首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen Y  Heiman ML 《Regulatory peptides》2000,92(1-3):113-119
Leptin is a hormone synthesized and secreted from adipose tissue. To study the physiologic effects of chronic leptin treatment, normal adult female Sprague-Dawley rats were injected subcutaneously for 35 days. Twice daily injections (250 microgram/day, b.i.d.) resulted in a significant (P<0.05) decrease in food intake that was maintained for 10 days before gradually returning to control level by day 21. Leptin decreased body weight by a maximum of 12% of the initial body weight on day 22 and remained reduced for the duration of the treatment. After 35 days of treatment, visible peritoneal adipose tissue was not detected. Body composition analysis showed that chronic injection of leptin resulted in a dramatic decrease in fat content (28+/-2 to 4+/-2 g, P<0.05; mean+/-SEM) while the lean content remained unchanged. Rats pair-fed to the leptin-treated group but treated with vehicle had the same body composition (23+/-3 g fat mass) as that measured for the ad libitum fed controls. Using indirect calorimetry we observed that leptin decreased respiratory quotient and thus increased fat oxidation. Leptin also prevented energy expenditure reduction typically associated with food restriction. Leptin treatment for 35 days decreased plasma triglyceride (0.75+/-0.07 to 0.30+/-0.03 mM, P<0.05), free fatty acid (0.56+/-0.06 to 0.32+/-0.04 mM) and insulin (3.2+/-0.5 to 1. 4+/-0.4 ng/ml, P<0.05) concentrations despite the fact that food intake was normalized by day 35. Withdrawal of leptin triggered hyperphagia indicating that leptin biology remained throughout the duration of the chronic treatment. These data suggest that leptin reduces fat mass by initially decreasing appetite and by maintaining enhanced fat utilization even when food intake has returned to that of vehicle-treated control.  相似文献   

2.
Thyroid hormones as well as the recently discovered secretory products of adipose tissue adiponectin and resistin take part in energy metabolism. To study the changes in the adipocyte hormones with changes in the thyroid functional status, we measured adiponectin, resistin, and leptin in 69 subjects with Graves' disease before and 32 patients at follow up after treatment for hyperthyroidism at hypothyroid state. Concentrations of serum adiponectin and resistin were higher in hyperthyroid state than in hypothyroid state (adiponectin: 5.73 +/- 1.1 vs. 3.0 +/- 0.5 ng/ml, P = 0.03) (resistin: 6.378 +/- 0.6 vs. 5.81 +/- 0.57 ng/ml, P < 0.0001). Resistin levels correlate positively with free t4(r = 0.37, P < 0.01), free t3 levels(r = 0.33, P < 0.01) and negatively with TSH(r = -0.22, P < 0.05). Adiponectin levels correlate with free t4(r = 0.33, P < 0.01) and free t3 (r = 0.44, P < 0.01). Though the adiponectin levels did not correlate with leptin or resistin levels, strong positive correlation of both resistin and adiponectin with thyroid hormones is noted. Serum levels of leptin did not change with change in the thyroid functional status (leptin: 53.38 +/- 2.47 vs. 55.10 +/- 2.58 NS). Leptin levels did not correlate with resistin and adiponectin. We conclude that thyroid function has effect on adipocyte hormones adiponectin and resistin but not leptin.  相似文献   

