首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Myosin motors drive muscle contraction, cytokinesis and cell locomotion, and members of the myosin superfamily have been implicated in an increasingly diverse range of cell functions. Myosin can displace a bound actin filament several nanometers in a single interaction. Crystallographic studies suggest that this 'working stroke' involves bending of the myosin head between its light chain and catalytic domains. Here we used X-ray fiber diffraction to test the crystallographic model and measure the interdomain bending during force generation in an intact single muscle fiber. The observed bending has two components: an elastic distortion and an active rotation that generates force. The average bend of the force-generating myosin heads in a muscle fiber is intermediate between those in crystal structures with different bound nucleotides, and the C-terminus of the head is displaced by 7 nm along the actin filament axis compared with the in vitro conformation seen in the absence of nucleotide.  相似文献   

2.
X-ray study of myosin heads in contracting frog skeletal muscle   总被引:5,自引:0,他引:5  
Using synchrotron radiation, the behaviour of the diffuse X-ray scatter was investigated in the relaxed and active phases of auxotonic and isometric contractions. Muscles were stimulated tetanically for 0.75 of a second, leaving intervals of three minutes between successive contractions. In isometric contractions the scatter is very asymmetric, which means that the myosin heads have a strongly preferred orientation. During tension rise the scatter expands in the meridional direction and contracts in the equatorial direction, the maximal local intensity change being about 20%. The shape change indicates that on average the myosin heads become oriented more perpendicularly to the fibre axis. The distribution of orientations at peak tension is quite different from that we found previously in X-ray scattering data from rigor muscles. In auxotonic contractions where muscles shorten against an increasing tension the scatter is practically circularly symmetrical. This suggests that during shortening the myosin heads go evenly through a wide range of orientations. It is concluded that the results from both the auxotonic and isometric experiments provide strong support for the rotating myosin head model. In isometric contractions the transition between the relaxed phase and peak tension is accompanied by an overall increase in scattering intensity of about 10%: this corresponds to a relative increase in the fraction of disordered myosin heads by almost 30%.  相似文献   

3.
How myosin VI coordinates its heads during processive movement   总被引:3,自引:0,他引:3       下载免费PDF全文
A processive molecular motor must coordinate the enzymatic state of its two catalytic domains in order to prevent premature detachment from its track. For myosin V, internal strain produced when both heads of are attached to an actin track prevents completion of the lever arm swing of the lead head and blocks ADP release. However, this mechanism cannot work for myosin VI, since its lever arm positions are reversed. Here, we demonstrate that myosin VI gating is achieved instead by blocking ATP binding to the lead head once it has released its ADP. The structural basis for this unique gating mechanism involves an insert near the nucleotide binding pocket that is found only in class VI myosin. Reverse strain greatly favors binding of ADP to the lead head, which makes it possible for myosin VI to function as a processive transporter as well as an actin-based anchor. While this mechanism is unlike that of any other myosin superfamily member, it bears remarkable similarities to that of another processive motor from a different superfamily--kinesin I.  相似文献   

4.
It has been shown that skeletal and smooth muscle myosin heads binding to actin results in the movement of smooth muscle tropomyosin, as revealed by a change in fluorescence resonance energy transfer between a fluorescence donor on tropomyosin and an acceptor on actin (Graceffa, P. (1999) Biochemistry 38, 11984-11992). In this work, tropomyosin movement was similarly monitored as a function of unphosphorylated and phosphorylated smooth muscle myosin double-headed fragment smHMM. In the absence of nucleotide and at low myosin head/actin ratios, only phosphorylated heads induced a change in energy transfer. In the presence of ADP, the effect of head phosphorylation was even more dramatic, in that at all levels of myosin head/actin, phosphorylation was necessary to affect energy transfer. It is proposed that the regulation of tropomyosin position on actin by phosphorylation of myosin heads plays a key role in the regulation of smooth muscle contraction. In contrast, actin-bound caldesmon was not moved by myosin heads at low head/actin ratios, as uncovered by fluorescence resonance energy transfer and disulfide cross-linking between caldesmon and actin. At higher head concentration caldesmon was dissociated from actin, consistent with the multiple binding model for the binding of caldesmon and myosin heads to actin (Chen, Y., and Chalovich, J. M. (1992) Biophys. J. 63, 1063-1070).  相似文献   

