首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roles of phosphatidylinositol 3-kinase in root hair growth   总被引:2,自引:1,他引:1  
Lee Y  Bak G  Choi Y  Chuang WI  Cho HT  Lee Y 《Plant physiology》2008,147(2):624-635
The root hair is a model system for understanding plant cell tip growth. As phosphatidylinositol 3-phosphate [PtdIns(3)P] has been shown in other plant cell types to regulate factors that affect root hair growth, including reactive oxygen species (ROS) levels, cytoskeleton, and endosomal movement, we hypothesized that PtdIns(3)P is also important for root hair elongation. The enzyme that generates PtdIns(3)P, phosphatidylinositol 3-kinase (PI3K), was expressed in root hair cells of transgenic plants containing the PI3K promoter:beta-glucuronidase reporter construct. To obtain genetic evidence for the role of PtdIns(3)P in root hair elongation, we attempted to isolate Arabidopsis (Arabidopsis thaliana) mutant plants that did not express the gene VPS34 encoding the PI3K enzyme. However, the homozygous mutant was lethal due to gametophytic defects, and heterozygous plants were not discernibly different from wild-type plants. Alternatively, we made transgenic plants expressing the PtdIns(3)P-binding FYVE domain in the root hair cell to block signal transduction downstream of PtdIns(3)P. These transgenic plants had shorter root hairs and a reduced hair growth rate compared with wild-type plants. In addition, LY294002, a PI3K-specific inhibitor, inhibited root hair elongation but not initiation. In LY294002-treated root hair cells, endocytosis at the stage of final fusion of the late endosomes to the tonoplast was inhibited and ROS level decreased in a dose-dependent manner. Surprisingly, the LY294002 effects on ROS and root hair elongation were similar in rhd2 mutant plants, suggesting that RHD2 was not the major ROS generator in the PtdIns(3)P-mediated root hair elongation process. Collectively, these results suggest that PtdIns(3)P is required for maintenance of the processes essential for root hair cell elongation.  相似文献   

2.
Reactive oxygen species (ROS) production by an NADPH oxidase (NOX) encoded by AtrbohC/RHD2 is required for root hair growth in Arabidopsis thaliana. ROP (RHO of plants) GTPases are also required for normal root hair growth and have been proposed to regulate ROS production in plants. Therefore, the role of ROP GTPase in NOX-dependent ROS formation by root hairs was investigated. Plants overexpressing wild-type ROP2 (ROP2 OX), constitutively active (CA-rop2), or dominant negative (DN-rop2) rop2 mutant proteins were used. Superoxide formation by root hairs was detected by superoxide dismutase-sensitive nitroblue tetrazolium reduction, and ROS production in the root hair differentiation zone was detected by dihydrofluorescein diacetate oxidation. Both probes showed that ROS production was increased in ROP2 OX and CA-rop2 plants, and decreased in DN-rop2 plants, relative to wild-type plants. When CA-rop2 was expressed in the NOX loss-of-function rhd2-1 mutant, ROS formation and root hair growth were impaired, suggesting that RHD2 is required for this ROP2-dependent ROS formation.  相似文献   

3.
Plant root sensing and adaptation to changes in the nutrient status of soils is vital for long-term productivity and growth. Reactive oxygen species (ROS) have been shown to play a role in root response to potassium deprivation. To determine the role of ROS in plant response to nitrogen and phosphorus deficiency, studies were conducted using wild-type Arabidopsis and several root hair mutants. The expression of several nutrient-responsive genes was determined by Northern blot, and ROS were quantified and localized in roots. The monitored genes varied in intensity and timing of expression depending on which nutrient was deficient. In response to nutrient deprivation, ROS concentrations increased in specific regions of the Arabidopsis root. Changes in ROS localization in Arabidopsis and in a set of root hair mutants suggest that the root hair cells are important for response to nitrogen and potassium. In contrast, the response to phosphorus deprivation occurs in the cortex where an increase in ROS was measured. Based on these results, we put forward the hypothesis that root hair cells in Arabidopsis contain a sensing system for nitrogen and potassium deprivation.  相似文献   