3.
OBJECTIVE: To evaluate leptin values in placental cord blood of newborns with normal intrauterine growth after 30-42 weeks of gestation. DESIGN: Leptin, a protein encoded by the ob gene, plays an important role in the regulation of feeding behaviour and energy balance in rodents, primates and humans. The presence of leptin in human amniotic fluid and cord blood has recently been reported in human gestations at term and the possible role of leptin in human fetal growth suggested. However, little is known of leptin synthesis during human foetal development. Thus, the aim of our work was to measure leptin (RIA, Linco Research, Inc.) in placental cord blood of human newborns at different fetal ages. PATIENTS: One hundred and twenty-six healthy newborns with normal intrauterine growth were studied. Twenty-nine were preterm (15 males and 14 females; gestational age: 30-36 weeks) and 99 were at term (49 males and 48 females; gestational age: 37-42 weeks). RESULTS: Leptin values increase progressively throughout gestation from 1.30 +/- 0.53 ng/ml at 30 weeks of gestation to 7.98 +/- 4.96 ng/ml (mean +/- SD) at term, and correlate positively with birth weight (r = 0.56, p < 0. 005, n = 126), length (r = 0.37, p < 0.005, n = 126), BMI (r = 0.57, p < 0.005, n = 126), head circumference (r = 0.37, p < 0.005, n = 126), gestational age (r = 0.48, p < 0.005, n = 126) and placental weight (r = 0.38, p < 0.003, n = 59). Leptin values are statistically significantly lower (p < 0.005) preterm (median: 2.05 ng/ml; range: 0.7-8.3 ng/ml) than at term (median: 7.0 ng/ml; range: 1.1-28.1 ng/ml). Leptin values are also significantly (p < 0.005) higher in females (median: 7.2 ng/ml; range: 0.9-23.6 ng/ml, n = 62) than in males (median: 4.8 ng/ml; range: 0.7-28.1 ng/ml, n = 64), although there are no differences in weight (2,864 +/- 536 g in females vs. 2,937 +/- 744 g in males). Multiple regression analysis shows weight to be a positive sex-independent predictor of serum leptin values (p < 0.0005). Sex also proves to be a predictor of leptin, independently of weight and is higher in females than in males (p < 0.003). CONCLUSION: Leptin is present in placental human cord blood after 30-42 weeks of gestation. Newborn weight and sex are independent predictors of leptin values.  相似文献   

4.
Leptin is a 16 kDa protein hormone involved in food intake, energy expenditure regulation and numerous other physiological processes. Recently, leptin has been demonstrated to stimulate hematopoietic stem cells in vitro. The aim of our study was to measure serum leptin and erythropoietin levels in patients with sideropenic (n = 18) and pernicious anemia (n=7) before and during anemia treatment. Blood samples for the blood count, leptin and erythropoietin determinations were obtained by venepunction at the time of the diagnosis of anemia and after partial and complete anemia recovery. The relationships of serum leptin levels to erythropoietin levels and blood count parameters were also studied. No significant differences in serum leptin levels between the groups studied were found. The serum leptin levels in none of groups were modified by treatment of anemia (basal levels, the levels during treatment and after anemia recovery were 13.1+/-14.5 vs 12.8+/-15.6 vs 12.0+/-14.8 ng/ml in patients with sideropenic anemia and 7.8+/-8.5 vs 9.5+/-10.0 vs 8.9+/-6.6 ng/ml in patients with pernicious anemia). The erythropoietin levels were higher at the time of anemia in both groups and decreased significantly after partial or complete recovery. Serum leptin levels in both groups correlated positively with the body mass index. No significant relationships were found between serum leptin levels and erythropoietin values or various parameters of the peripheral blood count. We conclude that serum leptin levels in patients with sideropenic and pernicious anemia positively correlate with the body mass index but are not influenced by the treatment of anemia.  相似文献   

5.
Energy needs are increased during pregnancy and lactation. These increased energy needs may be met through partitioning of nutrients for energy utilization which is under hormonal control. The objective of the present studies was to determine if changes in plasma leptin occurred during pregnancy and lactation and if the changes were related to prolactin. Plasma leptin and prolactin were measured longitudinally in 9 women through pregnancy and lactation. In a second study, leptin and prolactin were measured 4 days and 28 days postpartum in 21 lactating women. Mean plasma leptin during the three trimesters of pregnancy was significantly higher (29.3+/-2.8 ng/ml) when compared to mean leptin during the three time periods of lactation (19.3+/-3.2 ng/ml) and control groups (9.8+/-1.4 ng/ml). Plasma leptin was elevated early in pregnancy and remained elevated throughout pregnancy. In the second study, the mean plasma leptin in the lactating women was significantly higher 4 days postpartum (17.3+/-3.7 ng/ml) and 28 days postpartum (19.2+/-3.9 ng/ml) when compared to controls (11.6+/-1.2 ng/ml). Prolactin in the control subjects (24+/-4 ng/ml) was significantly lower than in the pregnant (202+/-16 ng/ml) and lactating (108+/-26 ng/ml) groups. Similar observations were made in the second study (controls 20+/-2 ng/ml; lactation 28 days 159+/-21 ng/ml). Leptin during lactation was lower than in pregnancy but higher than control subjects. Regression analysis suggested that BMI and prolactin can be used as predictors of leptin in pregnancy and lactation. The increase in leptin and prolactin early in pregnancy suggests an association between the two hormones. Results of the present studies and research done by other investigators presents a strong role for leptin during pregnancy and lactation. Leptin is regulated by factors other than adiposity especially in reproductive women leading to our hypothesis that there are leptin and prolactin mediated effects on substrates used for energy utilization during pregnancy and lactation.  相似文献   

