose-1,6-bisphosphatase than to the mammalian liver isoform. This is the first report of the cloning and expression of a muscle fructose-1,6-bisphosphatase isoenzyme.  相似文献   

5.
In this minireview the properties and characteristics of plant fructose-1,6-bisphosphatases (D-fructose-1,6-bisphosphatase 1-phosphohydrolase, EC 3.1.3.11) are discussed. The properties and characteristics of the chloroplastic and cytoplasmic forms of the enzyme are reviewed. For purposes of comparison some reference is made to fructose-1,6-bisphosphatases from other species.  相似文献   

6.
The occurrence of specific fructose-1,6-bisphosphatase [D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11] (Fru-1,6-P2ase) in the small intestine was confirmed. 1. Fru-1,6-P2ase was isolated from mouse small intestine by a simple method. The isolated enzyme preparation was an electrophoretically homogeneous protein. 2. The molecular weight and subunit molecular weight were 140,000 and 38,000, respectively. 3. The intestinal enzyme was electrophoretically distinct from the liver enzyme. 4. The kinetic properties of the purified intestinal enzyme were compared with those of the mouse liver and muscle enzymes. 5. Mouse intestinal and muscle Fru-1,6-P2ases hydrolyzed ribulose-1,5-bisphosphate in addition to fructose-1,6-bisphosphate and sedoheptulose-1,7-bisphosphate.  相似文献   

7.
A simple procedure has been developed for the purification of mouse liver and kidney fructose-1,6-bisphosphatase. In addition to the conventional method, including substrate elution from phosphocellulose, Blue Sepharose column chromatography made the purification procedure highly reproducible. The enzyme from rabbit liver was also purified by this method with a small modification. The isolated preparation was electrophoretically homogeneous. The mouse liver enzyme was identical with the kidney enzyme, and different from the rabbit liver enzyme electrophoretically. The structural properties and the amino acid composition were similar to those of this enzyme from other mammalian livers; the molecular weight was 143,000, subunit size was 37,500, S20, w was 7.0, and partial specific volume was 0.74. Cysteine and methionine residues amounted to 5-6 mol per subunit. Tryptophan was not detected. The Km value for fructose-1,6-bisphosphate was 1.3 microM. The Ki value for AMP was 19 microM. EDTA strongly activated the activity of the mouse liver enzyme at neutral pH. A partial proteolytic digestion of the mouse liver enzyme decreased the activity at neutral pH, and increased it at alkaline pH.  相似文献   

8.
In chloroplasts, the light-modulated fructose-1,6-bisphosphatase catalyzes the formation of fructose 6-bisphosphate for the photosynthetic assimilation of CO2 and the biosynthesis of starch. We report here the construction of a plasmid for the production of chloroplast fructose-1,6-bisphosphatase in a bacterial system and the subsequent purification to homogeneity of the genetically engineered enzyme. To this end, a DNA sequence that coded for chloroplast fructose-1,6-bisphosphatase of rapeseed (Brassica napus) leaves was successively amplified by PCR, ligated into the Ndel/EcoRI restriction site of the expression vector pET22b, and introduced into Escherichia coli cells. When gene expression was induced by isopropyl--d-thiogalactopyranoside, supernatants of cell lysates were extremely active in the hydrolysis of fructose 1,6-bisphosphate. Partitioning bacterial soluble proteins by ammonium sulfate followed by anion exchange chromatography yielded 10 mg of homogeneous enzyme per 1 of culture. Congruent with a preparation devoid of contaminating proteins, the Edman degradation evinced an unique N-terminal amino acid sequence [A-V-A-A-D-A-T-A-E-T-K-P-]. Gel filtration experiments and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the (recombinant) rapeseed chloroplast fructose-1,6-bisphosphatases was a tetramer [160 kDa] comprised of four identical subunits. Like other chloroplast fructose-1,6-bisphosphatases, the recombinant enzyme was inactive at 1 mM fructose 1,6-bisphosphate and 1 mM Mg2+ but became fully active after an incubation in the presence of either 10 mM dithiothreitol or 1 mM dithiothreitol and chloroplast thioredoxin. However, at variance with counterparts isolated from higher plant leaves, the low activity observed in absence of reductants was not greatly enhanced by high concentrations of fructose 1,6-bisphosphate (3 mM) and Mg2+ (10 mM). In the catalytic process, all chloroplast fructose-1,6-bisphosphatases had identical features; viz., the requirement of Mg2+ as cofactor and the inhibition by Ca2+. Thus, the procedure described here should prove useful for the structural and kinetic analysis of rapeseed chloroplast fructose-1,6-bisphosphatase in view that this enzyme was not isolated from leaves.Abbreviation DTT dithiothreitol - PCR polymerase chain reaction - EDTA (ethylenedinitrilo)tetraacetic  相似文献   

