首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visfatin expression is elevated in normal human pregnancy   总被引:4,自引:0,他引:4  
Morgan SA  Bringolf JB  Seidel ER 《Peptides》2008,29(8):1382-1389
  相似文献   

2.
3.
Visfatin, is a new adipokine, highly expressed in the visceral fat of both mice and humans. To examine whether visfatin is expressed in human peripheral monocyte-enriched mononuclear cells and whether its expression is altered in type 2 diabetes (DM2), we compared 24 DM2 women [17 overweight (BMI >25) and 7 lean (BMI<25)] to 26 healthy women (14 overweight and 12 lean), all premenopausal. Relative visfatin mRNA levels were significantly higher (approximately 3-fold) in DM2 compared to healthy control women (p<0.02), independently of the presence of overweight/obesity. Mononuclear TNF-alpha and IL-6 mRNA expression was also elevated in DM2 compared to control women (p=0.001 and p=0.004, respectively), an increase observed in both lean and overweight DM2 women. By contrast, circulating visfatin, TNF-alpha, and IL-6 levels showed no difference between DM2 and control women, while adiponectin plasma levels were significantly decreased in the DM2 women (p<0.001). Circulating visfatin and TNF-alpha levels did not differ either between the lean and the overweight subgroups of DM2 and control women, while IL-6 plasma levels were significantly higher in both overweight subgroups compared to their lean counterparts. In conclusion, visfatin, TNF-alpha, and IL-6 mRNA expressions are increased in peripheral mononuclear-monocytic cells from women with type 2 diabetes, independent of their BMI, which may enhance the effects of their adipose-derived levels and may contribute to the increased insulin resistance and atherogenic risk of these patients.  相似文献   

4.
5.
《Cytokine》2014,65(2):159-166
IntroductionOur previous study revealed that plasma visfatin levels were lower in pregnant women with gestational diabetes (GDM) than non-GDM independent of prepreganacy BMI. We examined whether central visfatin modulates energy and glucose homeostasis via altering insulin resistance, insulin secretion or islet morphometry in diabetic rats.MethodsPartial pancreatectomized, type 2 diabetic, rats were interacerbroventricularly infused with visfatin (100 ng/rat/day, Px-VIS), visfatin + visfatin antagonist, CHS-828 (100 μg/rat/day, Px-VIS-ANT), or saline (control, Px-Saline) via osmotic pump, respectively, for 4 weeks.ResultsCentral visfatin improved insulin signaling (pAkt  pFOXO-1) but not pSTAT3 in the hypothalamus. Central visfatin did not alter serum visfatin levels in diabetic rats whereas the levels were higher in non-diabetic rats than diabetic rats. Body weight at the 2nd week was lowered in the Px-VIS group due to decreased food intake in the first two weeks compared to the Px-Saline group and energy expenditure was not significantly different among the treatment groups of diabetic rats. Visfatin antagonist treatment nullified the central visfatin effect. Px-VIS increased whole body glucose disposal rates in euglycemic hyperinsulinemic clamp compared to Px-Saline and lowered hepatic glucose output, whereas Px-VIS-ANT blocked the visfatin effect on insulin resistance (P < 0.05). In hyperglycemic clamp study, the area under the curve of insulin in first and second phase were significantly higher in the Px-VIS group than the Px-Saline group without modifying insulin sensitivity at the hyperglycemic state, whereas the increase in serum insulin levels was blocked in the Px-VIS-ANT group. Central visfatin also increased β-cell mass by increasing β-cell proliferation.ConclusionsCentral visfatin improved glucose homeostasis by increasing insulin secretion and insulin sensitivity at euglycemia through the hypothalamus in diabetic rats. Therefore, visfatin is a positive modulator of glucose homeostasis by delivering the hypothalamic signals into the peripheries.  相似文献   