4.
Extracellular ATP (eATP) in animals is well documented and known to play an important role in cellular signaling (e.g. at the nerve synapse). The existence of eATP has been postulated in plants; however, there is no definitive experimental evidence for its presence or an explanation as to how such a polar molecule could exit the plant cell and what physiological role it may play in plant growth and development. The presence of eATP in plants (Medicago truncatula) was detected by constructing a novel reporter; i.e. fusing a cellulose-binding domain peptide to the ATP-requiring enzyme luciferase. Application of this reporter to plant roots allowed visualization of eATP in the presence of the substrate luciferin. Luciferase activity could be detected in the interstitial spaces between plant epidermal cells and predominantly at the regions of actively growing cells. The levels of eATP were closely correlated with regions of active growth and cell expansion. Pharmacological compounds known to alter cytoplasmic calcium levels revealed that ATP release is a calcium-dependent process and may occur through vesicular fusion, an important step in the polar growth of actively growing root hairs. Reactive oxygen species (ROS) activity at the root hair tip is not only essential for root hair growth, but also dependent on the cytoplasmic calcium levels. Whereas application of exogenous ATP and a chitin mixture increased ROS activity in root hairs, no changes were observed in response to adenosine, AMP, ADP, and nonhydrolyzable ATP (betagammameATP). However, application of exogenous potato (Solanum tuberosum) apyrase (ATPase) decreased ROS activity, suggesting that cytoplasmic calcium gradients and ROS activity are closely associated with eATP release.  相似文献   

5.
Chalcone is a secondary metabolite belonging to the group of flavonoids. It has shown strong phytotoxic activity on Arabidopsis roots, as inductor of programmed cell death, and inhibitor of root growth and root hair formation. Peroxidases are particularly abundant in root meristems and are involved in the formation and interconversion of reactive oxygen species (ROS), which play a critical role on root and root hair development. Therefore, we report here the role of peroxidases in Arabidopsis root development during chalcone treatment. A strong inhibition of peroxidase activity was detected in the apical root meristems after chalcone treatment, which reflects the important role of these enzymes on the mode of action of this secondary metabolite.  相似文献   

6.
Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post-translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA.  相似文献   

7.
8.
Spatial and temporal control of cell wall deposition plays a unique and critical role during growth and development in plants. To characterize membrane trafficking pathways involved in these processes, we have examined the function of a plant Rab GTPase, RabA4b, during polarized expansion in developing root hair cells. Whereas a small fraction of RabA4b cofractionated with Golgi membrane marker proteins, the majority of this protein labeled a unique membrane compartment that did not cofractionate with the previously characterized trans-Golgi network syntaxin proteins SYP41 and SYP51. An enhanced yellow fluorescent protein (EYFP)-RabA4b fusion protein specifically localizes to the tips of growing root hair cells in Arabidopsis thaliana. Tip-localized EYFP-RabA4b disappears in mature root hair cells that have stopped expanding, and polar localization of the EYFP-RabA4b is disrupted by latrunculin B treatment. Loss of tip localization of EYFP-RabA4b was correlated with inhibition of expansion; upon washout of the inhibitor, root hair expansion recovered only after tip localization of the EYFP-RabA4b compartments was reestablished. Furthermore, in mutants with defective root hair morphology, EYFP-RabA4b was improperly localized or was absent from the tips of root hair cells. We propose that RabA4b regulates membrane trafficking through a compartment involved in the polarized secretion of cell wall components in plant cells.  相似文献   

9.
Potassium (K) is an important plant macronutrient that has various functions throughout the whole plant over its entire life span. Cytokinins (CKs) are known to regulate macronutrient homeostasis by controlling the expression of nitrate, phosphate and sulfate transporters. Although several studies have described how CKs signal deficiencies for some macronutrients, the roles of CKs in K signaling are poorly understood. CK content has been shown to decrease under K-starved conditions. Specifically, a CK-deficient mutant was more tolerant to low K than wild-type; however, a plant with an overaccumulation of CKs was more sensitive to low K. These results suggest that K deprivation alters CK metabolism, leading to a decrease in CK content. To investigate this phenomenon further, several Arabidopsis lines, including a CK-deficient mutant and CK receptor mutants, were analyzed in low K conditions using molecular, genetic and biochemical approaches. ROS accumulation and root hair growth in low K were also influenced by CKs. CK receptor mutants lost the responsiveness to K-deficient signaling, including ROS accumulation and root hair growth, but the CK-deficient mutant accumulated more ROS and exhibited up-regulated expression of HAK5, which is a high-affinity K uptake transporter gene that is rapidly induced by low K stress in ROS- and ethylene-dependent manner in response to low K. From these results, we conclude that a reduction in CK levels subsequently allows fast and effective stimulation of low K-induced ROS accumulation, root hair growth and HAK5 expression, leading to plant adaptation to low K conditions.  相似文献   

