首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adverse climate change attributed to elevated atmospheric carbon dioxide concentration (CO2) and increased temperature components of global warming has been a central issue affecting economic and social development. Climate change, particularly global warming, imposes a severe impact on the terrestrial ecosystem. Elevated CO2, drought, and high temperature have been extensively documented individually; however, relatively little is known about how plants respond to the interaction of these factors. To summarize current knowledge on the response of plants to global change factors, we focus on the interactive effects of CO2 enrichment, warming, and drought on plant growth, carbon allocation, and photosynthesis. Stimulation due to elevated CO2 might be suppressed under other negative climatic/environmental stresses such as drought, high temperature, and their combination. However, elevated CO2 could alleviate deleterious effects of moderate drought via reducing stomatal conductance, altering leaf surface, and regulating gene expression. High CO2 levels and rising temperatures may result in opposite responses in plant water use efficiency. Stimulation of plant growth due to elevated CO2 for C3 species occurs regardless of water conditions, but only under a water deficit for C4 species. The positive effect of elevated CO2 on C4 species is derived mainly from the improved water status. Plant adaptive or maladaptive responses to multivariate environments are interactive; thus, researchers need to explore the ecological underpinnings involved in such responses to the multiple factors involved in climate change.  相似文献   

2.
3.
在干旱胁迫伴随大气CO2浓度以及升高的CO2浓度(加倍)条件下,以过量表达番茄类囊体膜抗坏血酸过氧化物酶基因(StAPX)的转基因番茄为试材,探明干旱胁迫TCO2浓度升高对转基因及其野生型番茄植株清除活性氧及耐旱能力的影响。结果表明:升高的CO2浓度明显增加了干旱胁迫下植物的光合水平;升高的CO2浓度明显降低了干旱导致的植物体内H2O2.和O2的积累,影响了干旱胁迫下番茄植株的水.水循环系统的活性氧清除酶活性和小分子抗氧化物质含量;干旱胁迫下即使伴随升高的CO2浓度,测试番茄植株体内的渗透调节物质含量变化也不太明显;升高的CO2浓度明显降低了干旱胁迫下的植物细胞膜伤害程度;干旱胁迫下,升高的CO2浓度对转基因番茄株系比对野生型植株的影响更加明显。结果证明干旱逆境下,升高的CO2浓度能够在一定程度上进一步提高转基因番茄植株的耐旱性。  相似文献   

4.
Zhang  Yi  Li  Shuo  Liang  Ying  Zhao  Hailiang  Hou  Leiping  Shi  Yu  Ahammed  Golam Jalal 《Journal of Plant Growth Regulation》2019,38(1):357-357
Journal of Plant Growth Regulation - The original version of this article unfortunately contained errors in two authors' names. The given and family names of the authors were incorrectly...  相似文献   

5.
以烟草Nicotianatabacum抗旱品种NC82和干旱敏感品种云烟87幼苗为材料,利用PEG-6000对幼苗进行干旱胁迫处理,研究干旱胁迫对烟草不同品种Fv/Fm、SOD活性、POD活性、MDA含量等生理生化指标及NtDEGP5基因表达的影响,为进一步开展NtDEGP5基因的功能研究提供依据。结果表明,干旱胁迫对烟苗的Fv/Fm、SOD活性、POD活性、MDA含量有影响,随着干旱的持续,Fv/Fm呈逐渐下降趋势,POD、SOD活性和MDA含量呈先升高后降低的趋势;不同品种对干旱胁迫的响应有差异,在干旱胁迫0~9 h,云烟87幼苗的Fv/Fm降幅大于NC82,POD、SOD活性、MDA含量的增幅小于NC82,胁迫12h后与对照差异不显著。干旱胁迫下不同品种、不同器官间的Nt DEGP5基因表达有差异,云烟87幼苗根、茎、叶中的表达量均较低,NC82幼苗根中的表达量较低,但干旱胁迫9~12 h后叶和茎的表达量较高。NC82幼苗叶片NtDEGP5基因表达量与Fv/Fm、POD活性、MDA含量呈显著正相关。Fv/Fm、SOD活性、POD活性、MDA含量可作为烟草苗期抗旱性评价指标,NtD...  相似文献   