6.
Visfatin, a protein identified as a secretion product of visceral fat in humans and mice, is also expressed in different anatomical locations, and is known as pre-B cell-colony enhancing factor (PEBF1). It is also an enzyme displaying nicotinamide phosphoribosyltransferase activity (Nampt). The evidence that levels of visfatin correlate with visceral fat mass has been largely debated and widely extended to other regulations in numerous clinical studies and in diverse animal models. On the opposite, the initial findings regarding the capacity of visfatin/Nampt/PEBF1 to bind and to activate the insulin receptor have been scarcely reproduced, and even were contradicted in recent reports. Since the putative insulin mimicking effects of visfatin/Nampt/PEBF1 have never been tested on mature human adipocytes, at least to our knowledge, we tested different human visfatin batches on human fat cells freshly isolated from subcutaneous abdominal fat and exhibiting high insulin responsiveness. Up to 10 nM, visfatin was devoid of clear activatory action on glucose transport in human fat cells while, in the same conditions, insulin increased by more than threefold the basal 2-deoxyglucose uptake. Moreover, visfatin was unable to mimic the lipolysis inhibition induced by insulin. Visfatin definitively cannot be considered as a direct activator of insulin signalling in human fat cells. Nevertheless its in vivo effects on insulin release and on glucose handling deserve to further study the role of this multifunctional extracellular enzyme in obese and diabetic states.  相似文献   

7.
Objective: Visfatin has shown to be increased in obesity and in type 2 diabetes. The aim of this study was to determine the change in plasma visfatin in severely obese (SO) persons after weight loss following bariatric surgery in relation to glucose concentration. Research Methods and Procedures: Visfatin and leptin were studied in 53 SO persons (BMI, 54.4 ± 6.8 kg/m2) before and 7 months after bariatric surgery and in 28 healthy persons (BMI, 26.8 ± 3.8 kg/m2). All of the patients underwent bariatric surgery with biliopancreatic diversion or gastric bypass. Results: The pre‐surgery levels of visfatin in the SO group were greater than in the control group (55.9 ± 39.9 vs. 42.9 ± 16.6 ng/mL, p = 0.024). This increase was significant in the SO group with impaired fasting glucose (63.4 ± 36.6 ng/mL) and diabetes (60.0 ± 46.0 ng/mL). SO patients with normal fasting glucose had similar levels of visfatin to the controls. Seven months after surgery, visfatin levels were significantly increased (84.8 ± 32.8 ng/mL, p < 0.001). This increase was independent of the pre‐surgical glucose levels. The type of bariatric surgery had no influence on visfatin levels. Post‐surgical visfatin was significantly correlated with the post‐surgery plasma concentrations of leptin (r = 0.39, p = 0.014). Discussion: Plasma levels of visfatin in the SO group were increased but only when accompanied by high glucose levels, even in the range of impaired fasting glucose. Bariatric surgery causes an increase in visfatin, which is correlated mainly with the changes produced in the leptin concentration.  相似文献   

8.
Yonezawa T  Haga S  Kobayashi Y  Takahashi T  Obara Y 《FEBS letters》2006,580(28-29):6635-6643
Visfatin was originally identified as a growth factor for immature B cells, and recently demonstrated to bind insulin receptor. Visfatin mRNA and protein were detected by RT-PCR and Western blot analysis in cloned bovine mammary epithelial cells, lactating bovine mammary gland and human breast cancer cell line, MCF-7. Immunocytochemical staining localized the visfatin protein in the cytosol and nucleus of both cells. Quantitative-RT-PCR analysis revealed that the expression of the visfatin mRNA was significantly elevated when treated with forskolin (500 microM), isopreterenol (1-10 microM) and dibutyric cyclic AMP (1 mM) for 24 h, and significantly reduced when treated with insulin (5-50 ng/ml) and dexsamethasone (0.5-250 nM) for 24 h. These results indicate that mammary epithelial cells express the visfatin protein and secrete them into the milk.  相似文献   