9.
Fructose-1,6-bisphosphatase from the yeast Saccharomyces cerevisiae has properties similar to other gluconeogenic fructose-1,6-bisphosphatases, but an unusual characteristic of the yeast enzyme is that it can be phosphorylated in vitro by cAMP-dependent protein kinase. Phosphorylation also occurs in vivo, presumably as part of a signalling mechanism for the enzyme's degradation. To probe the structural basis for the phosphorylation of yeast fructose-1,6-bisphosphatase, we have developed an improved procedure for the purification of the enzyme and then performed sequence studies with the in vitro-phosphorylated protein as well as with tryptic and chymotryptic peptides containing the phosphorylation site. As a result of these studies, we have determined that yeast fructose-1,6-bisphosphatase has the following 24-residue NH2-terminal amino acid sequence: Pro-Thr-Leu-Val-Asn-Gly-Pro-Arg-Arg-Asp-Ser-Thr-Glu-Gly- Phe-Asp-Thr-Asp-Ile-Ile-Thr-Leu-Pro-Arg. The site of phosphorylation is located at Ser-11 in the above sequence. The amino acid sequence around the site of phosphorylation contains the sequence - Arg-Arg-X-Ser- associated with many of the better substrates of cAMP-dependent protein kinase. The sequence of residues 15-24 above is highly homologous with the sequence of residues 6-15 of pig kidney fructose-1,6-bisphosphatase, showing 7 out of 10 residues in identical positions. The yeast enzyme, however, has a dissimilar NH2-terminal region which extends beyond the NH2 terminus of mammalian fructose-1,6-bisphosphatases and contains a unique phosphorylation site.  相似文献   

10.
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was phosphorylated by cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Treatment of the 32P-labeled enzyme with thermolysin removed all of the radioactivity from the enzyme core and produced a single labeled peptide. The phosphopeptide was purified by ion exchange chromatography, gel filtration, and reverse phase high pressure liquid chromatography. The sequence of the 12-amino acid peptide was found to be Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser(P)-Ser-Ile-Pro-Gln. Correlation of the extent of phosphorylation with activity showed that a 50% decrease in the ratio of kinase activity to bisphosphate activity occurred when only 0.25 mol of phosphate was incorporated per mol of enzyme subunit, and maximal changes occurred with 0.7 mol incorporated. The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of the native bifunctional enzyme was compared with that of other rat liver protein substrates. The Km for 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (10 microM) was less than that for rat liver pyruvate kinase (39 microM), fructose-1,6-bisphosphatase (222 microM), and 6- phosphofructose -1-kinase (230 microM). Comparison of the initial rate of phosphorylation of a number of protein substrates of the cyclic AMP-dependent protein kinase revealed that only skeletal muscle phosphorylase kinase was phosphorylated more rapidly than the bifunctional enzyme. Skeletal muscle glycogen synthase, heart regulatory subunit of cyclic AMP-dependent protein kinase, and liver pyruvate kinase were phosphorylated at rates nearly equal to that of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase, while phosphorylation of fructose-1,6-bisphosphatase and 6-phosphofructo-1-kinase was barely detectable. Phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was not catalyzed by any other protein kinase tested. These results are consistent with a primary role of the cyclic AMP-dependent protein kinase in regulation of the enzyme in intact liver.  相似文献   

11.
12.
Amino acid sequence homology among fructose-1,6-bisphosphatases   总被引:2,自引:0,他引:2  
The hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate is a key reaction of carbohydrate metabolism. The enzyme that catalyzes this reaction, fructose-1,6-bisphosphatase, appears to be present in all forms of living organisms. Regulation of the enzyme activity, however, occurs by a variety of distinct mechanisms. These include AMP inhibition (most sources), cyclic AMP-dependent phosphorylation (yeast), and light-dependent activation (chloroplast). In the present studies, we have made a comparison of the primary structure of mammalian fructose-1,6-bisphosphatase with the sequence of peptides isolated from the yeast Saccharomyces cerevisiae, Escherichia coli, and spinach chloroplast enzymes. Our results demonstrate a high degree of sequence homology, suggesting a common evolutionary origin for all fructose-1,6-bisphosphatases.  相似文献   

