首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frameshift mutagenesis by eucaryotic DNA polymerases in vitro   总被引:23,自引:0,他引:23  
The frequency and specificity of frameshift errors produced during a single round of in vitro DNA synthesis by DNA polymerases-alpha, -beta, and -gamma (pol-alpha, -beta, and -gamma, respectively) have been determined. DNA polymerase-beta is the least accurate enzyme, producing frameshift errors at an average frequency of one error for each 1,000-3,000 nucleotides polymerized, a frequency similar to its average base substitution accuracy. DNA polymerase-alpha is approximately 10-fold more accurate, producing frameshifts at an average frequency of one error for every 10,000-30,000 nucleotides polymerized, a frequency which is about 2- to 6-fold lower than the average pol-alpha base substitution accuracy. DNA polymerase-gamma is highly accurate, producing on the average less than one frameshift error for every 200,000-400,000 nucleotides polymerized. This represents a more than 10-fold higher fidelity than for base substitutions. Among the collection of sequenced frameshifts produced by DNA polymerases-alpha and beta, both common features and distinct specificities are apparent. These specificities suggest a major role for eucaryotic DNA polymerases in modulating frameshift fidelity. Possible mechanisms for production of frameshifts are discussed in relation to the observed biases. One of these models has been experimentally supported using site-directed mutagenesis to change the primary DNA sequence of the template. Alteration of a pol-beta frameshift hotspot sequence TTTT to CTCT reduced the frequency of pol-beta-dependent minus-one-base errors at this site by more than 30-fold, suggesting that more than 97% of the errors at the TTTT run involve a slippage mechanism.  相似文献   

2.
The base substitution fidelity of DNA polymerase-alpha, -beta, and -gamma (pol-alpha, -beta, and -gamma, respectively) has been determined in vitro, for all 12 possible mispairs at 96 sites in a forward mutational target. Averaging all errors over all known detectable sites, pol-gamma is the most accurate enzyme, producing one error for every 10,000 bases polymerized. Pol-beta is much less accurate, with an error rate of 1/1,500, while pol-alpha has an intermediate accuracy of 1/4,000. The relative differences in fidelity between the DNA polymerases are strongly influenced by the nature of the mispair. For example, G(template):dATP mispairs and G:dGTP mispairs are formed with about equal frequency by all three classes of DNA polymerases, yet pol-gamma produces T:dGTP mispairs at a 100-fold lower frequency than does pol-beta. The DNA polymerases exhibit distinct differences in template site preferences as well as substrate insertion preferences. The increase in accuracy apparent in proceeding from the least selective to the most accurate enzyme results primarily from a decrease in mispair formations at template A and T residues and a decrease in misinsertion of pyrimidine deoxynucleotides. These data clearly demonstrate a major role for eucaryotic DNA polymerases in modulating base mispair frequencies at the level of insertion. In addition to direct mispair formation due to an incorrect incorporation event, an examination of the errors produced by each of the three classes of DNA polymerases at two particular sites in the target sequence suggests that some base substitution errors result from transient misalignment of the primer-template. A model is presented to explain this phenomenon, termed "Dislocation Mutagenesis." The data are discussed in relation to the extensive literature on base substitution errors and to the origin of spontaneous base substitutions in animal cells.  相似文献   

3.
The frequency of reversion of phi X174 amber mutants to wild-type, resulting from in vitro DNA synthesis catalyzed by eucaryotic DNA polymerase-alpha or -beta, varies over a 10- to 1000-fold range. This variation is dependent on the relative ratio of deoxyribonucleotide substrates present during in vitro DNA synthesis. The effect is observed at two different loci in the genome and with several different DNA polymerases. In addition, the effect is observed using an unfractionated cellular extract. These results provide support for the hypothesis that altered nucleotide pools cause mutations in mammalian cells by decreasing the fidelity of DNA synthesis.  相似文献   