9.
Visfatin is a novel adipocyte-derived cytokine. We hypothesized that visfatin could directly affect vascular reactivity. To test the hypothesis, effects of visfatin on contraction of isolated blood vessels were examined. In endothelium-intact rat aorta, pretreatment with visfatin (100 ng/ml, 30 min) inhibited noradrenaline (NA; 1 nM-1 μM)-induced contraction. In NA (100 nM)-pre-contracted aorta, visfatin (1-100 ng/ml) directly induced a relaxation. Although an NG-Nitro-l-arginine methyl ester (300 μM, 15 min) inhibited the relaxation, an insulin receptor inhibitor, AGL2263 (10 μM, 20 min) was ineffective. Visfatin (100 ng/ml, 20 min) induced a phosphorylation of eNOS at serine 1177 and a de-phosphorylation of eNOS at threonine 495. Visfatin also induced a phosphorylation of Akt at serine 473 and a substrate of cGMP-dependent protein kinase, vasodilator stimulated phosphoprotein at serine 239. Present study revealed for the first time that visfatin has a vasodilating effect on isolated blood vessels, which is mediated via endothelium-derived NO.  相似文献   

10.
Children born small (SGA) or large (LGA) for gestational age are prone to develop insulin resistance (IR) during childhood. Visfatin, a hormone with insulin-mimetic actions, has been associated with IR. This study was designed to examine whether serum level of visfatin is correlated with metabolic indices of IR, in prepuberty in association with the intrauterine growth pattern. The following parameters were evaluated at a mean age of 6.5±1.2 years in 155 prepubertal children born appropriate for the gestational age (AGA) (n=63), or SGA (n=42), or LGA (n=50): serum levels of visfatin, adiponectin, leptin, fasting glucose (G(F)) and insulin (I(F)), the homeostasis model assessment IR index (HOMA-IR), plasma lipids, anthropometric indices at birth and the time of evaluation, and obesity indices [waist circumference (WC), body mass index (BMI) and skinfold thickness]. The mean serum level of visfatin was lower in the SGA than in the AGA and the LGA children (9±5.2 vs. 11.8±5.1 and 12.7±5.6?ng/ml, respectively, p<0.01). Girls had lower visfatin levels than boys (10.4±4.3?ng/ml vs. 12.5±6.7?ng/ml, p<0.05). Visfatin was not correlated with IR indices. In multiple regression analysis visfatin level was positively correlated with birth weight z-score (t=2.56, beta=0.24, p<0.01) and crown to heel z-score (t=2.46, beta=0.22, p=0.014), independent of age, gender, maternal weight before pregnancy, maternal weight gain during pregnancy, BMI z-score, WC z-score, serum leptin and adiponectin, and HOMA-IR. In conclusion serum visfatin level was lower in prepubertal SGA children but not correlated with IR indices. Low birth weight was an independent predictor of visfatin level.  相似文献   

11.
赵暕  苏运超  吴立玲 《生物磁学》2009,(14):2781-2784
内脂素是新近被发现的主要由内脏脂肪合成的一种脂肪细胞因子,它具有类胰岛素样作用,能降低血糖和促进脂肪组织的分化与合成。内脂素还可以调节血管平滑肌的成熟和影响胰岛细胞的胰岛素的分泌,亦具有调节炎症反应和免疫功能的作用。随着研究的发展,人们对内脂素的结构特性、分布、表达调控及其生物学功能有了更加深入的认识。2型糖尿病是以胰岛素抵抗和糖代谢紊乱为特征的代谢性疾病,研究发现内脂素与2型糖尿病密切相关,其中与肥胖、胰岛素抵抗及胰岛素分泌方面的关系尤为显著,深入研究内脂素的生理和病理生理作用将会有力地促进对2型糖尿病的进一步认识、治疗与预防。  相似文献   

12.
Obesity is associated with metabolic disorders, such as insulin resistance. Visfatin is an adipose-derived secretory factor to exert insulin-mimetic effects. Plasma visfatin levels and mRNA levels of visfatin in adipose tissues are increased in obesity. However, the mechanism that mediates induction of visfatin mRNA in adipose tissue of obesity remains unknown. Recent studies have reported that fat tissue is hypoxia in obesity. In this study, we investigated the effects of hypoxia on mRNA expression of visfatin in adipocytes. Hypoxia increased visfatin mRNA expression. Desferoxamine and Cobaltous chloride, two hypoxia mimetic compounds, also increased visfatin mRNA levels. Dimethyloxallyl glycine, a stabilizer of hypoxia-inducible factor 1alpha (HIF1alpha), mimicked the hypoxia-mediated upregulation of visfatin, and YC1, an inhibitor of HIF1 cancelled the hypoxia-induced upregulation of visfatin mRNA. We identified two functional hypoxia responsive elements (HRE) in mouse visfatin promoter. Hypoxic treatment and overexpression of HIF1alpha increased the promoter activity, and mutation of the HRE blunted hypoxia-induced activation of visfatin promoter. Our results suggest that visfatin mRNA expression is upregulated in the fat tissue of obesity through the activation of HIF1alpha pathway due to hypoxia.  相似文献   

