首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of product formation by cytochrome P450 2B4 were compared in the presence of cytochrome b(5) (cyt b(5)) and NADPH-cyt P450 reductase (CPR) under conditions in which cytochrome P450 (cyt P450) underwent a single catalytic cycle with two substrates, benzphetamine and cyclohexane. At a cyt P450:cyt b(5) molar ratio of 1:1 under single turnover conditions, cyt P450 2B4 catalyzes the oxidation of the substrates, benzphetamine and cyclohexane, with rate constants of 18 +/- 2 and 29 +/- 4.5 s(-1), respectively. Approximately 500 pmol of norbenzphetamine and 58 pmol of cyclohexanol were formed per nmol of cyt P450. In marked contrast, at a cyt P450:CPR molar ratio of 1:1, cyt P450 2B4 catalyzes the oxidation of benzphetamine congruent with100-fold (k = 0.15 +/- 0.05 s(-1)) and cyclohexane congruent with10-fold (k = 2.5 +/- 0.35 s(-1)) more slowly. Four hundred picomoles of norbenzphetamine and 21 pmol of cyclohexanol were formed per nmol of cyt P450. In the presence of equimolar concentrations of cyt P450, cyt b(5), and CPR, product formation is biphasic and occurs with fast and slow rate constants characteristic of catalysis by cyt b(5) and CPR. Increasing the concentration of cyt b(5) enhanced the amount of product formed by cyt b(5) while decreasing the amount of product generated by CPR. Under steady-state conditions at all cyt b(5):cyt P450 molar ratios examined, cyt b(5) inhibits the rate of NADPH consumption. Nevertheless, at low cyt b(5):cyt P450 molar ratios 相似文献   

2.
Experiments demonstrating that cytochrome (cyt) b5 inhibits the activity of cytochrome P450 2B4 (cyt P450 2B4) at higher concentrations suggested that cyt b5 was occupying the cyt P450 reductase-binding site on cyt P450 2B4 and preventing the reduction of ferric cyt P450 (Zhang, H., Im, S.-C., and Waskell, L. (2007) J. Biol. Chem. 282, 29766-29776). In this work experiments were undertaken with manganese-containing cyt b5 (Mn-cyt b5) to test this hypothesis. Because Mn-cyt b5 does not undergo oxidation state changes under our experimental conditions, interpretation of the experimental results was unambiguous. The rate of electron transfer from cyt P450 reductase to ferric cyt P450 2B4 was decreased by Mn-cyt b5 in a concentration-dependent manner. Moreover, reduction of cyt P450 2B4 by cyt P450 reductase was incomplete in the presence of Mn-cyt b5. At a Mn-cyt b(5):cyt P450 2B4:cyt P450 reductase molar ratio of 5:1:1, the rate of reduction of ferric cyt P450 was decreased by 10-fold, and only 30% of the cyt P450 was reduced, whereas 70% remained oxidized. It could be demonstrated that Mn-cyt b5 had its effect by acting on cyt P450, not the reductase, because the reduction of cyt c by cyt P450 reductase in the presence of Mn-cyt b5 was not effected. Furthermore, under steady-state conditions in the cyt P450 reconstituted system, Mn-cyt b5, which lacks the ability to reduce oxyferrous cyt P450 2B4, was unable to stimulate the activity of cyt P450. Mn-cyt b5 only inhibited the cyt P450 2B4 activity. In conjunction with site-directed mutagenesis studies and experiments that strongly suggested that cyt b5 competed with cyt P450 reductase for binding to cyt P450, the current investigation demonstrates unequivocally that cyt b5 inhibits the activity of cyt P450 2B4 by preventing cyt P450 reductase from binding to cyt P450, a prerequisite for electron transfer from cyt P450 reductase to cyt P450 and catalysis.  相似文献   

3.
Fluorescence quenching of riboflavin by cytochrome P450 2B4 was used to probe the ligand--enzyme binding interaction ((lambda ex = 385 nm, lambda em = 520 nm). Riboflavin is a component of a flavoprotein NADPH dependent cytochrome P450 reductase, an essential electron carrier during cytochrome P450 catalysis. Fluorescence titration measurements revealed that cytochrome P450 2B4 and riboflavin formed a complex with an apparent Kd = 8.8 +/- 1 microM. The fluorescence intensity of riboflavin decreased upon the addition of cytochrome P450 2B4, which may be caused by the resonance excitation energy transfer from the fluorescent donor riboflavin to the cytochrome P450 2B4 heme acceptor. These data suggest that there may exist specific sites of binding of riboflavin with the protein globule of cytochrome P450 2B4.  相似文献   