4.
DNA polymerase-alpha was purified from the cytosol of blast cells of a patient with acute lymphoblastic leukemia by ammonium sulfate fractionation and successive column chromatographies. The purified enzyme had a specific activity of 2943 units/mg protein with activated calf thymus DNA as a template. The enzyme sediments under high-salt conditions as a homogeneous band at 7.2 S and free from other DNA polymerases (beta, gamma) and terminal deoxynucleotidyl transferase activity. The native molecular weight of the enzyme from gel filtration and glycerol gradient centrifugation was found to be 175 000. The values of Stokes radius (53 A), diffusion coefficient (4.05 x 10(-7) cm2/s) and frictional ratio (1.42) determined by gel filtration suggest that the native enzyme is compact and globular. Antibodies to DNA polymerase-alpha were raised in rabbits. These antibodies, partially purified by 50% ammonium sulfate saturation and Sephadex G-200 chromatography, gave one precipitin band on immunodiffusion and inactivate DNA polymerase-alpha-. This antibody preparation also inhibited, in vitro, the activity of DNA polymerase-alpha from calf thymus, phytohemagglutinin-stimulated normal human lymphocytes, as well as that from other leukemic cells. Thus, DNA polymerase-alpha from calf thymus and human leukemic cells resemble each other in antibody specificity.  相似文献   

5.
Error rates for conventionally purified DNA polymerase-alpha from calf thymus, chicken, and human sources have been reported to be one in 10,000 to one in 40,000 nucleotides incorporated. Isolation of polymerase-alpha by immunoaffinity chromatography yields a multiprotein high molecular weight replication complex that contains an associated DNA primase (Wong, S. W., Paborsky, L. R., Fisher, P. A., Wang, T. S-F., and Korn, D. (1986) J. Biol. Chem. 261, 7958-7968). We have isolated DNA polymerase-primase complexes from calf thymus, from a human lymphoblast cell line (TK-6), and from Chinese hamster lung cells (V-79) using two different methods of immunoaffinity chromatography. These enzyme complexes are 12- to 20-fold more accurate than conventionally purified calf thymus DNA polymerase-alpha when assayed using the phi X174am3 fidelity assay; estimated error rates are one in 460,000 to one in 830,000 nucleotides incorporated when the enzyme complex is freshly isolated. The polymerase-primase complex from calf thymus exhibited no detectable 3'----5' exonuclease activity using a heteroduplex substrate containing a single 3'-terminal mismatched nucleotide. Upon prolonged storage at -70 degrees C, the error rate of the immunoaffinity-purified calf thymus DNA polymerase-primase complex increases to about one in 50,000 nucleotides incorporated, an error rate similar to that exhibited by conventional isolates of DNA polymerase-alpha.  相似文献   

6.
DNA polymerase-alpha and -beta were fractionated from the chromatin of regenerating liver of young and old mice. The DNA polymerases were resolved from each other and partially purified by DEAE-cellulose, phosphocellulose, and DNA-cellulose column chromatography. No significant age-related difference in the kinetics of heat inactivation was observed for either DNA polymerase. No age-dependent difference was found in the fidelity with which these enzymes copied phi X174 DNA. These results suggest that the functional properties of these DNA polymerases do not change with age as is postulated in some theories of aging.  相似文献   

7.
8.
1-beta-D-Arabinofuranosylcytosine 5'-triphosphate (araCTP), an active form of a inhibitor of DNA replication, 1-beta-D-arabinofuranosylcytosine (araC) was tested for its inhibitory action on the DNA polymerase-alpha and -beta (EC 2.7.7.7) purified from calf thymus. The reaction of DNA polymerase-alpha was shown to be more sensitive to the inhibition by araCTP than that of DNA polymerase-beta. The mode of the inhibition by araCTP was competitive to dCTP in the reaction catalysed by either DNA polymerase-alpha or -beta. The Ki value of DNA polymerase-beta for araCTP was 32 micron; eight times higher than that of DNA polymerase-alpha (4 micron) for this inhibition.  相似文献   