6.
The tolerance of lettuce plants (Lactuca sativa L. cv. Romana) to drought stress differed with the arbuscular-mycorrhizal fungal isolate with which the plants were associated. Seven fungal species belonging to the genus Glomus were studied for their ability to enhance the drought tolerance of lettuce plants. These fungi had different traits that affected the drought resistance of host plants. The ranking of arbuscular-mycorrhizal fungal effects on drought tolerance, based on the relative decreases in shoot dry weight, was as follows: Glomus deserticola > Glomus fasciculatum > Glomus mosseae > Glomus etunicatum > Glomus intraradices > Glomus caledonium > Glomus occultum. In this comparative study specific mycorrhizal fungi had consistent effects on plant growth, mineral uptake, the CO(inf2) exchange rate, water use efficiency, transpiration, stomatal conductance, photosynthetic phosphorus use efficiency, and proline accumulation under either well-watered or drought-stressed conditions. The ability of the isolates to maintain plant growth effectively under water stress conditions was related to higher transpiration rates, levels of leaf conductance, and proline, N, and P contents. Differences in proline accumulation in leaves among the fungal symbioses suggested that the fungi were able to induce different degrees of osmotic adjustment. The detrimental effects of drought were not related to decreases in photosynthesis or water use efficiency. Neither of these parameters was related to P nutrition. The differences in P and K acquisition, transpiration, and stomatal conductance were related to the mycorrhizal efficiencies of the different fungi. Our observations revealed the propensities of different Glomus species to assert their protective effects during plant water stress. The greater effectiveness of G. deserticola in improving water deficit tolerance was associated with the lowest level of growth reduction (9%) under stress conditions. The growth of plants colonized by G. occultum was reduced by 70% after a progressive drought stress period. In general, the different protective effects of the mycorrhizal isolates were not associated with colonizing ability. Nevertheless, G. deserticola was the most efficient fungus and exhibited the highest levels of mycorrhizal colonization, as well as the greatest stimulation of physiological parameters.  相似文献   

7.

In this study, the effects of boron stress and the application of silicon were investigated on the expression levels of barley homologues of three transporter genes, namely BOR2, PIP1, and PIP1;1, which have potential in transferring boron and silicon into or out of tissues. Boron toxicity in shoot tissues was observed as early as 1-day-long exposure by means of several stress indicators including ion leakage, malondialdehyde (MDA) and H2O2 levels. Elemental analysis showed that presence of Si under B stress reduces tissue B levels, whereas B presence increased Si levels in tissues. Presence of silicon induced BOR2 gene expression in shoots during early stress. Presence of both elements simultaneously increased BOR2 expression in both shoot and root tissues, which might be attributed to element similarity. Expression levels of both aquaporin genes PIP1 and PIP1;1 increased in shoots under short term B and Si applications, and levels were more responsive to B when compared to Si. Similar to BOR2 expression, silicon increased both aquaporin gene expressions in shoot tissues under short term boron stress. Investigation of the response of BOR2 and aquaporin genes under boron stress and in the presence of silicon revealed their sensitivity to silicon and their potential function in transporting silicon into tissues. Based on the present work, stress mitigating effects of silicon can be attributed to the competitive role of silicon for the transport via boron transporters under toxic boron levels.

  相似文献   

8.
We constructed a model simulating growth, shoot-root partitioning,plant nitrogen (N) concentration and total non-structural carbohydratesin perennial grasses. Carbon (C) allocation was based on theconcept of a functional balance between root and shoot growth,which responded to variable plant C and N supplies. Interactionsbetween the plant and environment were made explicit by wayof variables for soil water and soil inorganic N. The modelwas fitted to data on the growth of two species of perennialgrass subjected to elevated atmospheric CO2and water stresstreatments. The model exhibited complex feedbacks between plantand environment, and the indirect effects of CO2and water treatmentson soil water and soil inorganic N supplies were important ininterpreting observed plant responses. Growth was surprisinglyinsensitive to shoot-root partitioning in the model, apparentlybecause of the limited soil N supply, which weakened the expectedpositive relationship between root growth and total N uptake.Alternative models for the regulation of allocation betweenshoots and roots were objectively compared by using optimizationto find the least squares fit of each model to the data. Regulationby various combinations of C and N uptake rates, C and N substrateconcentrations, and shoot and root biomass gave nearly equivalentfits to the data, apparently because these variables were correlatedwith each other. A partitioning function that maximized growthpredicted too high a root to shoot ratio, suggesting that partitioningdid not serve to maximize growth under the conditions of theexperiment.Copyright 1998 Annals of Botany Company plant growth model, optimization, nitrogen, non-structural carbohydrates, carbon partitioning, elevated CO2, water stress,Pascopyrum smithii,Bouteloua gracilis, photosynthetic pathway, maximal growth  相似文献   