6.
Leptin, a hormone regulating body weight, food intake, and metabolism, is associated with activation of immune cells and inflammation. In this study we analyzed levels of leptin, adrenocorticotropic hormone (ACTH), corticosterone, interleukin 1beta (IL-1beta), and nitric oxide (NO) production on days 10 and 22 of adjuvant arthritis (AA) in male Long Evans rats to ascertain possible relationship of leptin with its modulators during the early and late phases of chronic inflammation. The circulating leptin levels were significantly reduced already on day 10 of AA compared to controls (1.97+/-0.22 ng/ml vs. 3.08+/-0.25 ng/ml, p<0.05); on day 22 no significant further drop was observed (1.06+/-0.21 ng/ml). Leptin mRNA in epididymal fat tissue was reduced in arthritic animals compared to controls on day 22 (0.61+/-0.09 vs. 1.30+/-0.1 arbU/GAPDH (p<0.01). IL-1beta concentration in spleen was enhanced on day 10 of AA (24.55+/-4.67 pg/100 microg protein vs. 14.33+/-1.71 pg/100 microg protein; p<0.05); on day 22 it did not differ from controls. ACTH and corticosterone levels were significantly elevated only on day 22 of AA (ACTH: 306.17+/-42.22 pg/ml vs. 157.61+/-23.94 pg/ml; p<0.05; corticosterone: 5.24+/-1.38 microg/100 ml vs. 1.05+/-0.23 microg/100 ml; p<0.01). Nitrate levels were enhanced similarly on days 10 (49.86+/-1.83 microM) and 22 of AA (43.58+/-2.17 microM), compared to controls (23.42+/-1.39 microM, p<0.001). These results show that corticosterone does not stimulate leptin production during AA. The suppression of leptin may be a consequence of permanent activation of NO, IL-1beta, and of lower weight gain. Circulating leptin does not seem to play a key role in the progression of chronic arthritis.  相似文献   

7.
Leptin and peroxisome proliferator-activated receptors are two important adipose tissue factors involved in energy metabolism regulation. It has been shown that PPARgamma agonists decrease leptin levels. However, the effects of PPARalpha agonists on leptin have not been investigated much. The aim of this study was to compare the effects of a PPARgamma agonist rosiglitazone (RSG) and PPARalpha agonist gemfibrozil (G) on body weight and serum insulin and leptin levels in diet-induced obese rats. Male Wistar rats were divided into six groups according to diet and drug therapy. After four weeks, serum glucose, triglyceride, insulin and leptin levels were significantly decreased in the high-fat-fed and RSG-treated groups compared to the group fed a high-fat diet only (162 +/- 19 vs. 207 +/- 34 mg/dl, 58 +/- 20 vs. 112 +/- 23 mg/dl, 3.1 +/- 1.0 vs. 15.2 +/- 4.0 ng/ml, 1.6 +/- 0.5 vs. 3.6 +/- 1.6 ng/ml, respectively). However, these parameters were not statistically different in RSG animals treated with a standard diet compared to the standard diet group. The high fat+RSG group gained much more weight compared to high-fat and high-fat+G groups (p > 0.05). Additionally, serum glucose, insulin and leptin levels were significantly decreased in the high-fat-fed and G-treated group compared to high-fat group (149 +/- 19 vs. 207 +/- 34 mg/dl, 57 +/- 16 vs. 112 +/- 23 mg/dl, 4.3 +/- 2.1 vs. 15.2 +/- 4.0 ng/ml, 1.6 +/- 0.4 vs. 3.6 +/- 1.6 ng/ml, respectively). These results suggest that PPARalpha agonists may decrease serum glucose, insulin and leptin levels as PPARgamma agonists do in diet-induced obese rats.  相似文献   

8.
The aim of this work is to investigate on plasma profiles of leptin and estradiol 17beta during the interpartum period and leptin concentrations in the milk and in the colostrum during the period from parturition to the successive delivery in mare. Leptin plasma concentration varied from 5.1+/-2.3 ng/ml after the first parturition (week 0) to 3.0+/-0.7 at week 21 (p<0.05), then it increased to maximal level at week 49 (6.9+/-1.0 ng/ml, p<0.05). Leptin concentration in the colostrum and in the milk has been significantly (p<0.05) higher than that in plasma samples at week 1 (milk 8.8+/-2.3 versus plasma 5.2+/-0.6 ng/ml) and between week 12 and 17. This difference may be explained with a local leptin production at mammary level and supports a role of leptin in the mammary gland and/or in foal intestine. Estradiol 17beta increased from week 15 (17.9+/-2.3 pg/ml) up to 487.9+/-67.7 pg/ml at week 43. Plasma estradiol 17beta rise anticipated by 4 weeks plasma leptin increase and it does not seem to be positively correlated to leptin secretion.  相似文献   