5.
To examine the possibility of cooperative interactions between the two myosin heads in muscle contraction, Ca2+-activated force development, K+-EDTA-and Mg2+-ATPase activities, muscle fiber stiffness, and the velocity of unloaded shortening were measured on partially p-phenylenedimaleimide (p-PDM)-treated glycerinated muscle fibers, which contained a mixture of myosin molecules with zero, one, and two of their heads inactivated, and the relationships among these values (expressed relative to the control values) were studied. It was found that the magnitude of the Ca2+-activated isometric force development was proportional to the square of both K+-EDTA- and Mg2+-ATPase activities and also to the square of muscle fiber stiffness. If the two myosin heads in the glycerinated fibers are assumed to react independently with p-PDM, the above results strongly suggest that each myosin molecule in the thick filaments can generate force only when its two heads do not react with p-PDM, muscle fiber stiffness is determined by the total number of native heads, and there is no cooperative interaction between the two myosin heads in catalyzing ATP hydrolysis.  相似文献   

6.
P Graceffa 《Biochemistry》1999,38(37):11984-11992
It has been proposed that during the activation of muscle contraction the initial binding of myosin heads to the actin thin filament contributes to switching on the thin filament and that this might involve the movement of actin-bound tropomyosin. The movement of smooth muscle tropomyosin on actin was investigated in this work by measuring the change in distance between specific residues on tropomyosin and actin by fluorescence resonance energy transfer (FRET) as a function of myosin head binding to actin. An energy transfer acceptor was attached to Cys374 of actin and a donor to the tropomyosin heterodimer at either Cys36 of the beta-chain or Cys190 of the alpha-chain. FRET changed for the donor at both positions of tropomyosin upon addition of skeletal or smooth muscle myosin heads, indicating a movement of the whole tropomyosin molecule. The changes in FRET were hyperbolic and saturated at about one head per seven actin subunits, indicating that each head cooperatively affects several tropomyosin molecules, presumably via tropomyosin's end-to-end interaction. ATP, which dissociates myosin from actin, completely reversed the changes in FRET induced by heads, whereas in the presence of ADP the effect of heads was the same as in its absence. The results indicate that myosin with and without ADP, intermediates in the myosin ATPase hydrolytic pathway, are effective regulators of tropomyosin position, which might play a role in the regulation of smooth muscle contraction.  相似文献   

7.
8.
Fluorescence resonance energy transfer measurements have revealed that the lever-arm domain of myosin swings when it hydrolyzes Mg-ATP. It is generally accepted that this swing of the lever arm of myosin is the molecular basis of force generation. On the other hand, the possibility that the force might be generated at the interface between actin and myosin cannot be ignored. However, there is a third possibility, namely, that myosin itself generates force without actin. Thus, using recombinant subfragment 1 molecules of Dictyostelium myosin II that were trapped between two functionalized surfaces of a surface-force apparatus, we determined whether myosin itself could actually generate force. Here, we report that, despite the absence of actin, myosin heads themselves have a capacity to generate a force (at least ~0.2 pN/molecule) that is coupled to the structural changes. Although the role of actin should not be neglected because muscle physiologically shortens as a result of the interaction between actin and myosin, in this work the focus is on the question of whether the catalytic domain of myosin has the capacity to generate force.  相似文献   

9.
V A Bogdanov 《Biofizika》1989,34(1):113-117
It was shown by experiments with human forearm rhythmic movements that summary force, stiffness and viscosity of musculature quickly increased during the action of external unshocked disturbance. These effects limited the movement trajectory changes during latent interval preceding nervous reactions.  相似文献   

