首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effector proteins that modulate plant--insect interactions   总被引:2,自引:0,他引:2  
Insect herbivores have highly diverse life cycles and feeding behaviors. They establish close interactions with their plant hosts and suppress plant defenses. Chewing herbivores evoke characteristic defense responses distinguishable from general mechanical damage. In addition, piercing-sucking hemipteran insects display typical feeding behavior that suggests active suppression of plant defense responses. Effectors that modulate plant defenses have been identified in the saliva of these insects. Tools for high-throughput effector identification and functional characterization have been developed. In addition, in some insect species it is possible to silence gene expression by RNAi. Together, this technological progress has enabled the identification of insect herbivore effectors and their targets that will lead to the development of novel strategies for pest resistances in plants.  相似文献   

2.
3.
The Gram-negative bacterium Legionella pneumophila is a parasite of eukaryotic cells. It has evolved to survive and replicate in a wide range of protozoan hosts and can also infect human alveolar macrophages as an opportunistic pathogen. Crucially for the infection process, L. pneumophila uses a type IV secretion system called Dot/Icm to translocate bacterial proteins into host cells. In recent years a large number of Dot/Icm-translocated proteins have been identified. The study of these proteins, referred to as effectors, is providing valuable insight into the mechanism by which an intracellular pathogen can manipulate eukaryotic cellular processes to traffic and replicate in host cells.  相似文献   

4.
Eubacterial origin of chlamydiae.   总被引:38,自引:8,他引:30       下载免费PDF全文
The sequence of the 16S rRNA gene from Chlamydia psittaci was determined. Comparison of this sequence with other 16S rRNA sequences showed the organism to be eubacterial. The organism represents a hitherto unrecognized major eubacterial group. However, this group may be peripherally related to the planctomyces and relatives. Although these two groups seem to have very little in common phenotypically (they have been studied in very different ways), cell walls in both cases contain no peptidoglycan.  相似文献   

5.
A cross-reactivity among some strains ofCoxiella burnetii and chlamydiae with immune rabbit and mouse sera in ELISA and immunoblot analysis was observed. In the latter, the cross-reactivity disappeared after a treatment ofC. burnetii orC. psittaci with proteinase K, which indicates that only proteins were involved. The observed cross-reactivity was not influenced by host chick embryo yolk sac proteins. After adsorption of immune rabbit sera with homologous corpuscular antigens the cross-reactivity disappeared. The possibility of influence of such cross-reactivity on serological diagnosis ofC. burnetii or chlamydiae infections is discussed.  相似文献   

6.
The Ral effector protein RLIP76 (also called RIP/RalBP1) binds to Ral.GTP via a region that shares no sequence homology with the Ras-binding domains of the Ser/Thr kinase c-Raf-1 and the Ral-specific guanine nucleotide exchange factors. Whereas the Ras-binding domains have a similar ubiquitin-like structure, the Ral-binding domain of RLIP was predicted to comprise a coiled-coil region. In order to obtain more information about the specificity and the structural mode of the interaction between Ral and RLIP, we have performed a sequence space and a mutational analysis. The sequence space analysis of a comprehensive nonredundant assembly of Ras-like proteins strongly indicated that positions 36 and 37 in the core of the effector region are tree-determinant positions for all subfamilies of Ras-like proteins and dictate the specificity of the interaction of these GTPases with their effector proteins. Indeed, we could convert the specific interaction with Ras effectors and RLIP by mutating these residues in Ras and Ral. We therefore conclude that positions 36 and 37 are critical for the discrimination between Ras and Ral effectors and that, despite the absence of sequence homology between the Ral-binding and the Ras-binding domains, their mode of interaction is most probably similar.  相似文献   

7.
As an intracellular pathogen, the mechanism by which Chlamydia invade eukaryotic cells represents a cornerstone to understanding chlamydial biology. The ability of chlamydiae specifically to bind heparan sulphate or heparin and the association of this ability to bind and enter mammalian host cells was approached by searching experimentally for chlamydial outer membrane proteins that bind heparin. The 60 000 molecular weight cysteine-rich outer membrane complex protein, OmcB, bound heparin. The ability of OmcB to bind heparin was supported by mapping the region of the protein with heparin-binding capacity and demonstrating that an OmcB synthetic 20-mer peptide from this region specifically bound heparin. Surface localization of OmcB was shown using monospecific antisera specific to the 20-mer OmcB peptide that bound the surfaces of elementary bodies (EB) and by heparin-binding peptide cross-linking of EB surface proteins.  相似文献   

8.
Cell monolayer-grown chlamydiae (CGO) differed from egg-grown organisms (EGO) in their increased spontaneous infectivity relative to centrifuge-assisted infectivity for monolayers. For each population spontaneous: centrifuge-assisted infectivity ratios were constant over a wide dose range. Spontaneous infection increased linearly with time and could not be exhausted from either population by prolonged adsorption; there was no change in infectivity ratios in residual supernatants. Further, one passage of EGO through monolayers gave CGO with stable infectivity properties not increased by further cell passage yet reverting on a single passage in eggs. Spontaneous infection of monolayers with EGO gave progeny with the same infectivity ratios as monolayers infected with EGO by centrifugation. The change in properties following EGO infection of monolayers occurred prior to natural release from cells. We conclude that EGO and CGO are two phenotypically distinct, homogeneous populations. The two infection modes are not properties of subpopulations within EGO and CGO. The relationship of these observations on chlamydiae to other possible host-imposed phenomena is considered.  相似文献   