4.
Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼10- to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochrome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase.  相似文献   

5.
Dissociation constants K(d) for cytochrome P450 reductase (reductase) and cytochrome P450 2B4 are measured in the presence of various substrates. Aminopyrine increases the dissociation constant for binding of the two proteins. Furthermore, cytochrome b(5) (b(5)) stimulates metabolism of this substrate and dramatically decreases the substrate-related K(d) values. Experiments are performed to test if the b(5)-mediated stimulation is effected through a conformational change of P450. The effects of a redox-inactive analogue of b(5) (Mn b(5)) on product formation and reaction stoichiometry are determined. Variations in the concentration of Mn b(5) stock solution that have been shown to effect the aggregation state of the protein alter the rate of P450-mediated NADPH oxidation but have no effect on the rate of product formation. Thus, the electron transfer capability of b(5) is necessary for stimulation of metabolism. Furthermore, stopped flow spectrometry measurements of the rate of first electron reduction of the P450 by reductase indicate that the coupling of P450 2B4-mediated metabolism improves, in the presence of Mn b(5), with slower delivery of the first electron of the catalytic cycle by the reductase. These results are consistent with a model involving the regulation of the P450 catalytic cycle by conformational changes of the P450 enzyme. We propose that the conformational change(s) necessary for progression of the catalytic cycle is inhibited when reduced, but not oxidized, reductase is bound to the P450.  相似文献   

6.
The microbial model of mammalian drug metabolism, Cunninghamella elegans, has three cytochrome P450 reductase genes in its genome: g1631 (CPR_A), g4301 (CPR_B), and g7609 (CPR_C). The nitroreductase activity of the encoded enzymes was investigated via expression of the genes in the yeast Pichia pastoris X33. Whole cell assays with the recombinant yeast demonstrated that the reductases converted the anticancer drug flutamide to the nitroreduced metabolite that was also produced from the same substrate when incubated with human NADPH: cytochrome P450 reductase. The nitroreductase activity extended to other substrates such as the related drug nilutamide and the environmental contaminants 1-nitronaphthalene and 1,3-dinitronaphthalene. Comparative experiments with cell lysates of recombinant yeast were conducted under aerobic and reduced oxygen conditions and demonstrated that the reductases are oxygen sensitive.  相似文献   

7.
Heme oxygenase-1 (HO-1) catalyzes the physiological degradation of heme at the expense of molecular oxygen using electrons donated by NADPH-cytochrome P450 reductase (CPR). In this study, we investigated the effect of NADP(H) on the interaction of HO-1 with CPR by surface plasmon resonance. We found that HO-1 associated with CPR more tightly in the presence of NADP(+) (K(D) = 0.5 microm) than in its absence (K(D) = 2.4 microm). The HO-1 mutants, K149A, K149A/K153A, and R185A, showed almost no heme degradation activity with NADPH-CPR, whereas they exhibited activity comparable to that of the wild type when sodium ascorbate was used. R185A showed a 100-fold decreased affinity for CPR compared with wild type, even in the presence of NADP(+) (K(D) = 36.3 microm). The affinities of K149A and K149A/K153A for CPR were decreased 7- and 9-fold (K(D) = 16.8 and 21.8 microm), respectively. In contrast to R185A, the affinities of K149A and K149A/K153A were improved by the addition of NADP(+) (K(D) = 5.2 and 9.6 microm, respectively), as was the case with wild type. Computer modeling of the HO-1/CPR complex showed that the guanidino group of Arg(185) is located within the hydrogen bonding distance of 2'-phosphate of NADPH, suggesting that Arg(185) contributes to the binding to CPR through an electrostatic interaction with the phosphate group. On the other hand, Lys(149) is close to a cluster of acidic amino acids near the FMN binding site of CPR. Thus, Lys(149) and Lys(153) appear to interact with CPR in such a way as to orient the redox partners for optimal electron transfer from FMN of CPR to heme of HO-1.  相似文献   

8.
The pre-steady-state reduction of cytochrome P450 (P450) 2B4 by P450 reductase (reductase) was modeled by assuming that an equilibrium between three catalytic conformers of P450 regulates the multi-phasic reduction of the enzyme. This model was compared to a model of reduction involving a minimum number of phases. Based on several criteria, the former model seems to provide an improved fit to the reduction data. Substrates were divided into two groups based on their effects at different concentrations of reductase. Surprisingly, in the presence of some substrates (group 1) but not others (group 2), the rate of reduction was actually slower with an excess of reductase than with equimolar reductase and P450. Presumably, oxidized reductase binds differently to P450 than reduced reductase. A schematic model based on two sites of interaction between reductase and P450 2B4 is offered to explain the unusual reduction kinetics with the two different groups of substrates.  相似文献   