9.
High levels of phenylalanine (Phe) in blood have been shown to reduce dopamine (DA) and noradrenaline (NA) production. Leptin levels rise with increasing adiposity in rodents and humans acting as a negative feedback adipostatic signal to brain centers. The aim of this study was to evaluate leptin plasma levels in phenylketonuria (PKU) patients adhering to their special diet and in those on a 'loose diet'. Forty-nine patients with classical PKU were divided into two groups. Those in group A (n = 21) adhered very strictly to their diet (Phe: 0.15 +/- 0.04 mmol/l) and those in group B (n = 28) were on a 'loose diet' (Phe: 0.8 +/- 0.04 mmol/l). Thirty healthy children of comparable age served as controls. Both patients and controls were in pubertal stage 0 (Tanner). BMI (kg/m(2)) was evaluated in all the members of the groups. Their daily nutrients were calculated with a 7-day dietary protocol. Leptin was evaluated by RIA, and Phe and Tyrosine with an amino acid autoanalyser. Adrenaline (A), NA and DA were measured by an HPLC method. Plasma leptin in group B patients (28.4 +/- 2.0 ng/ml) was significantly increased as compared to group A patients (16.8 +/- 2. 6 ng/ml) and controls (17.8 +/- 3.0 ng/ml; p < 0.001). Plasma DA, A, and NA in group B was lower than in group A and controls. Additionally, leptin negatively correlated with A and DA, whereas Phe positively correlated with the hormone in all groups. Leptin, also, correlated with BMI only in group A and controls. Additionally, the hormone negatively correlated with the total energy intake only in group A (r = -0.43, p < 0.01) and in controls (r = -0.040, p < 0.01). It is suggested that the disregulation of the neuroendocrine system as well as the high Phe blood levels might play an important role in the increased leptin concentrations in PKU patients on a 'loose diet'.  相似文献   

10.
Leptin is considered to act as a signal relating somatic energetic status to the reproductive system. However, the nature of that signal and its relationship with male reproductive function across nonhuman primate species are unclear. We suggest that species-specific differences in leptin physiology may be related to the degree of environmental variation and variation in the importance of energy stores for male reproduction. In order to test the role of seasonality in species differences among nonhuman primates, we compared leptin, testosterone, and body composition in male rhesus (n = 69) and pig-tailed (n = 43) macaques. Despite having larger abdominal fat deposits, the rhesus macaques did not exhibit significantly higher leptin levels (rhesus, 2.21 +/- 0.43 ng/ml; pig-tailed, 2.12 +/- 0.39 ng/ml). Both species showed increases in leptin across adolescent, subadult, and adult age-groups (P = 0.036 for rhesus; P = 0.0003 for pig-tailed by ANCOVA). Testosterone was not significantly associated with leptin in either the rhesus (r = 0.039; P = 0.754) or pig-tailed (r = 0.2862; P = 0.066) samples. Comparison of leptin levels across the two species using univariate modeling procedures showed no significant age-group by abdominal fat interaction. These findings suggest little difference in leptin production between these two closely related species, despite the difference in breeding seasonality.  相似文献   

11.
Few investigators have simultaneously evaluated leptin, soluble leptin receptor (SLR) and leptin gene polymorphisms in preeclampsia cases and controls. We examined these three biomolecular markers in 40 preeclampsia cases and 39 controls. Plasma leptin and SLR concentrations were determined using immunoassays. Genotype for the tetranucleotide repeat (TTTC)(n), polymorphism in the 3 -flanking region of the leptin gene was determined using PCR. Alleles of the polymorphism were characterized by size distributions [short repeats (class I); and long repeats (class II)]. Logistic regression was used to calculate odds ratios (OR) and 95 % confidence intervals (CI). Leptin concentrations were higher in our cases than in the controls (53.1 4.7 vs. 17.7+/-2.4 ng/ml, p<0.05). SLR concentrations were slightly lower in our patients than in the controls (25.7+/-1.9 vs. 29.1+/-1.1 ng/ml, p>0.05). Elevated leptin (? 14.5 ng/ml) was associated with a 3.8-fold (CI 1.0-14.4) increased risk; whereas low SLR (< 28.5 ng/ml) was associated with a 6.3-fold (CI 1.7-23.2) increased risk of preeclampsia. The I/II genotype was associated with a 3.8-fold increased risk of preeclampsia (OR=3.8; 95 % CI 0.8-18.0); and the II/II genotype was not observed among our cases (0 % vs. 33 % p<0.001). Larger studies would be needed to confirm and further clarify the relations between functional variants in the leptin gene and preeclampsia risk.  相似文献   