13.
14.
INTRODUCTION, MATERIAL AND METHODS: Visfatin is a cytokine, mainly expressed in visceral fat, that exerts insulin-mimicking effects in rodents through activation of an insulin receptor, although the binding-site is distinct from that of insulin. However, the mechanisms that regulate visfatin synthesis are still not fully understood. In particular, it is not clear whether short-term glucose-induced hyperglycaemia and hyperinsulinaemia as well as a glucocorticoid-induced increase in insulin resistance are reflected in appreciable alterations in serum visfatin levels in humans. In order to investigate this we measured serum visfatin, glucose and insulin concentrations during a 75.0 gram oral glucose tolerance test (OGTT) [Study 1], as well as before and after oral administration of dexamethasone [Study 2]. Study 1 included 17 subjects (2 males), aged 35.7 +/- 15.6 (mean +/- SD) years of BMI 35.2 +/- 9.3 kg/m(2). Blood samples were taken before (0 minutes) and at 60 and 120 minutes after glucose administration. Study 2 included 20 subjects (4 males, 5 subjects with type 2 diabetes), aged 42.1 +/- 17.2 years of BMI 36.7 +/- 8.38 kg/m(2) who underwent screening for Cushing's disease/syndrome. Dexamethasone was administered at a dose of 0.5 mg every 6 hours for 48 hours. Fasting serum concentrations of visfatin, glucose and insulin were assessed before (D0) and after 48 hours of dexamethasone administration (D2). Insulin resistance was assessed according to the HOMA method in non-diabetic individuals (n = 15). RESULTS: In Study 1 two subjects were found to have impaired glucose tolerance and one subject was found to have diabetes mellitus. Glucose administration resulted in a highly significant increase in insulin (from 11.4 +/- 7.2 microU/mL at 0 min to 98.9 +/- 68.6 microU/mL at 60 min and 72.6 +/- 45.1 microU/mL at 120 minute of OGTT, p < 0.001 for 60 and 120 minutes in comparison to baseline). However, there was no change in serum visfatin concentrations (84.6 +/- 11.6 ng/mL at 0 minutes, 82.6 +/- 12.7 ng/mL at 60 minutes and 81.1 +/- 14.5 ng/mL at 120 minutes of OGTT, p = ns). All subjects in Study 2 achieved suppression of cortisol concentrations below 50 nmo/l. Dexamethasone administration resulted in an increase in fasting insulin (from 11.5 +/- 6.9 to 16.9 +/- 7.6 microU/mL; p = 0.011) and an increase in HOMA (from 2.73 +/- 1.74 to 4.02 +/- 2.27; p = 0.015), albeit without a significant change in serum visfatin concentrations (61.1 +/- 19.8 vs. 68.3 +/- 19.4 ng/mL, p = ns). In neither Study 1 nor Study 2 was there any significant correlation between serum visfatin and age, BMI or HOMA. CONCLUSIONS: There is a striking difference between the marked rise in insulin concentrations and the lack of change in visfatin concentrations during the oral glucose tolerance test. This implies that it is highly unlikely that visfatin is involved in the short-term regulation of glucose homeostasis in human subjects. Dexamethasone administration (4 mg/48 hours) induces an increase in insulin resistance, although without significant change in serum visfatin concentrations. Therefore in contrast to the in vitro data, short term glucocorticoid administration does not result in appreciable changes in serum levels of this adipocytokine. Furthermore, the results of our study do not support the notion that glucocorticoid-induced insulin resistance is likely to be related to changes in serum concentrations of visfatin.  相似文献   