9.
The site(s) of interaction between human cytochrome P450 2B6 and NADPH-cytochrome P450 reductase (P450 reductase) have yet to be identified. To investigate this, the cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) was used to covalently link P450 2B6-P450 reductase. Following digestion with trypsin, the cross-linked peptides were identified by reconstituting the peptides in 18O-water based on the principle that the cross-linked peptides would be expected to incorporate twice as many 18O atoms as the non-cross-linked peptides. Subsequent mass spectrometric analyses of the resulting peptides led to the identification of one cross-linked peptide candidate. De novo sequencing of the peptide indicated that it is a complex between residues in the C-helix of the P450 (based upon solved X-ray crystal structures of P450 2B4) and the connecting domain of the P450 reductase. To confirm this experimentally, the P450 2B6 peptide identified through the cross-linking studies was synthesized and peptide competition studies were performed. In the presence of the synthetic peptide, P450 catalytic activity was decreased by up to 60% when compared to competition studies performed using a nonsense peptide. Taken together, these studies indicate that residues in the C-helix of P450 2B6 play a major role in the interaction with the P450 reductase.  相似文献   

10.
Attempts to covalently link NADPH-cytochrome P450 reductase to cytochrome P450 2B4 using a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylisopropyl)carbodiimide, were unsuccessful, despite the fact that under the same conditions about 30% of P450 2B4 could be covalently linked with cytochrome b5 in a functionally active complex (Tamburini, P. P., and Schenkman, J. B. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 11-15). This suggested that the functional electron transfer complex between P450 2B4 and reductase is not stabilized by electrostatic forces. Raising the ionic strength of the medium is disruptive to salt bridges and was used to further test whether P450 2B4 and the reductase form charge-pairing complexes. Instead of inhibiting electron transfer, high ionic strength increased the apparent fast phase rate constant and the fraction of P450 2B4 reduced in the fast phase. The possibility that electron transfer between NADPH-cytochrome P450 reductase and P450 2B4 is diminished by charge repulsion was examined. Consistent with this hypothesis, the Km of P450 2B4 for reductase was decreased 26-fold by increasing the ionic strength from 10 to 100 mM sodium phosphate without affecting the Vmax. The rate of benzphetamine N-demethylation also was increased by elevation of the ionic strength. Electron transfer from the reductase to other charged redox acceptors, e.g. cytochrome c and ferricyanide, was also stimulated by increased ionic strength. However, no similar stimulation was observed with the uncharged acceptor 1,4-benzoquinone. Polylysine, a polypeptide that binds to anionic sites, enhanced electron transfer from NADPH to ferricyanide and the apparent fast phase of reduction of cytochrome P450. The results are consistent with the hypothesis that charges on NADPH-cytochrome P450 reductase and cytochrome P450 decrease the stability of the electron transfer complex.  相似文献   

11.
The induction in rat liver of a specific variant(s) of cytochrome P450 (PB-P450) by phenobarbital and its repression by β-naphthoflavone occur through corresponding changes in the levels of mRNA coding for the protein(s). The level of translatable mRNA coding for NADPH-cytochrome P450 reductase in rat liver increases on treatment with phenobarbital but not β-naphthoflavone.  相似文献   

12.
In order to identify the cytochrome P450-binding domain for NADPH-cytochrome P450 reductase, synthetic peptide mimics of predicted surface regions of rat cytochrome P450 2B1 were constructed and evaluated for inhibition of the P450-reductase interaction. A peptide corresponding to residues 116–134, which includes the C helix, completely inhibited reductase-mediated benzphetamine demethylation by purified P450 2B1. Replacement of Arg-125 by Glu yielded a noninhibitory peptide, suggesting that this residue significantly contributes to the reductase-P450 interaction. Additional P450 peptides were prepared which correspond to combinations of regions distant in primary sequence, but predicted to be spatially proximate. A peptide derived from segments of the C and L helices was a more potent inhibitor than peptides derived from either segment alone. This topographically designed peptide not only inhibited P450 2B1 in its purified form, but also when membrane-bound in rat liver microsomes. The peptide also inhibited microsomal aryl hydrocarbon hydroxylase, aniline hydroxylase, and erythromycin demethylase activities derived from other P450s. These results indicate that the C and L helices contribute to a reductase-binding site common to multiple P450s, and present a peptide mimic for this region that is useful for inhibition of P450-mediated microsomal activities.  相似文献   