12.
NPY is an important central orexigenic hormone, but little is known about its peripheral actions in human adipose tissue (AT) or its potential paracrine effects. Our objective was to examine NPY's role in AT, specifically addressing NPY protein expression, the effect of NPY on adipokine secretion, and the influence of insulin and rosiglitazone (RSG) on adipocyte-derived NPY in vitro. Ex vivo human AT was obtained from women undergoing elective surgery [age: 42.7 +/- 1.5 yr (mean +/- SE), BMI: 26.2 +/- 0.7 kg/m(2); n = 38]. Western blot analysis was used to determine NPY protein expression in AT depots. Abdominal subcutaneous (AbSc) adipocytes were isolated and treated with recombinant (rh) NPY, insulin, and RSG. NPY and adipokine levels were measured by ELISA. Our results were that NPY was localized in human AT and adipocytes and confirmed by immunohistochemistry. Depot-specific NPY expression was noted as highest in AbSc AT (1.87 +/- 0.23 ODU) compared with omental (Om; 1.03 +/- 0.15 ODU, P = 0.029) or thigh AT (Th; 1.0 +/- 0.29 ODU, P = 0.035). Insulin increased NPY secretion (control: 0.22 +/- 0.024 ng/ml; 1 nM insulin: 0.26 +/- 0.05 ng/ml; 100 nM insulin: 0.29 +/- 0.04 ng/ml; 1,000 nM insulin: 0.3 +/- 0.04 ng/ml; P < 0.05, n = 13), but cotreatment of RSG (10 nM) with insulin (100 nM) had no effect on NPY secretion. Furthermore, adipocyte treatment with rh-NPY downregulated leptin secretion (control: 6.99 +/- 0.89 ng/ml; 1 nmol/l rh-NPY: 4.4 +/- 0.64 ng/ml; 10 nmol/l rh-NPY: 4.3 +/- 0.61 ng/ml, 100 nmol/l rh-NPY: 4.2 +/- 0.67 ng/ml; P < 0.05, n = 10) but had no effect on adiponectin or TNF-alpha secretion. We conclude that NPY is expressed and secreted by human adipocytes. NPY secretion is stimulated by insulin, but this increment was limited by cotreatment with RSG. NPY's antilipolytic action may promote an increase in adipocyte size in hyperinsulinemic conditions. Adipose-derived NPY mediates reduction of leptin secretion and may have implications for central feedback of adiposity signals.  相似文献   

13.
Leptin and adiponectin play an essential role in energy metabolism. Leptin has also been proposed as a marker for monitoring training load. So far, no studies have investigated the variability of these hormones in athletes and how they are regulated during cumulative exercise. This study monitored leptin and adiponectin in 15 endurance athletes twice daily in the days before, during and after a 9-day simulated cycling stage race. Adiponectin significantly increased during the race (p = 0.001) and recovery periods (p = 0.002) when compared to the baseline, while leptin decreased significantly during the race (p < 0.0001) and returned to baseline levels during the recovery period. Intra-individual variability was substantially lower than inter-individual variability for both hormones (leptin 34.1 vs. 53.5%, adiponectin 19% vs. 37.2%). With regards to exercise, this study demonstrated that with sufficient, sustained energy expenditure, leptin concentrations can decrease within the first 24 hours. Under the investigated conditions there also appears to be an optimal leptin concentration which ensures stable energy homeostasis, as there was no significant decrease over the subsequent race days. In healthy endurance athletes the recovery of leptin takes 48-72 hours and may even show a supercompensation-like effect. For adiponectin, significant increases were observed within 5 days of commencing racing, with these elevated values failing to return to baseline levels after 3 days of recovery. Additionally, when using leptin and adiponectin to monitor training loads, establishing individual threshold values improves their sensitivity.  相似文献   