9.
Nuclei were isolated from monolayer cultures of mouse and human cells using a nonaqueous procedure of cell fractionation in which lyophilized cells were homogenized and centrifuged in 100% glycerol. In previous work we have shown that the nuclear pellet and cytoplasmic supernatant fraction contained 10% or less of the nucleic acids characteristic of the other cell fraction. Aqueous extracts made from fresh cultures and from nonaqueous material at each step of the fractionation procedure were assayed fro DNA polymerase activity. Activities were normalized to DNA contents of extracted material. Specific activity was preserved quantitatively through freezing and drying the cells, but was found to be unstable in glycerol suspensions with approximate half-lives and 1 h at 23 degrees and 4 h at 0-4 degrees. Activities were relatively stable at -25 degrees, however, so that by homogenizing only 15 min at 4 degrees and centrifuging at -25 degrees we preserved approximately 85% of the specific activity of fresh cultures in the nonaqueous nuclear fraction. Sedimentation analyses showed that the nuclear fraction contained both DNA polymerase-alpha and-beta in approximately the proportions expected if all polymerase activities were confined to the nucleus in living cells. DNA polymerase-alpha was found to be more unstable in glycerol suspensions than DNA polymerase-beta. Nuclear location of both activities was found in exponential cultures and in 3T3 mouse cultures synchronized in the G1 and S phases of the cell division cycle. We found no evidence for cytoplasmic factors affecting nuclear polymerase activities. We have concluded that the two major DNA polymerases are nuclear although one, DNA polymerase-alpha, frequently is present as a weakly bound nuclear protein.  相似文献   

10.
DNA polymerases alpha and beta (EC 2.7.7.7.) from calf thymus could utilize dUTP as a substrate for DNA synthesis as well as DNA polymerase I of Escherichia coli. Deoxyuridylate was incorporated into DNA by replacing deoxythymidylate and supported the further elongation of DNA chains on activated DNA or on the intiated homopolymers, poly(dA) . (dT)10 and poly(rA) . (dT)10. The rate of the incorporation of deoxyuridylate into DNA varied from 50 to 160% of that of deoxythymidylate, depending on the nature of the template primers and the species of DNA polymerase used. The apparent Km values for dUTP were very similar to those for dTTP. Uracil DNA-glycosylase excised efficiently the uracil residues in products of DNA polymerase reactions with either activated calf thymus DNA or initiated homopolymers.  相似文献   

11.
Antibodies to homogeneous calf thymus DNA polymerase-beta and calf thymus DNA polymerase-alpha preparations were raised in rabbits. The antiserum against calf thymus DNA polymerase-beta cross-reacts with all vertebrate DNA polymerase-beta preparations tested, but does not cross-react with trypanosome DNA polymerase-beta, DNA polymerase-gamma, terminal transferase, yeast DNA polymerases, and Escherichia coli DNA polymerase I. The antibodies against calf thymus DNA polymerase-alpha cross-react with DNA polymerase-alpha from mouse, human, and chicken, but do not cross-react with DNA polymerase-alpha from sea urchin embryos and Drosophila embryos, DNA polymerase-beta, DNA polymerase-gamma, terminal transferase, yeast DNA polymerases, and E. coli DNA polymerase I.  相似文献   

12.
The kinetics of the inhibition of DNA polymerases-alpha and -beta from sea urchin embryos by pyridoxal 5-phosphate were studied. The inhibition of DNA polymerase-alpha activity by pyridoxal 5-phosphate was competitive with activated DNA but noncompetitive with each deoxynucleoside triphosphate. With poly(dC)-oligo(dG)12-18 as a template-primer, however, the inhibition of DNA polymerase-alpha was competitive with dGTP but noncompetitive with the template-primer. These results suggest that DNA polymerase-alpha interacts with activated DNA and poly(dC)-oligo(dG)12-18 in different ways. The inhibition of DNA polymerase-beta by pyridoxal 5-phosphate was competitive with deoxynucleoside triphosphate using activated DNA as a template-primer and noncompetitive with activated DNA. Using poly(rA)-oligo(dT)12-18 as a template-primer, DNA polymerase-beta activity yielded sigmoid curves against both dTTP and the template-primer concentrations and was inhibited by pyridoxal 5-phosphate noncompetitively with respect to both dTTP and the template-primer. These results indicate that the inhibitory mode of DNA polymerase-alpha by pyridoxal 5-phosphate is different from that of DNA polymerase-beta.  相似文献   