10.
Inter- and intradomain flexibility of the myosin head was measured using phosphorescence anisotropy of selectively labeled parts of the molecule. Whole myosin and the myosin head, subfragment-1 (S1), were labeled with eosin-5-iodoacetamide on the catalytic domain (Cys 707) and on two sites on the regulatory domain (Cys 177 on the essential light chain and Cys 154 on the regulatory light chain). Phosphorescence anisotropy was measured in soluble S1 and myosin, with and without F-actin, as well as in synthetic myosin filaments. The anisotropy of the former were too low to observe differences in the domain mobilities, including when bound to actin. However, this was not the case in the myosin filament. The final anisotropy of the probe on the catalytic domain was 0.051, which increased for probes bound to the essential and regulatory light chains to 0.085 and 0.089, respectively. These differences can be expressed in terms of a "wobble in a cone" model, suggesting various amplitudes. The catalytic domain was least restricted, with a 51 +/- 5 degrees half-cone angle, whereas the essential and regulatory light chain amplitude was less than 29 degrees. These data demonstrate the presence of a point of flexibility between the catalytic and regulatory domains. The presence of the "hinge" between the catalytic and regulatory domains, with a rigid regulatory domain, is consistent with both the "swinging lever arm" and "Brownian ratchet" models of force generation. However, in the former case there is a postulated requirement for the hinge to stiffen to transmit the generated torque associated by nucleotide hydrolysis and actin binding.  相似文献   

11.
The two actin-binding regions on the myosin heads of cardiac muscle   总被引:1,自引:0,他引:1  
In the presence of myosin S1 or myosin heads, actin filaments tend to form bundles. The biological meaning of the bundling of actin filaments has been unclear. In this study, we found that the cardiac myosin heads can form the bundles of actin filaments more rapidly than can skeletal S1, as monitored by light scattering and electron microscopy. Moreover, the actin bundles formed by cardiac S1 were found to be more stable against mechanical agitation. The distance between actin filaments in the bundles was approximately 20 nm, which is comparable to the length of a myosin head and two actin molecules. This suggests the direct binding of S1 tails to the adjacent actin filament. The "essential" light chain of cardiac myosin could be cross-linked to the actin molecule in the bundle. When monomeric actin molecules were added to the bundle, the bundles could be dispersed into individual filaments. The three-dimensional structure of the dispersed actin filaments was reconstructed from electron cryo-microscopic images of the single actin filaments dispersed by monomer actin. We were able to demonstrate that cardiac myosin heads bind to two actin molecules: one actin molecule at the conventional actin-binding region and the other at the essential light-chain-binding region. This capability of cardiac myosin heads to bind two actin molecules is discussed in view of lower ATPase activity and slower shortening velocity than those of skeletal ones.  相似文献   

12.
Myosin light chain kinase (MLCK) is a multifunctional regulatory protein of smooth muscle contraction [IUBMB Life 51 (2001) 337, for review]. The well-established mode for its regulation is to phosphorylate the 20 kDa myosin light chain (MLC 20) to activate myosin ATPase activity. MLCK exhibits myosin-binding activity in addition to this kinase activity. The myosin-binding activity also stimulates myosin ATPase activity without phosphorylating MLC 20 [Proc. Natl. Acad. Sci. USA 96 (1999) 6666]. We engineered an MLCK fragment containing the myosin-binding domain but devoid of a catalytic domain to explore how myosin is stimulated by this non-kinase pathway. The recombinant fragment thus obtained stimulated myosin ATPase activity by V(max)=5.53+/-0.63-fold with K(m)=4.22+/-0.58 microM (n=4). Similar stimulation figures were obtained by measuring the ATPase activity of HMM and S1. Binding of the fragment to both HMM and S1 was also verified, indicating that the fragment exerts stimulation through the myosin heads. Since S1 is in an active form regardless of the phosphorylated state of MLC 20, we conclude that the non-kinase stimulation is independent of the phosphorylating mode for activation of myosin.  相似文献   

13.
Muscles are significant contributors to the high joint forces developed in the knee during human walking. Not only do muscles contribute to the knee joint forces by acting to compress the joint, but they also develop joint forces indirectly through their contributions to the ground reaction forces via dynamic coupling. Thus, muscles can have significant contributions to forces at joints they do not span. However, few studies have investigated how the major lower-limb muscles contribute to the knee joint contact forces during walking. The goal of this study was to use a muscle-actuated forward dynamics simulation of walking to identify how individual muscles contribute to the axial tibio-femoral joint force. The simulation results showed that the vastii muscles are the primary contributors to the axial joint force in early stance while the gastrocnemius is the primary contributor in late stance. The tibio-femoral joint force generated by these muscles was at times greater than the muscle forces themselves. Muscles that do not cross the knee joint (e.g., the gluteus maximus and soleus) also have significant contributions to the tibio-femoral joint force through their contributions to the ground reaction forces. Further, small changes in walking kinematics (e.g., knee flexion angle) can have a significant effect on the magnitude of the knee joint forces. Thus, altering walking mechanics and muscle coordination patterns to utilize muscle groups that perform the same biomechanical function, yet contribute less to the knee joint forces may be an effective way to reduce knee joint loading during walking.  相似文献   