15.
Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4.5, and 6 h in response to exercise (n = 8) compared with preexercise samples and compared with the resting control group (n = 7, P = 0.001). Visfatin mRNA expression in skeletal muscle was not influenced by exercise. The exercise-induced increase in adipose tissue visfatin was, however, not accompanied by elevated levels of plasma visfatin. Recombinant human IL-6 infusion to mimic the exercise-induced IL-6 response (n = 6) had no effect on visfatin mRNA expression in adipose tissue compared with the effect of placebo infusion (n = 6). The finding that exercise enhances subcutaneous adipose tissue visfatin mRNA expression suggests that visfatin has a local metabolic role in the recovery period following exercise.  相似文献   

16.
彭颗红  薛敏  肖松舒 《生物磁学》2009,(13):2514-2516,2537
目的:探讨visfatin基因在多囊卵巢综合征(PCOS)网膜脂肪组织中的表达及相关影响因素。方法:采用半定量RT-PCR方法检测PCOS组(30例)和对照组(25例)网膜脂肪组织visfatin mRNA表达,并测量体重指数、腰臀比、空腹血糖、空腹胰岛素、胰岛素抵抗指数和血清性激素水平。结果:①PCOS组网膜脂肪组织visfatin mRNA表达量高于对照组(P=0.000)。②网膜脂肪组织visfatin mRNA的表达量与BMI、WHR、FINS、HOMA-IR呈正相关(P〈0.05)。③多元逐步回归分析显示,HOMA-IR(P=0.000)和WHR(P=0.005)是影响网膜脂肪组织visfatin mRNA表达的相关因素。结论:网膜脂肪组织visfatin mRNA表达可能与PCOS胰岛素抵抗的发生和肥胖相关。  相似文献   

17.
Asthma is one of the most common diseases complicating pregnancy and represents a risk factor for several maternal and perinatal complications. The natural history of asthma is known to change in pregnancy, but very few data are available in the terms of pathomechanism of this change during gestation. Circulating heat shock protein 70 (Hsp70) levels are decreased in healthy pregnancy, which might reflect physiological immunotolerance. The aim of our study was to determine the serum levels of Hsp70 in asthmatic women during gestation. Forty pregnant women with bronchial asthma and 40 healthy pregnant women matched for maternal and gestational age were involved in this case-control study. Serum Hsp70 levels were measured using the ELISA Kit of R&D Systems. Spirometry and oxygen saturation measurements were performed in asthmatic patients. In asthmatic pregnant women, an increase of serum Hsp70 levels was observed compared to healthy pregnant women (median (25–75 percentile): 0.44 ng/ml (0.36–0.53) versus 0.21 ng/ml (0–0.27), p < 0.001). Fetal birth weight of asthmatic mothers was significantly smaller than of healthy controls, but in the normal range (3,230 g (2,690–3,550) versus 3,550 g (3,450–3,775), p < 0.05). A statistically significant negative correlation between maternal age and serum Hsp70 concentrations (Spearman R = −0.48, p = 0.0018) and a significant positive correlation between gestational age and serum Hsp70 levels (Spearman R = 0.83, p < 0.001) were detected in healthy pregnant women. In conclusion, this study proves an elevation of circulating Hsp70 levels during asthmatic pregnancy compared to healthy pregnant women. However, further studies are warranted to determine the role of circulating Hsp70 in the pathogenesis of maternal and perinatal complications of asthma in pregnancy.  相似文献   

18.

Aim

The aim of the study was to compare maternal and cord blood levels of betatrophin – a new peptide potentially controlling beta cell growth - as well as in its mRNA expression in subcutaneous adipose tissue, visceral adipose tissue and placental tissue obtained from pregnant women with normal glucose tolerance (NGT) and gestational diabetes (GDM).

Methods

Serum betatrophin and irisin concentrations were measured by ELISA in 93 patients with GDM and 97 women with NGT between 24 and 28 week of gestation. Additionally, maternal and cord blood betatrophin and irisin, as well as their genes (C19orf80 and Fndc5) expression were evaluated in 20 patients with GDM and 20 women with NGT at term.