9.
The effects of elevated atmospheric CO2 concentrations on theecophysiological responses (gas exchange, chlorophyll a fluorescence,Rubisco activity, leaf area development) as well as on the growthand biomass production of two poplar clones (i.e. Populus trichocarpax P. deltoides clone Beaupré and P. x euramericana cloneRobusta) were examined under open top chamber conditions. Theelevated CO2 treatment (ambient + 350 µmol mol-1) stimulatedabove-ground biomass of clones Robusta and Beaupré afterthe first growing season by 55 and 38%, respectively. This increasedbiomass production under elevated CO2 was associated with asignificant increase in plant height, the latter being the resultof enhanced internode elongation rather than an increased productionof leaves or internodes. Both an increased leaf area index (LAI)and a stimulated net photosynthesis per unit leaf contributedto a significantly higher stem biomass per unit leaf area, andthus to the increased above-ground biomass production underthe elevated CO2 concentrations in both clones. The larger LAIwas caused by a larger individual leaf size and leaf growthrate; the number of leaves was not altered by the elevated CO2treatment. The higher net leaf photosynthesis was the resultof an increase in the photochemical (maximal chlorophyll fluorescenceFm and photochemical efficiency Fv/Fm) as well as in the biochemical(increased Rubisco activity) process capacities. No significantdifferences were found in dark respiration rate, neither betweenclones nor between treatments, but specific leaf area significantlydecreased under elevated CO2 conditions.Copyright 1995, 1999Academic Press Biomass, chlorophyll a fluorescence, elevated CO2, growth, Populus, poplar, photosynthesis, respiration, Rubisco  相似文献   

10.
To reveal and quantify the interactive effects of drought stresses and elevated CO2 concentration [CO2] on photochemistry efficiency of cucumber seedlings, the portable chlorophyll meter was used to measure the chlorophyll content, and the Imaging-PAM was used to image the chlorophyll fluorescence parameters and rapid light response curves (RLC) of leaves in two adjacent greenhouses. The results showed that chlorophyll content of leaves was reduced significantly with drought stress aggravated. Minimal fluorescence (Fo) was increased while maximal quantum yield of PSII (Fv/Fm) decreased significantly by severe drought stress. The significant decrease of effective quantum yield of PSll (Y(Ⅱ)) accompanied by the significant increase of quantum yield of regulated energy dissipation (Y(NPQ)) was observed under severe drought stress condition, but there was no change of quantum yield of nonregulated energy dissipation (Y(NO)). We detected that the coefficient of photochemical quenching (Qp) decreased, and non-photochemical quenching (NPQ) increased significantly under severe drought stress. Furthermore, we found that maximum apparent electron transport rate (ETRmax) and saturating photosynthetically active radiation (PPFDsat) decreased significantly with drought stress aggravated. However, elevated [CO2] significantly increased FvlFm, Qp and PPFDsat, and decreased NPQ under all water conditions, although there were no significant effects on chlorophyll content, Fo, Y(Ⅱ), Y(NPQ), Y(NO) and ETRmax. Therefore, it is concluded that CO2-fertilized greenhouses or elevated atmospheric [CO2] in the future could be favorable for cucumber growth and development, and beneficial to alleviate the negative effects of drought stresses to a certain extent.  相似文献   

