首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A series of novel nikkomycin analogue inhibitors of the chitin synthase of fungal cell wall was synthesized and evaluated for their inhibitory activities. Among them, the compound having a phenanthrene group at the terminal amino acid was found to possess strong anti-chitin synthase activity.  相似文献   

3.
Chitin synthases polymerize UDP-GlcNAC to form chitin polymer, a key component of fungal cell wall biosynthesis. Furthermore, chitin synthases are desirable targets for fungicides since chitin is absent in plants and mammals. Two potent Botrytis cinerea chitin synthase inhibitors, 2,3,5-tri-O-benzyl-d-ribose (compound 1) and a 2,5-functionalized imidazole (compound 2) were identified by screening a chemical library. We adapted the wheat germ agglutinin (WGA) test for chitin synthase activity detection to allow miniaturization and robotization of the screen. Both identified compounds inhibited chitin synthases in vitro with IC50 values of 1.8 and 10 μM, respectively. Compounds 1 and 2 were evaluated for their antifungal activity and were found to be active against B. cinerea BD90 strain with MIC values of 190 and 100 μM, respectively. Finally, we discovered that both compounds confer resistance to plant leaves against the attack of the fungus by reducing the propagation of lesions by 37% and 23%, respectively. Based on the inhibitory properties found in different assays, compounds 1 and 2 can be considered as antifungal hit inhibitors of chitin synthase, allowing further optimization of their pharmacological profile to improve their antifungal properties.  相似文献   

4.
Previously, we showed that chitin synthase 2 (Chs2) is required for septum formation in Saccharomyces cerevisiae, whereas chitin synthase 1 (Chs1) does not appear to be an essential enzyme. However, in strains carrying a disrupted CHS1 gene, frequent lysis of buds is observed. Lysis occurs after nuclear separation and appears to result from damage to the cell wall, as indicated by osmotic stabilization and by a approximately 50-nm orifice at the center of the birth scar. Lysis occurs at a low pH and is prevented by buffering the medium above pH 5. A likely candidate for the lytic system is a previously described chitinase that is probably involved in cell separation. The chitinase has a very acidic pH optimum and a location in the periplasmic space that exposes it to external pH. Accordingly, allosamidin, a specific chitinase inhibitor, substantially reduced the number of lysed cells. Because the presence of Chs1 in the cell abolishes lysis, it is concluded that damage to the cell wall is caused by excessive chitinase activity at acidic pH, which can normally be repaired through chitin synthesis by Chs1. The latter emerges as an auxiliary or emergency enzyme. Other experiments suggest that both Chs1 and Chs2 collaborate in the repair synthesis of chitin, whereas Chs1 cannot substitute for Chs2 in septum formation.  相似文献   

5.
Cyclothiazomycin B1 (CTB1) is an antifungal cyclic thiopeptide isolated from the culture broth of Streptomyces sp. HA 125-40. CTB1 inhibited the growth of several filamentous fungi including plant pathogens along with swelling of hyphae and spores. The antifungal activity of CTB1 was weakened by hyperosmotic conditions, and hyphae treated with CTB1 burst under hypoosmotic conditions, indicating increased cell wall fragility. CTB1-sensitive fungal species contain high levels of cell wall chitin and/or chitosan. Unlike nikkomycin Z, a competitive inhibitor of chitin synthase (CHS), CTB1 did not inhibit CHS activity. Although CTB1 inhibited CHS biosynthesis, the same result was also obtained with a non-specific proteins inhibitor, cycloheximide, which did not reduce cell wall rigidity. These results indicate that the primary target of CTB1 is not CHS, and we concluded that CTB1 antifungal activity was independent of this sole inhibition. We found that CTB1 bound to chitin but did not bind to β-glucan and chitosan. The results of the present study suggest that CTB1 induces cell wall fragility by binding to chitin, which forms the fungal cell wall. The antifungal activity of CTB1 could be explained by this chitin-binding ability.  相似文献   