10.
The Arabidopsis root is composed of radial cell layers, each with distinct identities. The epidermal layer is composed of rows of hair cells flanked on either side by rows of non-hair epidermal cells. The development of hair and non-hair cells is dependent on domains of positional information with strict boundaries. The pattern of cell differentiation and the expression of molecular markers of cell fate is altered in the ectopic root hair 3 (erh3) mutant epidermis indicating that ERH3 is required for the specification of cell fates from early in development (in the meristem) through differentiation. Furthermore the expression of molecular markers indicates that the specification of cell identities is defective within other radial cell layers. ERH3 encodes a p60 katanin protein that is expressed throughout the plant. Katanin proteins are known to sever microtubules, and have a role in the organisation of the plant cell wall since mutants with decreased katanin activity have been shown to have defective walls. We suggest that microtubules are involved in the specification of cell identities in cells of the Arabidopsis root. Microtubules may be required for the localization of positional cues in the wall that have previously been shown to operate in the development of the root epidermis. Alternatively microtubules may be involved in another as yet undefined process required for the specification of cell identity in plants.  相似文献   

11.
12.
Extracellular ATP (eATP) and nitric oxide (NO) have emerged as crucial players in plant development, stress responses and cell viability. Glutathione (GSH) is an abundant reducing agent with proposed roles in plant growth, development and stress physiology. In a recent publication, we demonstrated that eATP and NO restore hypocotyl elongation of etiolated Arabidopsis seedlings treated with GSH. Here it is reported that exogenous ATP also restores root hair growth suggesting a role for ATP and NO in the regulation of redox balance associated to specific processes of plant morphogenesis. A tentative model integrating redox-, eATP- and NO-signaling pathways during root hair growth in Arabidopsis seedlings is presented.Key words: Arabidopsis thaliana, extracellular ATP signaling, nitric oxide, redox system, root hair  相似文献   

13.
Root hairs develop as long extensions from root epidermal cells. After the formation of an initial bulge at the distal end of the epidermal cell, the root hair structure elongates by tip growth. Because root hairs are not surrounded by other cells, root hair formation provides an excellent system for studying the highly complex process of plant cell growth. Pharmacological experiments with actin filament-interfering drugs have provided evidence that the actin cytoskeleton is an important factor in the establishment of cell polarity and in the maintenance of the tip growth machinery at the apex of the growing root hair. However, there has been no genetic evidence to directly support this assumption. We have isolated an Arabidopsis mutant, deformed root hairs 1 (der1), that is impaired in root hair development. The DER1 locus was cloned by map-based cloning and encodes ACTIN2 (ACT2), a major actin of the vegetative tissue. The three der1 alleles develop the mutant phenotype to different degrees and are all missense mutations, thus providing the means to study the effect of partially functional ACT2. The detailed characterization of the der1 phenotypes revealed that ACT2 is not only involved in root hair tip growth, but is also required for correct selection of the bulge site on the epidermal cell. Thus, the der1 mutants are useful tools to better understand the function of the actin cytoskeleton in the process of root hair formation.  相似文献   

14.
Root hairs are projections from the epidermal cells of the root that are thought to increase its effective surface area for nutrient and water uptake, enlarge the volume of exploited soil, and aid in anchoring the plant to the soil. Their formation occurs as a series of developmental processes starting with cell fate specification in the meristem. The root-hair-forming epidermal cell, or trichoblast, then participates in the diffuse growth phase associated with the elongation of the main root axis. After the fully elongated trichoblast exits the elongation zone, growth is reorganized and localized to the side in the process of root hair initiation. Initiation is then followed by a sustained phase of tip growth until the hair reaches its mature length. Thus, root hairs provide insight into a range of developmental processes from cell fate determination to growth control. The theme emerging from the molecular analysis of the control of root hair formation is that many regulators act at several stages of development. Root hair formation is also responsive to a multitude of nutrient and other environmental stimuli. Therefore, one explanation for the presence of the complex networks that regulate root hair morphogenesis may lie in the need to coordinate their highly plastic developmental program and entrain it to the current soil microenvironment being explored by the root.  相似文献   

15.
Root Hair Development   总被引:6,自引:0,他引:6  
Root hairs are projections from the epidermal cells of the root that are thought to increase its effective surface area for nutrient and water uptake, enlarge the volume of exploited soil, and aid in anchoring the plant to the soil. Their formation occurs as a series of developmental processes starting with cell fate specification in the meristem. The root-hair-forming epidermal cell, or trichoblast, then participates in the diffuse growth phase associated with the elongation of the main root axis. After the fully elongated trichoblast exits the elongation zone, growth is reorganized and localized to the side in the process of root hair initiation. Initiation is then followed by a sustained phase of tip growth until the hair reaches its mature length. Thus, root hairs provide insight into a range of developmental processes from cell fate determination to growth control. The theme emerging from the molecular analysis of the control of root hair formation is that many regulators act at several stages of development. Root hair formation is also responsive to a multitude of nutrient and other environmental stimuli. Therefore, one explanation for the presence of the complex networks that regulate root hair morphogenesis may lie in the need to coordinate their highly plastic developmental program and entrain it to the current soil microenvironment being explored by the root.  相似文献   