14.
The positive correlation between leptin and body fat mass has caused some investigators to speculate that leptin resistance contributes to obesity. Loss of ovarian function in human and rat is associated with increased fat mass gain and increased circulating leptin levels. To study whether ovariectomy produces leptin resistance, Sprague-Dawley female rats were ovariectomized or sham operated and injected with leptin for 35 days. Ovariectomy (OVX) produced hyperphagia and increased gain in both lean and fat mass. Daily leptin injections initially decreased food intake significantly, but feeding gradually increased to a stable level by day 16 and remained at that level for the duration of study. Body composition analysis indicated that chronic injection of leptin to OVX rats dramatically decreased (P < 0.05) fat mass [30 +/- 2 (SE) g, vehicle, to 3 +/- 1 g, leptin]. Using indirect calorimetry, we observed that OVX did not change energy expenditure or total level of fuel utilization. Leptin administration increased fat utilization and prevented reduction in calorie expenditure that is typically associated with food restriction. Leptin treatment to OVX rats decreased plasma triglyceride, free fatty acid, and insulin concentrations, whereas glucose concentration was normal. Withdrawal of leptin triggered hyperphagia, indicating that leptin biology remained throughout the duration of the chronic treatment. The same dose of leptin produced qualitatively similar data in sham-operated rats. Thus we concluded that the loss of ovarian function in rats is not associated with a change in leptin sensitivity.  相似文献   

15.
The aim of the current investigation was to determine the possible relationships of fasting adiponectin level with body composition, bone mineral, insulin sensitivity, leptin, and cardiorespiratory fitness parameters in 153 women. Subjects were classified as premenopausal (n = 42; 40.8 +/- 5.7 yr) if they had regular menstrual periods, early postmenopausal (n = 49; 56.7 +/- 3.6 yr) if they had been postmenopausal for more than >1 yr but <7 yr (5.5 +/- 1.3 yr), and postmenopausal (n = 62; 72.2 +/- 4.5 yr) if they had been postmenopausal for >7 yr. All women studied had a body mass index (BMI) <30 kg/m(2). Adiponectin values were higher (P < 0.05) in middle-aged (12.0 +/- 5.1 microg/ml) and older (15.3 +/- 7.3 microg/ml) postmenopausal women compared with middle-aged premenopausal women (8.4 +/- 3.2 microg/ml). Mean plasma adiponectin concentration in the total group of women (n = 153) was 12.2 +/- 6.3 microg/ml and was positively related (P < 0.05) to age, indexes of overall obesity (BMI, body fat mass), and cardiorespiratory fitness (PWC) values. In addition, a negative association (P < 0.05) between adiponectin with central obesity (waist-to-hip and waist-to-thigh ratio), fat-free mass, bone mineral (bone mineral content, total and lumbar spine bone mineral density), and leptin and insulin resistance (insulin, fasting insulin resistance index) values was observed. However, multivariate regression analysis revealed that only age, fasting insulin resistance index, and leptin were independent predictors of adiponectin concentration. In conclusion, circulating adiponectin concentrations increase with age in normal-weight middle-aged and older women. It appears that adiponectin is independently related to age, leptin, and insulin resistance values in women across the age span and menstrual status.  相似文献   

16.
Adiponectin is secreted by adipocytes and has been implicated in the regulation of energy homeostasis. Vigorous training program represents a physical stress condition in which heavy changes in energy expenditure might increase adiponectin concentration in athletes. Therefore, the aim of the present study was to investigate if there are changes in fasting adiponectin concentration during preparatory period in elite male rowers. Twelve rowers (mean and SD; age: 20.8+/-3.0 years; height: 192.9+/-4.7 cm; body mass: 91.9+/-5.3 kg; body fat percentage: 11.9+/-1.4%) were tested seven times over a 24-week training season. In addition to adiponectin, leptin, insulin, growth hormone, and glucose values were evaluated. Maximal oxygen consumption (VO (2 max)) and aerobic power (Pa (max)) were determined before and after the training period. Training was mainly organized as low-intensity prolonged training. Significant increases in VO (2 max) (by 3.2+/-1.8%; from 6.2+/-0.5 to 6.4+/-0.4 l/min), VO (2 max/kg) (by 2.2+/-2.0%; from 67.9+/-3.0 to 69.4+/-3.0 ml/min/kg) and Pa (max) (by 4.6+/-6.3%; from 444.6+/-39.1 to 465.8+/-25.0 W) were observed after the 24-week period. All measured body compositional values were similar to pretraining values after the training period. Fasting adiponectin did not change during the preparatory period. Likewise, leptin, insulin, growth hormone, and glucose values were not significantly changed after the training period. Adiponectin concentration was significantly correlated (all p<0.05) with body mass (r=-0.40), body fat mass (r=-0.33), body fat free mass (r=0.38), and leptin (r=-0.31) values. In conclusion, fasting adiponectin does not change throughout the prolonged training period in elite male rowers despite substantial changes in training volume. Further studies are needed to clarify possible mechanisms by which adiponectin might influence energy homeostasis during heavy training in elite athletes.  相似文献   