6.
In a screen for cell wall defects in Saccharomyces cerevisiae, we isolated a strain carrying a mutation in the Cdc28-activating kinase CAK1. The cak1P212S mutant cells exhibit multiple, elongated and branched buds, beta(1,3)glucan-poor regions of the cell periphery and lysed upon osmotic shock after treatment with the chitin synthase III inhibitor Nikkomycin Z. Ultrastructural examination of cak1P212S mutants revealed a thin, uneven cell wall and marked abnormalities in septum formation. In all of the above aspects, the cak1P212S mutants are similar to previously described cla4 mutants, suggesting that the cell wall defects are common to mutants with hyperpolarized growth. In cak1P212S mutants, chitin accumulates all over the surface of the cells and glucan synthase activity is located preferentially to the tips of elongated buds. We conclude that the cell wall weakness in cak1P212S mutants is caused by hyperpolarized secretion of glucan synthase and lack of reinforcement of the lateral cell walls. Showing that the defect depends at least in part on Cdc28, the cak1P212S hyperpolarized growth phenotype can be suppressed by a Cak1-independent Cdc28-allele. The results underline the importance of a minor cell wall component, the chitin of lateral walls, for the integrity of the cell in a stress situation.  相似文献   

7.
Summary Nikkomycin Z (NZ) is a competitive inhibitor of chitin synthase III in the yeast Saccharomyces cerevisiae. Myosin type II-deficient yeast strains (myo1) display a dramatic reduction in growth when chitin synthase III activity is inhibited by NZ, supporting the contention that actomyosin motility plays an important role in maintaining cell wall integrity. A proposed inhibitor of cortical actin polymerization in vitro, 2,3-butanedione monoxime (BDM), also inhibits growth of wild-type yeast strains at a concentration of 20 mM. In this study, we assayed for potential in vivo interplay between BDM-sensitive cell functions and cell wall chitin synthesis by testing for increased sensitivity to NZ during co-treatment with BDM at sub-inhibitory concentrations. Our results show that BDM can increase the sensitivity of yeast cells to Nikkomycin Z.  相似文献   

8.
Swm1p, a subunit of the APC cyclosome, was originally identified for its role in the later stages of the sporulation process and is required for spore wall assembly. In addition, this protein is required to maintain cell wall integrity in vegetative cells during growth at high temperature. Electron microscopy analyses of mutant cells grown at the restrictive temperature in the absence of osmotic support show that the cell wall is clearly abnormal, with large number of discontinuities that may be responsible for the observed lysis. The mutant cells show a 7-fold reduction in glucan synthase activity during growth at 38 degrees C and a 3.5-fold increase in the chitin content of the cell wall. The chitin is deposited in a delocalized manner all over the cell wall, where it accumulates in patches in abnormal regions. The excess chitin is mainly synthesized by the action of chitin synthase III (Chs3p), since it disappears in the swm1 chs3 double-mutant.  相似文献   

9.
In yeast, chitin is laid down at three locations: a ring at the mother-bud neck, the primary septum and, after cytokinesis, the cell wall of the daughter cell. Some of the chitin is free and the remainder attached to beta(1-3)glucan or beta(1-6)glucan. We recently reported that the chitin ring contributes to the prevention of growth at the mother-bud neck and hypothesized that this inhibition is achieved by a preferential binding of chitin to beta(1-3)glucan at that site. Here, we devised a novel strategy for the analysis of chitin cross-links in [14C]glucosamine-labeled cell walls, involving solubilization in water of alkali-treated walls by carboxymethylation. Intact cell walls or their digestion products with beta(1-3)glucanase or beta(1-6)glucanase were carboxymethylated and fractionated on size columns, and the percentage of chitin bound to different polysaccharides was calculated. Chitin dispersed in the wall was labeled in maturing unbudded cells and that of the ring in early budding cells. The former was mostly attached to beta(1-6)glucan and the latter to beta(1-3)glucan. This confirmed our hypothesis and indicated that the cell has mechanisms to attach chitin, a water-insoluble substance, synthesized here through chitin synthase III, to different acceptors, depending on location. In contrast, most of the chitin synthase II-dependent chitin of the primary septum was free, with the remainder linked to beta(1-3)glucan.  相似文献   