13.
The EPR spectra of NH(2)-terminal-truncated P450 cytochrome 2B4 and of several active site mutants that were previously shown to be profoundly altered in catalytic properties were determined. From these spectra it was seen that the truncated P450 2B4, like the full length cytochrome, exists as the low spin ferric form, but upon mutation of threonine 302 to alanine approximately 40% of the cytochrome is present as the high spin ferric form (g approximately 8, 4, 2). A similar situation was observed in the double mutant E310L T302A, but not in the single mutant E301L. A rhombic high spin signal (g approximately 8, 4, 2) was observed when a substrate such as styrene, benzphetamine, or cyclohexane was added to the truncated cytochrome. Accompanying this change was the appearance of a signal at g = 1.98. Conversely, an axial high spin signal was observed (g approximately 6, 6, 2) when cyclohexanecarboxaldehyde or 3-phenylpropionaldehyde was added to the truncated P450 2B4.  相似文献   

14.
The induction in rat liver of a specific variant(s) of cytochrome P450 (PB-P450) by phenobarbital and its repression by β-naphthoflavone occur through corresponding changes in the levels of mRNA coding for the protein(s). The level of translatable mRNA coding for NADPH-cytochrome P450 reductase in rat liver increases on treatment with phenobarbital but not β-naphthoflavone.  相似文献   

15.
While photoaffinity ligands (PALs) have been widely used to probe the structures of many receptors and transporters, their effective use in the study of membrane-bound cytochrome P450s is less established. Here, lapachenole has been used as an effective photoaffinity ligand of human P450 3A4, and mass spectrometry data demonstrating the efficient and specific photoaffinity labeling of CYP3A4 by this naturally occurring benzochromene compound is presented. Without photolysis, lapachenole is a substrate of CYP3A4 and can be metabolized to hydroxylated products by this enzyme. A high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) procedure was developed to analyze small amounts of intact purified CYP3A4, and analysis of the labeled protein showed the presence of one molecule of lapachenole bound per monomer of protein. Photolabeled CYP3A4 peptide adducts were further characterized by mass spectrometric analysis after proteolytic digestion and isolation of fluorescent photolabeled peptides. Two peptide adducts accounting for >95% of the labeled peptides were isolated by HPLC, and both peptides, ECYSVFTNR (positions 97-105) and VLQNFSFKPCK (positions 459-469), were identified by nano-LC/ESI quadrupole time-of-flight (QTOF) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The sites of modification were further localized to positions Cys-98 and Cys-468 for each peptide by nano-LC/ESI QTOF tandem mass spectrometry (MS/MS). The results provided the first direct evidence for interaction between the PAL and the putative B-B' loop region, which may serve as a substrate access channel or as a part of the CYP3A4 active site. In conclusion, benzochromene analogues are effective PALs, which may be used in the study of other cytochrome P450 structures.  相似文献   

16.
Ultraviolet circular dichroism spectrum of purified NADPH cytochrome P-450 reductase was characterized by two negative bands centered at 208 and 222 nm. The approximation of the alpha-helical content from the value of the mean residue ellipticity at 222 nm indicated 28% of alpha-helical structures. Heat inactivation of the enzyme was associated to a drastic change in the secondary structure of the protein. Membrane reconstitution experiments by inclusion of the enzyme into liposomes revealed that the conformation of NADPH cytochrome P-450 reductase was sensitive to its phospholipid environment. Egg lecithin as well as synthetic phosphatidylcholines, at the optimal phospholipid-enzyme molar ratio 200, was able to increase up to 37% the mean residue ellipticity at 222 nm. Addition of phosphatidylserine or phosphatidylethanolamine produced no effect. Non-ionic detergent such as Emulgen 913 weakly enhanced the mean residue ellipticity.  相似文献   