9.
Phytopathogenic bacteria deliver effectors of disease into plant hosts via a Type III secretion system. These Type III effectors have genetically determined roles in virulence. They also are among the components recognized by the putative receptors of the plant innate immune system. Recent breakthroughs include localization of some of these Type III effectors to specific host cell compartments, and the first dissection of pathogenicity islands that carry them.  相似文献   

10.
In C. elegans, 283 clec genes encode a highly diverse family of C-type lectin-like domain (CTLD) proteins. Since vertebrate CTLD proteins have characterized functions in defense responses against pathogens and since expression of C. elegans clec genes is pathogen-dependent, it is generally assumed that clec genes function in C. elegans immune defenses. However, little is known about the relative contribution and exact function of CLEC proteins in C. elegans immunity. Here, we focused on the C. elegans clec gene clec-4, whose expression is highly upregulated by pathogen infection, and its paralogs clec-41 and clec-42. We found that, while mutation of clec-4 resulted in enhanced resistance to the Gram-positive pathogen Bacillus thuringiensis MYBt18247 (Bt247), inactivation of clec-41 and clec-42 by RNAi enhanced susceptibility to Bt247. Further analyses revealed that enhanced resistance of clec-4 mutants to Bt247 was due to an increase in feeding cessation on the pathogen and consequently a decrease in pathogen load. Moreover, clec-4 mutants exhibited feeding deficits also on non-pathogenic bacteria that were in part reflected in the clec-4 gene expression profile, which overlapped with gene sets affected by starvation or mutation in nutrient sensing pathways. However, loss of CLEC-4 function only mildly affected life-history traits such as fertility, indicating that clec-4 mutants are not subjected to dietary restriction. While CLEC-4 function appears to be associated with the regulation of feeding behavior, we show that CLEC-41 and CLEC-42 proteins likely function as bona fide immune effector proteins that have bacterial binding and antimicrobial capacities. Together, our results exemplify functional diversification within clec gene paralogs.  相似文献   

11.
Sponge microbiomes contribute to host health, nutrition, and defense through the production of secondary metabolites. Chlamydiae, a phylum of obligate intracellular bacteria ranging from animal pathogens to endosymbionts of microbial eukaryotes, are frequently found associated with sponges. However, sponge-associated chlamydial diversity has not yet been investigated at the genomic level and host interactions thus far remain unexplored. Here, we sequenced the microbiomes of three sponge species and found high, though variable, Chlamydiae relative abundances of up to 18.7% of bacteria. Using genome-resolved metagenomics 18 high-quality sponge-associated chlamydial genomes were reconstructed, covering four chlamydial families. Among these, Candidatus Sororchlamydiaceae shares a common ancestor with Chlamydiaceae animal pathogens, suggesting long-term co-evolution with animals. Based on gene content, sponge-associated chlamydiae resemble members from the same family more than sponge-associated chlamydiae of other families, and have greater metabolic versatility than known chlamydial animal pathogens. Sponge-associated chlamydiae are also enriched in genes for degrading diverse compounds found in sponges. Unexpectedly, we identified widespread genetic potential for secondary metabolite biosynthesis across Chlamydiae, which may represent an unexplored source of novel natural products. This finding suggests that Chlamydiae members may partake in defensive symbioses and that secondary metabolites play a wider role in mediating intracellular interactions. Furthermore, sponge-associated chlamydiae relatives were found in other marine invertebrates, pointing towards wider impacts of the Chlamydiae phylum on marine ecosystems.Subject terms: Symbiosis, Phylogenetics, Metagenomics, Comparative genomics, Microbiome  相似文献   

12.
13.
Interaction of chlamydiae and host cells in vitro.   总被引:74,自引:2,他引:72       下载免费PDF全文
The obligately intracellular bacteria of the genus Chlamydia, which is only remotely related to other eubacterial genera, cause many diseases of humans, nonhuman mammals, and birds. Interaction of chlamydiae with host cells in vitro has been studied as a model of infection in natural hosts and as an example of the adaptation of an organism to an unusual environment, the inside of another living cell. Among the novel adaptations made by chlamydiae have been the substitution of disulfide-bond-cross-linked polypeptides for peptidoglycans and the use of host-generated nucleotide triphosphates as sources of metabolic energy. The effect of contact between chlamydiae and host cells in culture varies from no effect at all to rapid destruction of either chlamydiae or host cells. When successful infection occurs, it is usually followed by production of large numbers of progeny and destruction of host cells. However, host cells containing chlamydiae sometimes continue to divide, with or without overt signs of infection, and chlamydiae may persist indefinitely in cell cultures. Some of the many factors that influence the outcome of chlamydia-host cell interaction are kind of chlamydiae, kind of host cells, mode of chlamydial entry, nutritional adequacy of the culture medium, presence of antimicrobial agents, and presence of immune cells and soluble immune factors. General characteristics of chlamydial multiplication in cells of their natural hosts are reproduced in established cell lines, but reproduction in vitro of the subtle differences in chlamydial behavior responsible for the individuality of the different chlamydial diseases will require better in vitro models.  相似文献   