10.
As a first step toward identifying novel genes of wall metabolism in filamentous fungi, we have screened a collection of Aspergillus nidulans mutants for strains exhibiting hypersensitivity toward the chitin binding agent Calcofluor White (CFW). This strategy has been used previously to identify cell wall mutants in Saccharomyces cerevisiae. We have identified 10 mutants representing eight loci, designated calA through calH, for Calcofluor hypersensitivity. All cal mutants are impaired for sporulation at 30 C or 42 C or both, and in eight of the 10 mutations this sporulation defect shows at least partial osmotic remediability. All cal mutants show elevated sensitivity to one or more of the following agents: Caspofungin, Nikkomycin, Tunicamycin, Congo red and SDS, which are recognized wall-compromising agents or have been shown to be inhibitory to wall integrity mutants in yeast. Seven of the 10 cal mutants show swelling at elevated temperature, which in most cases is osmotically remediable. Spore swelling also can be induced at 30 C in all but one of the cal mutants by germination in the presence of one or more of the following: Caspofungin, Nikkomycin or Tunicamycin. Analysis of wall sugars showed no major changes in mutant strains. We also report that the chitin synthase inhibitor Nikkomycin induces excessive spore swelling during germination in all tested strains that have wild type cell wall metabolism (GR5, A4, A28 and AH12) at 42 C but not at 30 C. This effect mimics that of certain temperature-sensitive swollen cell (swo) mutations.  相似文献   

11.
Chitin is a minor but essential component of the Saccharomyces cerevisiae cell wall. In wild-type, chitin synthase II is required for the formation of primary septa and chitin synthase III (CSIII) is not essential. However, in chs2 mutants CSIII becomes essential for the formation of aberrant septa. We examined which of two CSIII functions, the formation of a chitin ring at bud emergence or of chitin in the remedial septa, was required for viability. By using cell cycle synchronization in combination with nikkomycin Z, a specific inhibitor of CSIII, we inhibited chitin synthesis in a chs2 mutant, during formation of either the ring or the remedial septa. The results show that only synthesis of the chitin during aberrant septa formation is essential for viability. Thus, the unique function of the chitin ring seems to be maintenance of the integrity of the mother-bud neck, as we recently found, and the importance of chitin in septum closure, both in normal and abnormal situations, is underlined.  相似文献   

12.
The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs.  相似文献   

13.
14.
A series of novel nikkomycin analogs, which inhibited chitin synthase, the fungal cell wall biosynthesis enzyme, has been synthesized and evaluated their inhibitory activities.  相似文献   

15.
Cell wall integrity is crucial for fungal growth, development and stress survival. In the model yeast Saccharomyces cerevisiae, the cell integrity Mpk1/Slt2 MAP kinase and calcineurin pathways monitor cell wall integrity and promote cell wall remodelling under stress conditions. We have identified the Cryptococcus neoformans homologue of the S. cerevisiae Mpk1/Slt2 MAP kinase and have characterized its role in the maintenance of cell integrity in response to elevated growth temperature and in the presence of cell wall synthesis inhibitors. C. neoformans Mpk1 is required for growth at 37 degrees C in vitro, and this growth defect is suppressed by osmotic stabilization. C. neoformans mutants lacking Mpk1 are attenuated for virulence in the mouse model of cryptococcosis. Phosphorylation of Mpk1 is induced in response to perturbations of cell wall biosynthesis by the antifungal drugs nikkomycin Z (a chitin synthase inhibitor), caspofungin (a beta-1,3-glucan synthase inhibitor), or FK506 (a calcineurin inhibitor), and mutants lacking Mpk1 display enhanced sensitivity to nikkomycin Z and caspofungin. Lastly, we show that calcineurin and Mpk1 play complementing roles in regulating cell integrity in C. neoformans. Our studies demonstrate that pharmacological inhibition of the cell integrity pathway would enhance the activity of antifungal drugs that target the cell wall.  相似文献   