13.
The fidelity of DNA synthesis by an exonuclease-proficient DNA polymerase results from the selectivity of the polymerization reaction and from exonucleolytic proofreading. We have examined the contribution of these two steps to the fidelity of DNA synthesis catalyzed by the large Klenow fragment of Escherichia coli DNA polymerase I, using enzymes engineered by site-directed mutagenesis to inactivate the proofreading exonuclease. Measurements with two mutant Klenow polymerases lacking exonuclease activity but retaining normal polymerase activity and protein structure demonstrate that the base substitution fidelity of polymerization averages one error for each 10,000 to 40,000 bases polymerized, and can vary more than 30-fold depending on the mispair and its position. Steady-state enzyme kinetic measurements of selectivity at the initial insertion step by the exonuclease-deficient polymerase demonstrate differences in both the Km and the Vmax for incorrect versus correct nucleotides. Exonucleolytic proofreading by the wild-type enzyme improves the average base substitution fidelity by 4- to 7-fold, reflecting efficient proofreading of some mispairs and less efficient proofreading of others. The wild-type polymerase is highly accurate for -1 base frameshift errors, with an error rate of less than or equal to 10(-6). The exonuclease-deficient polymerase is less accurate, suggesting that proofreading also enhances frameshift fidelity. Even without a proofreading exonuclease, Klenow polymerase has high frameshift fidelity relative to several other DNA polymerases, including eucaryotic DNA polymerase-alpha, an exonuclease-deficient, 4-subunit complex whose catalytic subunit is almost three times larger. The Klenow polymerase has a large (46 kDa) domain containing the polymerase active site and a smaller (22 kDa) domain containing the active site for the 3'----5' exonuclease. Upon removal of the small domain, the large polymerase domain has altered base substitution error specificity when compared to the two-domain but exonuclease-deficient enzyme. It is also less accurate for -1 base errors at reiterated template nucleotides and for a 276-nucleotide deletion error. Thus, removal of a protein domain of a DNA polymerase can affect its fidelity.  相似文献   

14.
Two high molecular weight DNA polymerases, which we have designated delta I and delta II, have been purified from calf thymus tissue. Using Bio Rex-70, DEAE-Sephadex A-25, and DNA affinity resin chromatography followed by sucrose gradient sedimentation, we purified DNA polymerase delta I 1400-fold to a specific activity of 10 000 nmol of nucleotide incorporated h-1 mg-1, and DNA polymerase delta II was purified 4100-fold to a final specific activity of 30 000 nmol of nucleotide incorporated h-1 mg-1. The native molecular weights of DNA polymerase delta I and DNA polymerase delta II are 240 000 and 290 000, respectively. Both enzymes have similarities to other purified delta-polymerases previously reported in their ability to degrade single-stranded DNA in a 3' to 5' direction, affinity for an AMP-hexane-agarose matrix, high activity on poly(dA) X oligo(dT) template, and relative resistance to the polymerase alpha inhibitors N2-(p-n-butylphenyl)dATP and N2-(p-n-butylphenyl)dGTP. These two forms of DNA polymerase delta also share several common features with alpha-type DNA polymerases. Both calf DNA polymerase delta I and DNA polymerase delta II are similar to calf DNA polymerase alpha in molecular weight, are inhibited by the alpha-polymerase inhibitors N-ethylmaleimide and aphidicolin, contain an active DNA-dependent RNA polymerase or primase activity, display a similar extent of processive DNA synthesis, and are stimulated by millimolar concentrations of ATP. We propose that calf DNA polymerase delta I, which also has a template specificity essentially identical with that of calf DNA polymerase alpha, could be an exonuclease-containing form of a DNA replicative enzyme.  相似文献   

15.
A gamma-like DNA polymerase devoid of DNA polymerase-alpha and -beta activities was prepared from the nuclear fraction of blastulae of the sea urchin, Hemicentrotus pulcherrimus. The enzyme sedimented at the position of an approximate sedimentation coefficient of 3.3 S under high salt conditions by sucrose gradient centrifugation. An isoelectric point was determined to be pH 5.8. The enzyme activity was sensitive to sulfhydryl blocking reagents. Poly(rA) . oligo(dT)12--18 followed by poly(dA) . oligo(dT)12--18 was effectively utilized as a template-primer. From the above results, this polymerase seems to resemble the vertebrate DNA polymerase-gamma.  相似文献   