14.
The present study proposed a two-step EMG-and-optimization method for muscle force estimation in dynamic condition. Considering the strengths and the limitations of existing methods, the proposed approach exploited the advantages of min/max optimization with constraints on the contributions of the flexor and extensor muscle groups to the net joint moment estimated through an EMG-to-moment approach. Our methodology was tested at the knee joint during dynamic half squats, and was compared with traditional min/max optimization. In general, results showed significant differences in muscle force estimates from EMG-and-optimization method when compared with those from traditional min/max optimization. Muscle forces were higher – especially in the antagonist muscles – and more consistent with EMG patterns because of the ability of the proposed approach to properly account for agonist/antagonist cocontraction. In addition, muscle forces agree with mechanical constraints regarding the net, the agonist, and the antagonist moments, thus greatly improving the confidence in muscle force estimates. The proposed two-step EMG-and-optimization method for muscle force estimation is easy to implement with relatively low computational requirements and, thus, could offer interesting advantages for various applications in many fields, including rehabilitation, clinical, and sports biomechanics.  相似文献   

15.
Muscle contractile properties have been characterised for white myotomal muscle from the common carp Cyprinus carpio at 10, 15, and 20 °C. The time course of muscle force development was measured when one, two, or three stimuli were delivered at the onset of constant velocity shortening. As the shortening velocity increased several parameters decreased including the maximum force, the time course for the contraction and the relative duration of the deactivation compared to the activation. The maximum force and the relative rates of activation to deactivation for the contraction were relatively independent of temperature, whereas the duration of the contraction decreased with increasing temperature. A predictive model was developed which was based on fitting a modified Weibull distribution to these observations. The model was used to interpolate the expected contractile forces during cyclic length-changes. Measured and predicted values for force and power during such cyclic work-loop experiments showed an excellent agreement over the range of shortening regimes typically found during swimming behaviours. However, the predicted force was overestimated during the deactivation phase of the contractions when the shortening velocities exceeded those found during swimming. Accepted: 25 May 1999  相似文献   

16.
Cryo-atomic force microscopy of smooth muscle myosin.   总被引:1,自引:0,他引:1  
Y Zhang  Z Shao  A P Somlyo    A V Somlyo 《Biophysical journal》1997,72(3):1308-1318
The motor and regulatory domains of the head and the 14-nm pitch of the alpha-helical coiled-coil of the tail of extended (6S) smooth-muscle myosin molecules were imaged with cryo atomic force microscopy at 80-85 K, and the effects of thiophosphorylation of the regulatory light chain were examined. The tail was 4 nm shorter in thiophosphorylated than in nonphosphorylated myosin. The first major bend was invariant, at approximately 51 nm from the head-tail junction (H-T), coincident with low probability in the paircoil score. The second major bend was 100 nm from the H-T junction in nonphosphorylated and closer to a skip residue than the bend (at 95 nm) in thiophosphorylated molecules. The shorter tail and distance between the two major bends induced by thiophosphorylation are interpreted to result from melting of the coiled-coil. An additional bend not previously reported occurred, with a lower frequency, approximately 24 nm from the H-T. The range of separation between the two heads was greater in thiophosphorylated molecules. Occasional high-resolution images showed slight unwinding of the coiled-coil of the base of the heads. We suggest that phosphorylation of MLC20 can affect the structure of extended, 6S myosin.  相似文献   