17.
Physical inactivity induced by head-down bed rest (HDBR) affects body composition (BC). Leptin is involved in BC regulation by acting on fuel homeostasis. We investigated whether leptin and counterregulatory hormone levels are affected by a 7-day HDBR. Fasting blood was sampled daily (0700) in males (n = 8) and on alternating days in females (n = 8) for measurements of leptin, insulin, norepinephrine (NE), epinephrine (Epi), growth hormone (GH), cortisol, nonesterified fatty acid (NEFA), and glucose. BC was measured by H(2)(18)O dilution. Energy intake (men 10.5 +/- 0.2 MJ/day, women 7.9 +/- 0.3 MJ/day) and BC were unchanged by HDBR. Increased levels of leptin (men 40%, P = 0.003; women 20%, P = 0. 050), insulin (men 34%, P = 0.018; women 25%, P = 0.022), and the insulin-to-glucose ratio (men 30%, P = 0.049; women 25%, P = 0.031) were noted. GH, NE, Epi, and cortisol levels were unaltered. NEFA dropped in both sexes, but glucose decreased only in women. In conclusion, HDBR increased leptin levels independently of stress response, changes in fat mass, energy intake, or gender. These changes were correlated to the insulin-resistance development in men. Further analyses are required, but the results have to be considered for longer HDBR periods with 1) the well-described drop in energy intake and 2) the BC changes.  相似文献   

18.
Placental transport of long chain polyunsaturated fatty acids is important for fetal growth and development. In order to examine the effects of leptin and insulin on fatty acid uptake by the placenta, placental choriocarcinoma (BeWo) cells were used. BeWo cells were incubated for 5h at 37 degrees C in the absence or presence of different concentrations of insulin (0.6, 60, and 100 ng) or leptin (10 ng) with 200 microM of various radiolabeled fatty acids (docosahexaenoic acid, arachidonic acid, eicosapentaenoic acid, and oleic acid, mixed with 1:1 bovine serum albumin (fat free). After incubation, the uptake and distribution of these fatty acids into different cellular lipid fractions were determined. The uptakes of oleic, eicosapentaenoic, arachidonic, and docosahexaenoic acids were 15.36+/-4.1, 19.95+/-3.6, 28.56+/-8.1, and 62.25+/-9.5 nmol/mg of protein, respectively, in BeWo cells. Incubation of these cells with insulin (0.6 or 60 ng/ml) or leptin (10 ng/ml) did not significantly alter uptake of any of these fatty acids (P>0.5). Insulin or leptin also did not affect beta oxidation of fatty acids in these cells. In contrast, leptin (10 ng/ml) and insulin (0.60 ng/ml)) stimulated the uptake of oleic acid (7.4+/-2.3 nmol/mg protein) in human adipose cells, SGBS cells by 1.28- and 2.48-fold (P<0.05), respectively. The distribution of fatty acids in different cellular lipid fractions was also not affected by these hormones. Our data indicate that unlike adipose tissue, fatty acid uptake and metabolism in placental trophoblasts is not regulated by insulin or leptin.  相似文献   

19.
BACKGROUND/AIMS: Children with cystic fibrosis (CF) are of increased risk of reduced fat body mass (FBM) and lean body mass (LBM). Serum concentrations of insulin-like growth factor-1 (IGF-1)and leptin could be markers of LBM and/or FBM depletion. To evaluate the relationships between disease activity, body composition, IGF-1 and leptin concentrations in CF children. METHODS: A cross-sectional study with 26 CF children aged 5.0-15.5 years and 33 healthy controls, mean age 9.4 years. Body composition was evaluated by dual-energy X-ray absorptiometry. Fasting blood samples were analyzed for leptin, IGF-1 and IGFBP-3. RESULTS: FBM standard deviation score (SDS; CF boys -0.02 +/- 0.88 vs. 0.78 +/- 0.65, p < 0.01; CF girls -0.37 +/- 1.15 vs. 0.70 +/- 0.97, p < 0.05), leptin concentration (CF boys 2.07 +/- 0.79 vs. 3.07 +/- 1.28 ng/ml, p < 0.05; CF girls 2.71 +/- 0.86 vs. 5.00 +/- 2.95 ng/ml, p < 0.05) and IGF-1SDS (CF boys -1.43 +/- 1.50 vs. -0.32 +/- 0.88, p < 0.05; CF girls -0.66 +/- 1.66 vs. 0.64 +/- 0.57, p < 0.01) were lower in CF children compared to controls. Shwachman score was the strongest predictor of lean body mass (R = 0.63). Leptin levels explain 60% of the variability in FBM. CONCLUSION: Serum concentrations of IGF-1 and leptin are decreased in children with CF and are associated with clinical conditions and body composition.  相似文献   