16.
The effects of various polyanions including synthetic polynucleotides on DNApolymerases-alpha and -beta from blastulae of the sea urchin Hemicentrotus pulcherrimus and HeLa cells were studied. Only DNA polymerase-alpha was inhibited by polyanions, such as polyvinyl sufate, dextran sulfate, heparin, poly(G), poly(I), poly(U) and poly(ADP-Rib). Of the various polynucleotides tested, poly(G) and poly(I) were the strongest inhibitors. Kinetic studies showed that the Ki value for poly(G) was 0.3 microgram/ml and that poly(G) had 20-fold higher affinity than activated DNA for the template-primer site of DNA polymerase-alpha. Poly(U) and poly(ADP-Rib) were also inhibitory, but they were one hundredth as inhibitory as poly(G) or poly(I). Poly(A), poly(C), poly(A).poly(U) AND POLY(I).poly(C) were not inhibitory to DNA polymerase-alpha. In contrast, DNA olymerase-beta was not affected at all by these polyanions under the same conditions.  相似文献   

17.
In order to ascertain the identity of the DNA-dependent DNA polymerase responsible for the observed DNA synthesis in nuclei isolated from baby-hamster kidney (BHK-21/C13) cells a comparative study was carried out on the effects of some drugs, reported to influence DNA synthesis, on DNA synthesis catalysed by these nuclei and by partially purified DNA polymerase-alpha and -beta. In all cases DNA synthesis by isolated nuclei and polymerase-alpha was inhibited to similar extents by N-ethylmaleimide, p-hydroxymercuribenzoate, novobiocin, heparin and phosphonoacetic acid; polymerase-beta was much less affected by these compounds. Ethidium bromide inhibited all DNA synthesis to similar extents, although at low concentrations (about 2 microgram/ml) synthesis in isolated nuclei was stimulated. The results are discussed in relation to the proposal that DNA polymerase-alpha catalyses the covalent extension of Okazaki fragments that these nuclei carry out in vitro.  相似文献   

18.
Factor D, a template-selective DNA polymerase-alpha stimulatory protein from mouse liver (Fry, M., Lapidot, J., and Weisman-Shomer, P. (1985) Biochemistry 24, 7549-7556) is shown here to enhance the activities of diverse DNA polymerases with a cognate template specificity. DNA synthesis catalyzed by Escherichia coli DNA polymerase I, avian myeloblastosis virus polymerase, and some mammalian alpha- and gamma-polymerases was increased by factor D. With every enhanced polymerase, factor D increased the rate of copying of only poly(dT) among various tested synthetic poly-deoxynucleotides. Of the natural DNA templates examined, rates of copying of sparsely primed denatured DNA and of singly primed circular phi X174 or M13 bacteriophage DNA, but not of activated DNA, were enhanced. Michaelis constants (Km) of affected templates with responsive polymerases were decreased by factor D, without alteration in maximum velocity (Vmax). By contrast, factor D increased Vmax of deoxyribonucleoside 5'-monophosphate incorporation without changing Km of deoxyribonucleoside 5'-triphosphate substrates. Binding of factor D to poly(dT), poly(dA).poly(dT), and DNA, but less to poly(dA), was indicated by specific retention of their complexes on a DEAE-cellulose column. That factor D does not bind to DNA polymerase-alpha or to its complex with the DNA template was demonstrated by the failure of the factor to be coprecipitated with alpha-polymerase by anti-polymerase-alpha monoclonal antibodies in either the absence or presence of various templates. Lack of binding of factor D to the polymerase molecule was also indicated by simultaneous maximum stimulation of two competing polymerases by a limiting amount of factor. These combined results suggest that the enhancement of DNA synthesis is exerted through interaction of factor D with the template. It is proposed that this association leads to a tighter binding of the polymerase to the template and facilitates DNA synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号