17.
Thick filaments from leg muscle of tarantula, maintained under relaxing conditions (Mg-ATP and EGTA), were negatively stained and photographed with minimal electron dose. Particles were selected for three-dimensional image reconstruction by general visual appearance and by the strength and symmetry of their optical diffraction patterns, the best of which extend to spacings of 1/5 nm-1. The helical symmetry is such that, on a given layer-line, Bessel function contributions of different orders start to overlap at fairly low resolution and must therefore be separated computationally by combining data from different views. Independent reconstructions agree well and show more detail than previous reconstructions of thick filaments from Limulus and scallop. The strongest feature is a set of four long-pitch right-handed helical ridges (pitch 4 X 43.5 nm) formed by the elongated myosin heads. The long-pitch helices are modulated to give ridges with an axial spacing of 14.5 nm, lying in planes roughly normal to the filament axis and running circumferentially. We suggest that the latter may be formed by the stacking of a subfragment 1 (S1) head from one myosin molecule on an S1 from an axially neighbouring molecule. Internal features in the map indicate an approximate local twofold axis relating the putative heads within a molecule. The heads appear to point in opposite directions along the filament axis and are located very close to the filament backbone. Thus, for the first time, the two heads of the myosin molecule appear to have been visualized in a native thick filament under relaxing conditions.  相似文献   

18.
Molecular movements generated in the heavy-chain regions (27-50-20(X 10(3)) Mr) of myosin S1 on interaction with nucleotides ATP, AMPPNP, ADP and PPi were investigated by limited proteolysis of several enzyme-metal nucleotide complexes in the absence and presence of reversibly bound and crosslinked F-actin. The rate and extent of the nucleotide-promoted conversion of the NH2-terminal 27 X 10(3) Mr and 50 X 10(3) Mr segments into products of 22 X 10(3) Mr and 45 X 10(3) Mr, respectively, were estimated to determine the amplitude of the molecular movements. The 22 X 10(3) Mr peptide was identified by amino acid sequence studies as being derived from cleavage of the peptide bond between Arg and Ile (at position 23 to 24). The 45 X 10(3) Mr peptide, previously shown to represent the NH2-terminal part of the 50 X 10(3) Mr region, would be connected to the adjacent C-terminal 20 X 10(3) Mr region by a pre-existing loop segment of about 5 X 10(3) Mr; the proteolytic sensitivity of the latter region is increased particularly by nucleotide binding. The tryptic reaction proved to be a sensitive indicator of the conformational state of the liganded heavy chain as the rate of peptide bond cleavage in the two regions is dependent on the nature of the bound ligand; it decreases in the order: ATP greater than AMPPNP greater than ADP greater than PPi. It depends also on the nature of the metal present, Mg2+ and Ca2+ being much more effective than K+. Binding of F-actin to the S1-MgAMPPNP complex affords significant protection against breakdown of 27 X 10(3) Mr and 50 X 10(3) Mr peptides, but with concomitant hydrolysis of the 50 X 10(3) Mr-20 X 10(3) Mr junction. Additionally, interaction of MgATP with HMM modulates the tryptic fission of the S1-S2 region. The overall data provide a molecular support for the two-state model of the myosin head and emphasize the involvement of the 50 X 10(3) Mr unit in the mechanism of coupling between the actin and nucleotide binding sites.  相似文献   

19.
Effects of the number of actin-bound S1 and of axial tension on x-ray patterns from tetanized, intact skeletal muscle fibers were investigated. The muscle relaxant, BDM, reduced tetanic M3 meridional x-ray reflection intensity (I(M3)), M3 spacing (d(M3)), and the equatorial I(11)/I(10) ratio in a manner consistent with a reduction in the fraction of S1 bound to actin rather than by generation of low-force S1-actin isomers. At complete force suppression, I(M3) was 78% of its relaxed value. BDM distorted dynamic I(M3) responses to sinusoidal length oscillations in a manner consistent with an increased cross-bridge contribution to total sarcomere compliance, rather than a changed S1 lever orientation in BDM. When the number of actin-bound S1 was varied by altering myofilament overlap, tetanic I(M3) at low overlap was similar to that in high [BDM] (79% of relaxed I(M3)). Tetanic d(M3) dependence on active tension in overlap experiments differed from that observed with BDM. At high BDM, tetanic d(M3) approached its relaxed value (14.34 nm), whereas tetanic d(M3) at low overlap was 14.50 nm, close to its value at full overlap (14.56 nm). This difference in tetanic d(M3) behavior was explicable by a nonlinear thick filament compliance which is extended by both active and passive tension.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号