11.
Selection for cultivars with superior responsiveness to elevated atmospheric CO2 concentrations (eCO2) is a powerful option for boosting crop productivity under future eCO2. However, neither criteria for eCO2 responsiveness nor prescreening methods have been established. The purpose of this study was to identify traits responsible for eCO2 responsiveness of soybean (Glycine max). We grew 12 Japanese and U.S. soybean cultivars that differed in their maturity group and determinacy under ambient CO2 and eCO2 for 2 years in temperature gradient chambers. CO2 elevation significantly increased seed yield per plant, and the magnitude varied widely among the cultivars (from 0% to 62%). The yield increase was best explained by increased aboveground biomass and pod number per plant. These results suggest that the plasticity of pod production under eCO2 results from biomass enhancement, and would therefore be a key factor in the yield response to eCO2, a resource-rich environment. To test this hypothesis, we grew the same cultivars at low planting density, a resource-rich environment that improved the light and nutrient supplies by minimizing competition. Low planting density significantly increased seed yield per plant, and the magnitude ranged from 5% to 105% among the cultivars owing to increased biomass and pod number per plant. The yield increase due to low-density planting was significantly positively correlated with the eCO2 response in both years. These results confirm our hypothesis and suggest that high plasticity of biomass and pod production at a low planting density reveals suitable parameters for breeding to maximize soybean yield under eCO2.The atmospheric concentration of carbon dioxide ([CO2]) increased from the preindustrial level of 271 µmol mol–1 to 391 µmol mol–1 in 2011, owing primarily to emissions from combustion of fossil fuels. [CO2] is predicted to rise from the current level to approximately 600 µmol mol–1 by 2050 (Ciais et al., 2013). Elevated atmospheric CO2 concentration (eCO2) is well known to increase leaf photosynthesis by increasing the availability of CO2 as a substrate for the carboxylation reaction with Rubisco; this can increase crop productivity, a phenomenon known as the CO2 fertilization effect, especially for C3 plants such as rice (Oryza sativa), wheat (Triticum aestivum), and soybean (Glycine max; e.g. Kimball et al., 2002), since [CO2] is a growth-limiting resource for C3 plants. There is a large genotypic variation in the yield response to eCO2, both among cultivars and between species, with responses ranging from –15% to +20% per 100 µmol mol–1 CO2 increase from the current level for rice (Ziska et al., 1996; Moya et al., 1998; Baker, 2004; Shimono et al., 2009; Hasegawa et al., 2013), –6% to +35% for wheat (Manderscheid and Weigel, 1997; Ziska et al., 2004; Ziska, 2008; Tausz-Posch et al., 2015), –5% to +55% for soybean (Ziska and Bunce, 2000; Ziska et al., 2001; Bishop et al., 2015; Bunce, 2015), and –6% to +21% for field bean (Phaseolus vulgaris; Bunce, 2008). These large differences in eCO2 responsiveness within crop species suggest that active selection and breeding for genotypes that respond strongly to gradual but steadily increasing [CO2] may ensure sustained productivity and improve food security in a future eCO2 world (Ainsworth et al., 2008; Ziska et al., 2012; Tausz et al., 2013).Several hypotheses have been proposed about which traits should be targeted by breeders because they are related to intraspecific variation in the responsiveness of seed yield to eCO2. For example, a cultivar’s maturity group is an important growth trait for determining crop productivity. Late-maturing rice cultivars as a result of the longer period in which they can grow could increase grain yield relatively by eCO2 and may therefore benefit more from eCO2 than early-maturing cultivars (Hasegawa et al., 2013). Also, phenological changes by eCO2 could be another good indicator of genotypic variation in eCO2 responsiveness. Recently, Bunce (2015) showed that extension of the duration of vegetative growth until flowering at the apical node of the main stem caused by eCO2 was correlated with an increase in seed yield among some soybean genotypes.The source-sink relationship is another important aspect of genotypic variation in the responsiveness of a plant to eCO2. CO2 enrichment can increase photosynthesis, especially during the early growth stage of leaves, and the magnitude of the increase of photosynthesis decreases with increasing growth stage because leaf senescence accelerates under eCO2, which has been referred to as acclimation (for review, see Moore et al., 1999). Genotypes with slower acclimation to eCO2 had a greater response of seed yield (Zhu et al., 2014, for rice; Hao et al., 2012, for soybean). Determinacy is strongly related to the source-sink relationship, especially for legume species. Indeterminate soybean cultivars that have more sinks are likely to be superior in responsiveness to eCO2, compared with determinate cultivars (Ainsworth et al., 2004). Aspinwall et al. (2015) emphasized the importance of phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental changes) under eCO2 as a key trait for eCO2 responsiveness. Many researchers have suggested that a higher sink plasticity under eCO2 would lead to greater plasticity of tillering, branching, and biomass production, and could therefore be more important than photosynthesis per unit leaf area for adaptation to eCO2 by rice (Shimono et al., 2009; Zhu et al., 2014), soybean (Ziska and Bunce, 2000; Ziska et al., 2001), wheat (Manderscheid and Weigel, 1997; Ziska et al., 2004; Ziska, 2008), and field bean (Bunce, 2008); an exception would occur when other resources are limited, such as during a drought (Tausz-Posch et al., 2015). It is difficult to categorize biomass per se as a function of sink or source factors, but a plant’s final biomass results from efficient formation of sinks in vegetative and reproductive organs, and from efficient filling of these sinks with the products of photosynthesis. This would be a promising hypothesis, and if the hypothesis is confirmed, the phenotypic plasticity would become a useful criterion for identifying eCO2-responsive cultivars.The first objective of the current study was to examine the genotypic variation of yield enhancement caused by eCO2 in diverse soybean cultivars, as soybean is a major source of plant protein and oil and a major contributor to the world’s food supply. In addition to characterizing the variation, we attempted to identify the factors responsible for it. The soybean genotypes that we chose covered a wide range of maturity groups and determinacy, including near-isogenic lines. We concluded that soybean cultivars varied widely in their responsiveness to eCO2, and that variation in the yield enhancement by eCO2 was determined primarily by the plasticity of biomass and pod production. This suggests that both are suitable parameters for screening cultivars with a strong response to eCO2. However, it is not easy to characterize plasticity of biomass and pod production under eCO2 of each cultivar since CO2 enhancement facilities such as controlled enclosed chambers are extremely expensive and not easily accessible.Our second objective was to develop a methodology to characterize intraspecific variation in plasticity. Shimono (2011) proposed a simple and novel idea: to use planting density for prescreening to identify eCO2-responsive cultivars. Solar radiation is the driving force for photosynthesis and plant growth, and crops are grown as a population (not as individual plants) to maximize productivity per unit area rather than per plant. Individual plant growth is usually restricted by interplant competition for solar radiation, soil nutrients, and water, so a lower planting density could potentially increase the source strength for individual plants by increasing the availability of resources. Thus, lower plant density can imitate the greater resource availability that would occur under eCO2. This approach is potentially useful but is insufficient, because Shimono et al. (2014) applied it only to rice, measured only panicle number (not yield) as the phenotype, and combined independent experimental data from different locations and years. Here, we tested the hypothesis using a diverse range of soybean cultivars at a single site and for 2 years, and found a good relationship between the responsiveness to eCO2 and the responsiveness to low planting density (LD) in terms of the seed yield per plant.  相似文献   