20.
AIM: As the link between body fat and leptin is well known, the aim of the study was to seek for secondary regulators of plasma leptin level. PATIENTS: 86 women (mean: age 47.0+/-14.3 years; estradiol 50.0+/-60.6 ng/l; FSH 52.4+/-42.9 IU/l; BMI 26.9+/-5.9) divided into three groups according to their BMI. Group A: 39 normal weight women (mean: age 44.4+/-16.0 years; estradiol 69.6+/-79.8 ng/l; FSH 50.4+/-47.7 IU/l; BMI 22.9+/-1.3). Group B: 27 overweighted women (mean: age 55.0+/-6.4 years; estradiol 25.1+/-17.2 ng/l; FSH 75.6+/-26.3 IU/l; BMI 27.7+/-1.6). Group C: 21 obese women with mean: age 48.7+/-12.2 years; estradiol 36.9+/-44.0 ng/l; FSH 42.3+/-36.6 IU/l and BMI 34.6+/-4.9. METHODS: Standard clinical evaluation and hormone evaluation (LH, FSH, prolactin, estradiol, leptin, insulin-like growth factor-I (IGF-I), human growth hormone (hGH), insulin-like growth factor binding protein-3 (IGFBP-3), insulin, dihydroepiandrosterone sulphate (DHEAS), sex hormone binding globin (SHBG) and testosterone were done in basic condition which levels of were measured by RIA kits. Statistical analysis. Shapiro-Wilk test, Mann-Whitney-Wilcoxon u test, Spearman rank correlation coefficient and stepwise multiple regression: p values of 0.05 or less were considered as significant. RESULTS: Taking all women into account (n=86) the plasma leptin level correlated directly with age (r=0.32; p<0.02), body mass (r=0.60; p<0.001), BMI (r=0.71; p<0.001) as well as inversely with estradiol (r=-0.21; p<0.05), IGF-I (r=-0.24; p<0.05), SHBG (r=-0.34; p<0.01) and DHEAS (r=-0.30; p<0.01). However only in the group B leptin/age relation remained (r=0.40; p<0.05) after the division according to BMI. In the group B the leptin /DHEAS (r=-0.40; p<0.05) and leptin/PRL (r=0.51; p<0.05) links were also present. In the group C the leptin/SHGB relation (r=-0.56; p<0.02) only remained and an association between insulin and leptin was found (r=0.48; p<0.05). The body mass and BMI relation to age were again present only in all 86 women (r=0.30; p<0.002: r=0.36; p<0.001 resp.). Having split the women into groups, these links either disappeared or became inverse (rC=-0.39; p<0.05). Taking into consideration age/leptin relation in all women, the division according to the menopausal status revealed the direct relation in premenopausal women (n=29; r=0.43; p<0.02) and a reverse one in postmenopausal women (n=38; r=-0.32; p<0.05). The plasma leptin level was the highest (p<0.001) in group C (23.2+/-10.4 microg/l) and the lowest was found in the group A (8.9+/-4.1 microg/l). That corresponded with the differences in mean body mass index and mean body mass. The stepwise multiple regression revealed that body mass index accounted for 31% (p<0.001) and plasma SHBG level accounted for 17.7% (p<0.02) of plasma leptin variance in all women. In the group A body mass and age together accounted for 61% (p<0.01) and estradiol alone accounted for 44% (p<0.02) of plasma leptin variance. In the group B insulin alone accounted for 39% (p<0.05) and together with testosterone accounted for 46% (p<0.05) of plasma leptin variance. Finally in obese women none of the evaluated parameters significantly accounted for leptin variance. CONCLUSION: The results presented in this paper confirmed the strong influence of body fat mass on serum leptin concentration. However insulin, SHBG, sex steroids as well as age may also exert secondary influence on plasma leptin level in certain groups of women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号