16.
It is known that cell wall remodeling and the salvaging pathway act to compensate for an impaired or a damaged cell wall. Lately, it has been indicated that this mechanism is partly required for resistance to the glucan synthesis inhibitor echinocandin. While cell wall remodeling has been described in mutants of glucan or mannan synthesis, it has not yet been reported in a chitin synthesis mutant. Here, we describe a novel cell wall remodeling and salvaging pathway in chitin synthesis mutants, Δchs3A and Δchs3B, of the pathogenic yeast Candida glabrata. Electron microscopic analysis revealed a thickened mannoprotein layer in Δchs3A cells and a thickened chitin-glucan layer of Δchs3B cells, and it indicated the hypothesis that mannan synthase and chitin-glucan synthase indemnify Δchs3A and Δchs3B cells, respectively. The double-mutant CHS3A and MNN10, encoding α-1,6-mannosyltransferase, showed synergistic stress sensitization, and the Δchs3B strain showed supersensitivity to echinocandins. Hence, these findings support the above hypothesis of remodeling. Furthermore, unlike Δchs3A cells, Δchs3B cells showed supersensitivity to calcineurin inhibitor FK506 and Tor1p kinase inhibitor rapamycin, indicating that the Δchs3B strain uses the calcineurin pathway and a Tor1p kinase for cell wall remodeling.  相似文献   

17.
To get a better insight into the relationship between cell wall integrity and pathogenicity of the fungus Botrytis cinerea, we have constructed chitin synthase mutants. A 620 bp class I chitin synthase gene fragment (Bcchs1) obtained by PCR amplification was used to disrupt the corresponding gene in the genome. Disruption of Bcchs1 occurred at a frequency of 8%. Nine independent mutants were obtained and the Bcchs1 mutant phenotype compared to that of transformants in which the gene was not disrupted. These disruption mutants were dramatically reduced in their in vitro Mg2+, Mn2+, and Co2+-dependent chitin synthase activity. Chitin content was reduced by 30%, indicating that Bcchs1p contributes substantially to cell wall composition. Enzymatic degradation by a cocktail of glucanases revealed cell wall weakening in the mutant. Bcchs1 was transcribed at a constant level during vegetative exponential growth, suggesting that it was necessary throughout hyphal development. Bcchs1 mutant growth was identical to undisrupted control transformant growth, however, the mutant exhibited reduced pathogenicity on vine leaves. It can be assumed that disruption of Bcchs1 leads to cell wall weakening which might slow down in planta fungal progression.  相似文献   

18.
19.
20.
In budding yeast, chitin is found in three locations: at the primary septum, largely in free form, at the mother-bud neck, partially linked to beta(1-3)glucan, and in the lateral wall, attached in part to beta(1-6)glucan. By using a recently developed strategy for the study of cell wall cross-links, we have found that chitin linked to beta(1-6)glucan is diminished in mutants of the CRH1 or the CRH2/UTR2 gene and completely absent in a double mutant. This indicates that Crh1p and Crh2p, homologues of glycosyltransferases, ferry chitin chains from chitin synthase III to beta(1-6)glucan. Deletion of CRH1 and/or CRH2 aggravated the defects of fks1Delta and gas1Delta mutants, which are impaired in cell wall synthesis. A temperature shift from 30 degrees C to 38 degrees C increased the proportion of chitin attached to beta(1-6)glucan. The expression of CRH1, but not that of CRH2, was also higher at 38 degrees C in a manner dependent on the cell integrity pathway. Furthermore, the localization of both Crh1p and Crh2p at the cell cortex, the area where the chitin-beta(1-6)glucan complex is found, was greatly enhanced at 38 degrees C. Crh1p and Crh2p are the first proteins directly implicated in the formation of cross-links between cell wall components in fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号