16.
Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild‐type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase‐null mutants exhibited nitrate‐dependent root hair phenotypes comparable with wild‐type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate‐induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana.  相似文献   

17.
18.
Legume plants are able to establish a symbiotic relationship with soil bacteria from the genus Rhizobium, leading to the formation of nitrogen-fixing root nodules. Successful nodulation requires both the formation of infection threads (ITs) in the root epidermis and the activation of cell division in the cortex to form the nodule primordium. This study describes the characterization of RabA2, a common bean (Phaseolus vulgaris) cDNA previously isolated as differentially expressed in root hairs infected with Rhizobium etli, which encodes a protein highly similar to small GTPases of the RabA2 subfamily. This gene is expressed in roots, particularly in root hairs, where the protein was found to be associated with vesicles that move along the cell. The role of this gene during nodulation has been studied in common bean transgenic roots using a reverse genetic approach. Examination of root morphology in RabA2 RNA interference (RNAi) plants revealed that the number and length of the root hairs were severely reduced in these plants. Upon inoculation with R. etli, nodulation was completely impaired and no induction of early nodulation genes (ENODs), such as ERN1, ENOD40, and Hap5, was detected in silenced hairy roots. Moreover, RabA2 RNAi plants failed to induce root hair deformation and to initiate ITs, indicating that morphological changes that precede bacterial infection are compromised in these plants. We propose that RabA2 acts in polar growth of root hairs and is required for reorientation of the root hair growth axis during bacterial infection.  相似文献   

19.
Calcium gradients underlie polarization in eukaryotic cells. In plants, a tip‐focused Ca2+‐gradient is fundamental for rapid and unidirectional cell expansion during epidermal root hair development. Here we report that three members of the cyclic nucleotide‐gated channel family are required to maintain cytosolic Ca2+ oscillations and the normal growth of root hairs. CNGC6, CNGC9 and CNGC14 were expressed in root hairs, with CNGC9 displaying the highest root hair specificity. In individual channel mutants, morphological defects including root hair swelling and branching, as well as bursting, were observed. The developmental phenotypes were amplified in the three cngc double mutant combinations. Finally, cngc6/9/14 triple mutants only developed bulging trichoblasts and could not form normal root hair protrusions because they burst after the transition to the rapid growth phase. Prior to developmental defects, single and double mutants showed increasingly disturbed patterns of Ca2+ oscillations. We conclude that CNGC6, CNGC9 and CNGC14 fulfill partially but not fully redundant functions in generating and maintaining tip‐focused Ca2+ oscillations, which are fundamental for proper root hair growth and polarity. Furthermore, the results suggest that these calmodulin‐binding and Ca2+‐permeable channels organize a robust tip‐focused oscillatory calcium gradient, which is not essential for root hair initiation but is required to control the integrity of the root hair after the transition to the rapid growth phase. Our findings also show that root hairs possess a large ability to compensate calcium‐signaling defects, and add new players to the regulatory network, which coordinates cell wall properties and cell expansion during polar root hair growth.  相似文献   

20.

Background and Aims

Root hairs are responsible for water and nutrient uptake from the soil and their growth is responsive to biotic and abiotic changes in their environment. Root hair expansion is a polarized process requiring secretory and endosomal pathways that deliver and recycle plasma membrane and cell wall material to the growing root hair tip. In this paper, the role of VTI13 (AT3G29100), a member of the VTI vesicular soluble NSF attachment receptor (SNARE) gene family in Arabidopsis thaliana, in root hair growth is described.

Methods

Genetic analysis and complementation of the vti13 root hair phenotypes of Arabidopsis thaliana were first used to assess the role of VTI13 in root hair growth. Transgenic lines expressing a green fluorescent protein (GFP)–VTI13 construct were used to characterize the intracellular localization of VTI13 in root hairs using confocal microscopy and immunotransmission electron microscopy.

Key Results

VTI13 was characterized and genetic analysis used to show that its function is required for root hair growth. Expression of a GFP–VTI13 fusion in the vti13 mutant background was shown to complement the vti13 root hair phenotype. GFP–VTI13 localized to both the vacuole membrane and a mobile endosomal compartment. The function of VTI13 was also required for the localization of SYP41 to the trans-Golgi network. Immunohistochemical analysis indicated that cell wall organization is altered in vti13 root hairs and root epidermal cells.

Conclusions

These results show that VTI13 plays a unique role in endosomal trafficking pathways associated with the vacuole within root hairs and is essential for the maintenance of cell wall organization and root hair growth in arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号