17.
A cytochrome P450 2B4 (CYP2B4) model was used to select key residues supposed to serve in interactions with NADPH-cytochrome P450 reductase (P450R). Eight amino acid residues located on the surface of the hemoprotein were chosen for mutagenesis experiments with CYP2B4(Delta2-27) lacking the NH(2)-terminal signal anchor sequence. The mutated proteins were expressed in Escherichia coli, purified, and characterized by EPR- and CD-spectral analysis. Replacement of histidine 226 with alanine caused a 3.8-fold fall in the affinity for P450R with undisturbed reductive capacity of the system. Similarly, the K225A, R232A, and R253A variants exhibited P450R-directed activity that was depressed to about half that of the control enzyme, suggesting that the deletion of positive charges on the surface of CYP2B4(Delta2-27) resulted in impaired electrostatic contacts with complementary amino acids on the P450R protein. While the Y235A mutant did not show appreciably perturbed reduction activity, the conservative substitution with alanine of the phenylalanine residues at positions 223 and 227 gave a 2.1- to 6. 1-fold increase in the K(m) values with unchanged V(max); this was attributed to the disruption of hydrophobic forces rather than to global structural rearrangement(s) of the engineered pigments. Measurement of the stoichiometry of aerobic NADPH consumption and H(2)O(2) formation revealed the oxyferrous forms of the F223A, H226A, and F227A mutants to autoxidize more readily owing to less efficient coupling of the systems. Noteworthy, the F244A enzyme did not exhibit significant reduction activity, suggesting a pivotal role of Phe-244 in the functional coupling of P450R. The residue was predicted to constitute part of an obligatory electron transfer conduit through pi-stacking with Phe-296 located close to the heme unit. All of the residues examined reside in the putative G helix of CYP2B4, so that this domain obviously defines part of the binding site for P450R.  相似文献   

18.
The lysine residues of guinea pig P450 17alpha were acetylated by acetic anhydride in the absence and presence of NADPH cytochrome P450 reductase (CPR). Eight acetylated peptides were identified in the MALDI-TOF mass spectra of the tryptic fragments from the P450 acetylated without CPR in the limited reaction time of 15 min at ice temperature. The presence of CPR during the acetylation of P450 17alpha prevented double acetylations at K326 and K327 in the J-helix. The activity of P450 17alpha was decreased to 35% by the acetylation, but almost no inactivation was detected in the P450 after acetylation in the presence of CPR. This protection from inactivation shows the importance of K326 and/or K327 in the J-helix of P450 17alpha in the interaction between the two enzymes. Our results provided the first experimental evidence for the importance of the J-helix of P450 in the interaction with CPR. The interaction of P450 17alpha with CPR on the membrane is discussed based on the results of this study, which used molecular modeling.  相似文献   

19.
To investigate structure-function relationships of cytochromes P450 (CYP), 3-azidiamantane was employed for photoaffinity labeling of rabbit microsomal CYP2B4. Four diamantane labeled tryptic fragments were identified by mass spectrometry and sequencing: peptide I (Leu359-Lys373), peptide II (Leu30-Arg48), peptide III (Phe127-Arg140), and peptide IV (Arg434-Arg443). Their positions were projected into CYP2B4 model structures and compared with substrate binding sites, proposed by docking of diamantane. We identified novel binding regions outside the active site of CYP2B4. One of them, defined with diamantane modified Arg133, marks a possible entrance to the active site from the heme proximal face. In addition to crystal structures of CYP2B4 chimeras and molecular dynamics simulations, our data of photoaffinity labeling of the full CYP2B4 molecule provide further insight into functional and structural aspects of substrate binding.  相似文献   

20.
The use of 5-deazaFAD T491V cytochrome P450 reductase has made it possible to directly measure the rate of electron transfer to microsomal oxyferrous cytochrome (cyt) P450 2B4. In this reductase the FMN moiety can be reduced to the hydroquinone, FMNH(2), while the 5-deazaFAD moiety remains oxidized [Zhang, H., et al. (2003) Biochemistry 42, 6804-6813]. The rate of electron transfer from 5-deazaFAD cyt P450 reductase to oxyferrous cyt P450 was determined by rapidly mixing the ferrous cyt P450-2-electron-reduced 5-deazaFAD T491V reductase complex with oxygen in the presence of substrate. The 5-deazaFAD T491V reductase which can only donate a single electron reduces the oxyferrous cyt P450 and oxidizes to the air-stable semiquinone, with rate constants of 8.4 and 0.37 s(-1) at 15 degrees C. Surprisingly, oxyferrous cyt P450 turns over more slowly with a rate constant of 0.09 s(-1), which is the rate of catalysis under steady-state conditions at 15 degrees C (k(cat) = 0.08 s(-1)). In contrast, the rate constant for electron transfer from ferrous cyt b(5) to oxyferrous cyt P450 is 10 s(-1) with oxyferrous cyt P450 and cyt b(5) simultaneously undergoing spectral changes. Quantitative analyses by LC-MS/MS revealed that the product, norbenzphetamine, was formed with a coupling efficiency of 52% with cyt b(5) and 32% with 5-deazaFAD T491V reductase. Collectively, these results suggest that during catalysis a relatively stable reduced oxyferrous intermediate of cyt P450 is formed in the presence of cyt P450 reductase but not cyt b(5) and that the rate-limiting step in catalysis follows introduction of the second electron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号