Results

In both groups, serum betatrophin concentrations were significantly higher in the patients with GDM than in the controls (1.91 [1.40-2.60] ng/ml vs 1.63 [1.21-2.22] ng/ml, p=0.03 and 3.45 [2.77-6.53] ng/ml vs 2.78 [2.16-3.65] ng/ml, p=0.03, respectively). Cord blood betatrophin levels were also higher in the GDM than in the NGT group (20.43 [12.97-28.80] ng/ml vs 15.06 [10.11-21.36] ng/ml, p=0.03). In both groups betatrophin concentrations in arterial cord blood were significantly higher than in maternal serum (p=0.0001). Serum irisin levels were significantly lower in the patients with GDM (1679 [1308-2171] ng/ml) than in the healthy women between 24 and 28 week of pregnancy (1880 [1519-2312] ng/ml, p=0.03). Both C19orf80 and Fndc5 mRNA expression in fat and placental tissue did not differ significantly between the groups studied.

Conclusions

Our results suggest that an increase in maternal and cord blood betatrophin might be a compensatory mechanism for enhanced insulin demand in GDM.  相似文献   

19.
Objective: Resistin is associated with insulin resistance in mice and may play a similar role in humans. The aim of our study was to examine the relationship of serum resistin level to body composition, insulin resistance, and related obesity phenotypes in humans. Research Methods and Procedures: Sixty‐four young (age 32 ± 10 years), obese (BMI 32.9 ± 5.6), nondiabetic subjects taking no medication, and 15 lean (BMI 21.1 ± 1.3) volunteers were studied cross‐sectionally. Thirty‐five of the subjects were also reevaluated after 1.5 years on a weight reduction program entailing dieting and exercise; changes of serum resistin were compared with changes of BMI, body composition, fat distribution, and several indices of insulin sensitivity derived from plasma glucose and serum insulin levels measured during 75‐g oral glucose tolerance test. Results: In a cross‐sectional analysis, serum resistin was significantly higher in obese subjects than in lean volunteers (24.58 ± 12.93 ng/mL; n = 64 vs. 12.83 ± 8.30 ng/mL; n = 15; p < 0.01), and there was a correlation between resistin level and BMI, when the two groups were combined (ρ = 0.35, p < 0.01). Although cross‐sectional analysis in obese subjects revealed no correlation between serum resistin and parameters related to adiposity or insulin resistance, longitudinal analysis revealed change in serum resistin to be positively correlated with changes in BMI, body fat, fat mass, visceral fat area, and mean glucose and insulin (ρ = 0.39, 0.40, 0.44, 0.50, 0.40, and 0.50; p = 0.02, 0.03, 0.02, <0.01, 0.02, and <0.01, respectively). Discussion: Resistin appears to be related to human adiposity and to be a possible candidate factor in human insulin resistance.  相似文献   

20.
Small‐conductance calcium‐activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 mRNA expression in myometrium from pregnant and non‐pregnant women. Myometrial biopsies were obtained from pregnant (n = 11) and non‐pregnant (n = 11) women. The expression of SK3 channels was assessed using immunohistochemistry and SK3 mRNA was determined by qRT‐PCR. In non‐pregnant myometrium SK3 immunoreactivity was observed in CD34 positive (CD34+) interstitial Cajal‐like cells (ICLC), now called telocytes. Although CD34+ cells were also present in pregnant myometrium, they lacked SK3 immunoreactivity. Furthermore, the immunohistochemical results showed that SK3 expression in vascular endothelium was similar between the two groups. CD117 immunoreactivity was only detected in small round cells that resemble mast cells. Compared to non‐pregnant myometrium we found significantly less SK3 mRNA in pregnant myometrium. We demonstrate that SK3 channels are localized solely in CD34+ cells and not in smooth muscle cells, and that the molecular expression of SK3 channels is higher in non‐pregnant compared to pregnant myometrium. On the basis of our previous study and the present findings, we propose that SK3 activators reduce contractility in human myometrium by modulating telocyte function. This is the first report to provide evidence for a possible role of SK3 channels in human uterine telocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号