13.
A rat brain S100-binding protein, R40,000, has been isolated, characterized, and identified as fructose-1,6-bisphosphate aldolase. R40,000 was purified by ammonium sulfate precipitation, hydroxylapatite chromatography, dye-binding chromatography, and electroelution from sodium dodecyl sulfate-polyacrylamide gels. Microsequence analysis of a fragment of R40,000 revealed a 15-residue amino acid sequence which shows a high degree of homology to the amino acid sequence of fructose-1,6-bisphosphate aldolase from rabbit muscle and rat liver. Further characterization demonstrated that R40,000 has an amino acid composition, subunit molecular weight, and cyanogen bromide map similar to aldolase. In addition, purified aldolase interacts with S100 alpha and S100 beta by gel overlay, and aldolase enzyme activity is stimulated 2-fold in vitro by S100 alpha and S100 beta. S100 interacts predominantly with the C or brain-specific form of the enzyme in gels and stimulates the activity of the C-enriched form of the enzyme in a calcium-dependent manner. Altogether, these data suggest that fructose-1,6-bisphosphate aldolase may be an intracellular target of S100 action in brain.  相似文献   

14.
We have determined the nucleotide sequence of the gene for fructose-1,6-bisphosphatase from both Saccharomyces cerevisiae and Schizosaccharomyces pombe. The predicted protein sequence for fructose-1,6-bisphosphatase from S. cerevisiae contains 347 amino acids and has a molecular weight of 38,100; that from S. pombe, contains 346 amino acids and has a molecular weight of 38,380. Comparison of these amino acid sequences with each other and that of pig kidney fructose-1,6-bisphosphatase shows several regions of strong homology separated by regions of divergence. These homologous regions are likely candidates for functional domains. A gene cassette was constructed for fructose-1,6-bisphosphatase from S. cerevisiae and the gene cassette expressed from the regulated PHO5 and GAL1 promoters of yeast. Yeast cells expressing fructose-1,6-bisphosphatase, while growing on glucose, accumulated large amounts of enzyme intracellularly, suggesting that glucose-regulated proteolytic inactivation does not operate efficiently under these conditions. Growth on glucose was not inhibited by the expression of fructose 1,6-bisphosphatase.  相似文献   

15.
A pyrophosphate-dependent phosphofructokinase (pyrophosphate; D-fructose-6-phosphate-1-phosphotransferase) has been purified and characterized from extracts of Propionibacterium shermanii. The enzyme catalyzes the transfer of phosphate from pyrophosphate to fructose 6-phosphate to yield fructose-1,6-P2 and phosphate. This unique enzymatic activity was observed initially in Entamoeba histolytica (Reeves, R.E., South, D.J., Blytt, H.G., and Warren, L. G. (1974) J. Biol. Chem. 249, 7734-7741). This is the third pyrophosphate-utilizing enzyme that these two diverse organisms have in common. The others are phosphoenolpyruvate carboxytransphosphorylase and pyruvate phosphate dikinase. The PPi-phosphofructokinase from P. shermanii is specific for fructose-6-P and fructose-1,6-P2, no other phosphorylated sugars were utilized. Phosphate could be replaced by arsenate. The Km values are: phosphate, 6.0 X 10(-4) M; fructose-1, 6-P2, 5.1 X 10(-5) M; pyrophosphate, 6.9 X 10(-5) M; and fructose-6-P, 1.0 X 10(-4) M. The S20w is 5.1 S. The molecular weight of the native enzyme is 95,000. Sodium dodecyl sulfate electrophoresis of the enzyme showed a single band migrating with an Rf corresponding to a molecular weight of 48,000. Extracts of P. shermanii have PPi-phosphofructokinase activity approximately 6 times greater than ATP-phosphofructokinase and 15 to 20 times greater than fructose diphosphatase activities. It is proposed that (a) PPi may replace ATP in the formation of fructose-1-6-P2 when the organism is grown on glucose and (b) when the organism is grown on lactate or glycerol the conversion of fructose-1,6-P2 to fructose-6-P during gluconeogenesis may occur by phosphorolysis rather than hydrolysis.  相似文献   

16.
Fructose-1,6-bisphosphatase from bovine brain tissue has been purified to near homogeneity. This enzyme is similar to other mammalian fructose-1,6-bisphosphatases in many respects, and its properties are distinctly different from those reported for the enzyme from rat brain [A. L. Majumder and F. Eisenberg (1977) Proc. Natl. Acad. Sci. USA 74, 3222-3225; S. Chattoraj and A. L. Majumder (1986) Biochem. Biophys. Res. Commun. 139, 571-580]. The bovine enzyme (sp act 4, pH ratio (7.5/9.6) = 3.6) has a pH optimum of 7.5. The Km is 2 microM. Divalent metal ion is required for activity, and Vmax is obtained at either 4 mM Mg2+ or 0.3 mM Mn2+. Fructose 2,6-bisphosphate is a competitive inhibitor (Ki = 0.07 microM), and AMP a noncompetitive inhibitor (kis = 24 microM, Kii = 10 microM) of bovine brain fructose-1,6-bisphosphatase. The enzyme activity is enhanced by small amounts of EDTA relative to metal, and AMP inhibits fructose-1,6-bisphosphatase in either the presence or absence of the metal chelator; however, AMP is more effective in the absence of EDTA.  相似文献   