14.
The results of molecular-genetic study of typical specimens of the genus Chlamydophila of the family Chlamydiaceae from the FSE FCTRSA collection of microorganisms are considered for the purpose of their taxonomy based on comparative analysis by the omp1-, omp2-, 16S rRNA-, and 23S rRNA-genes and by the presence of extrachromosomal plasmid with corresponding fragments of the genomes officially registered species of chlamydiae. According to the omp1-RFLP-AluI-profile, the Rostinovo-70, 250, PP-87, and KC-93 strains were characterized by new genotype of chlamydiae (genotype G). The new omp2-RFLP-AluI-profile of chlamydiae on carrying out the comparative analysis of Rostinovo-70, 250, PP-87 and KC-93 strains by omp2-gene was characterized. On the basis of the species identification of chlamydiae by genetical and ecological criteria, the chlamydia strains Rostinovo-70, 250, PP-87, and KC-93 can be included in the new chlamydia species Chlamydophila parapsittaci sp. nov. It was suggested to combine into a new species the following strains of Chlamydophila psittaci: WC, NJ1, 92-1293, TT3, 7344/2, GD, CT1, Par1, 84/2334, R54, VS225, 777B15, and Prk/Daruma.  相似文献   

15.
GTP-binding (G) proteins regulate the flow of information in cellular signaling pathways by alternating between a GTP-bound "active" state and a GDP-bound "inactive" state. Cdc42, a member of the Rho family of Ras-related small G-proteins, plays key roles in the regulation of cell shape, motility, and growth. Here we describe the high resolution x-ray crystal structure for Cdc42 bound to the GTP analog guanylyl beta,gamma-methylene-diphosphonate (GMP-PCP) (i.e. the presumed signaling-active state) and show that it is virtually identical to the structures for the signaling-inactive, GDP-bound form of the protein, contrary to what has been reported for Ras and other G-proteins. Especially surprising was that the GMP-PCP- and GDP-bound forms of Cdc42 did not show detectable differences in their Switch I and Switch II loops. Fluorescence studies using a Cdc42 mutant in which a tryptophan residue was introduced at position 32 of Switch I also showed that there was little difference in the Switch I conformation between the GDP- and GMP-PCP-bound states (i.e. <10%), which again differed from Ras where much larger changes in Trp-32 fluorescence were observed when comparing these two nucleotide-bound states (>30%). However, the binding of an effector protein induced significant changes in the Trp-32 emission specifically from GMP-PCP-bound Cdc42, as well as in the phosphate resonances for GTP bound to this G-protein as indicated in NMR studies. An examination of the available structures for Cdc42 complexed to different effector proteins, versus the x-ray crystal structure for GMP-PCP-bound Cdc42, provides a possible explanation for how effectors can distinguish between the GTP- and GDP-bound forms of this G-protein and ensure that the necessary conformational changes for signal propagation occur.  相似文献   

16.
The major outer membrane protein of chlamydial elementary bodies was identified in dimer, trimer, and other multimeric forms. These natural multimers were stabilized by disulfide-mediated cross-linking. Such cross-linking of outer membrane proteins may play an important role in the formation and evolution of chlamydial cell wall structure.  相似文献   

17.
本文利用杂交瘤技术,成功地建立了3株稳定分泌小鼠抗衣原体属脂多糖抗原单克隆抗体的杂交瘤细胞。实验结果表明,3株单抗均为IgM类,特异性强,识别相似抗原位点,为今后的应用打下了基础。  相似文献   

18.
Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain.  相似文献   

19.
Chlamydiae are important pathogens of humans and animals but diagnosis of chlamydial infections is still hampered by inadequate detection methods. Fluorescence in situ hybridization (FISH) using rRNA-targeted oligonucleotide probes is widely used for the investigation of uncultured bacteria in complex microbial communities and has recently also been shown to be a valuable tool for the rapid detection of various bacterial pathogens in clinical specimens. Here we report on the development and evaluation of a hierarchic probe set for the specific detection and differentiation of chlamydiae, particularly C. pneumoniae, C. trachomatis, C. psittaci, and the recently described chlamydia-like bacteria comprising the novel genera Neochlamydia and PARACHLAMYDIA: The specificity of the nine newly developed probes was successfully demonstrated by in situ hybridization of experimentally infected amoebae and HeLa 229 cells, including HeLa 229 cells coinfected with C. pneumoniae and C. trachomatis. FISH reliably stained chlamydial inclusions as early as 12 h postinfection. The sensitivity of FISH was further confirmed by combination with direct fluorescence antibody staining. In contrast to previously established detection methods for chlamydiae, FISH was not susceptible to false-positive results and allows the detection of all recognized chlamydiae in one single step.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号