17.
Limited tryptic digestion of pig kidney fructose-1,6-bisphosphatase in the presence of magnesium ions results in the formation of an active enzyme derivative which is no longer inhibited by the allosteric effector AMP. The presence of AMP during incubation of fructose-1,6-bisphosphatase with trypsin protects against the loss of AMP inhibition. By contrast, the presence of the nonhydrolyzable substrate analog fructose 2,6-bisphosphate accelerates the rate of formation of that form of fructose-1,6-bisphosphatase which is insensitive to AMP inhibition. Sodium dodecyl sulfate-polyacrylamide electrophoresis of samples taken during trypsin treatment shows that the loss of AMP inhibition parallels the conversion of the native 36,500 molecular weight fructose-1,6-bisphosphatase subunit into a 34,000 molecular weight species. Automated Edman degradation of trypsin-treated fructose-1,6-bisphosphatase following gel filtration shows a single sequence beginning at Gly-26 in the original enzyme, but no changes in the COOH-terminal region of fructose-1,6-bisphosphatase. Thus, the proteolytic product has been characterized as "des-1-25-fructose-1,6-bisphosphatase." A comparison of the kinetic properties of control enzyme and des-1-25-fructose-1,6-bisphosphatase reveals some differences in properties (pH optimum, Ka for Mg2+, K+ activation, inhibition by fructose 2,6-bisphosphate) between the two enzymes, but none is so striking as the complete loss of AMP sensitivity shown by des-1-25-fructose-1,6-bisphosphatase. The loss of AMP inhibition is due to the loss of AMP-binding capacity, but it is not known at this stage whether residues of the AMP site are present in the 25-amino acid NH2-terminal region or the removal of this region leads to a conformational change that abolishes the function of an AMP site located elsewhere in the molecule.  相似文献   

18.
Chloroplast fructose-1,6-bisphosphatase (FbPase) is an essential enzyme in the photosynthetic pathway of carbon dioxide fixation into sugars. The properties of the chloroplast enzyme are clearly distinct from those of cytosolic gluconeogenic FbPases. Light-dependent activation via a ferredoxin/thioredoxin system and insensitivity to inhibition by AMP are unique characteristics of the chloroplast enzyme. However, preliminary amino acid sequence data (78 residues) have demonstrated that a significant degree of amino acid sequence similarity exists between spinach chloroplast and mammalian gluconeogenic fructose-1,6-bisphosphatase [Harrsch, P.B., Kim, Y., Fox, J.L., & Marcus, F. (1985) Biochem. Biophys. Res. Commun. 133, 520-526]. In the present study, we have identified two structural features of spinach chloroplast FbPase that appear to be common to all FbPases. These include (a) the presence of a protease-sensitive area located in a region equivalent to residues 51-71 of mammalian FbPases and (b) the recognition of two conserved histidine residues, equivalent to histidines-253 and -311 of the mammalian enzymes. In addition, we have obtained sequence information accounting for more than three-fourths of the primary structure of spinach chloroplast FbPase. The high degree of homology observed between the chloroplast enzyme and gluconeogenic FbPases suggests a common evolutionary origin for all fructose-1,6-bisphosphatases in spite of their different functions and modes of regulation.  相似文献   

19.
20.
High molecular weight zinc ion-dependent acid p-nitrophenylphosphatase (HMW-ZnAPase) was purified from bovine liver to homogeneity as judged by native and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The partial sequence of the purified enzyme electroblotted on PVDF membrane reveals a 95% sequence homology with human and bovine liver fructose-1,6-bisphosphate aldolase isozyme B (FALD B). FALD B was isolated from bovine liver using an affinity elution from phosphocellulose column. FALD B from bovine liver shows a native and subunit molecular weight that is indistinguishable from that of HMW-ZnAPase. In addition, an affinity purified antiserum raised in rabbits against purified HMW-ZnAPase cross-reacts with bovine liver FALD B and rabbit muscle isozymes. Despite these similarities, HMW-ZnAPase does not show FALD activity and bovine liver FALD does not display any zinc ion-p-nitrophenylphosphatase activity. These results suggested the existence of structural and immunological similarities between bovine liver HMW-ZnAPase and FALD B. Differences in some amino acid residues in enzyme activity indicate that they may be involved in different biochemical functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号