12.
Predicted increases in atmospheric carbon dioxide (CO2) are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2), with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have considerable potential for modifying plant responses to eCO2. We investigated how root damage by a soil-dwelling insect (Xylotrupes gideon australicus) modified the responses of Eucalyptus globulus to eCO2. eCO2 increased plant height when E. globulus were 14 weeks old and continued to do so at an accelerated rate compared to those grown at ambient CO2 (aCO2). Plants exposed to root-damaging insects showed a rapid decline in growth rates thereafter. In eCO2, shoot and root biomass increased by 46 and 35%, respectively, in insect-free plants but these effects were arrested when soil-dwelling insects were present so that plants were the same size as those grown at aCO2. Specific leaf mass increased by 29% under eCO2, but at eCO2 root damage caused it to decline by 16%, similar to values seen in plants at aCO2 without root damage. Leaf C:N ratio increased by >30% at eCO2 as a consequence of declining leaf N concentrations, but this change was also moderated by soil insects. Soil insects also reduced leaf water content by 9% at eCO2, which potentially arose through impaired water uptake by the roots. We hypothesise that this may have impaired photosynthetic activity to the extent that observed plant responses to eCO2 no longer occurred. In conclusion, soil-dwelling insects could modify plant responses to eCO2 predicted by climate change plant growth models.  相似文献   

13.
We examined the effects of CO2 concentration on the white-light-stimulated expression of the cucumber (Cucumis sativus L.) Hpr gene. Hpr encodes hydroxypyruvate reductase, an enzyme important in the photorespiratory glycolate pathway, which plays an integral role in carbon allocation in C3 plants. Because CO2 is an end product of this pathway and because increased CO2 concentrations lessen the need for photorespiration, we tested whether exposure of plants to elevated CO2 would affect white-light-stimulated Hpr gene expression. Exposure of dark-adapted cucumber seedlings to elevated CO2 (2 to 3 times ambient) during a 4-h white-light irradiation significantly inhibited the accumulation of Hpr mRNA. Increasing the CO2 concentration during irradiation to 6 or 9 times ambient did not further inhibit Hpr mRNA accumulation. The depressing effect of high CO2 on Hpr mRNA accumulation was seen in both high and low light, but was more pronounced in higher light. These results suggest that maximum sensitivity to CO2 occurs in conditions near those normally encountered by the plant (high light, CO2 concentration near ambient) and support a model in which white-light-regulated Hpr expression is modulated in part by environmental CO2 concentration.  相似文献   

14.
Kellomäki  S.  Wang  Kai-Yun  Lemettinen  M. 《Photosynthetica》2000,38(1):69-81
A closed CO2 and temperature-controlled, long-term chamber system has been developed and set up in a typical boreal forest of Scots pine (Pinus sylvestris L.) near the Mekrijärvi Research Station (62°47N, 30°58E, 145 m above sea level) belonging to the University of Joensuu, Finland. The main objectives of the experiment were to provide a means of assessing the medium to long-term effects of elevated atmospheric CO2 concentration (EC) and temperature (ET) on photosynthesis, respiration, growth, and biomass at the whole-tree level and to measure instantaneous whole-system CO2 exchange. The system consists of 16 chambers with individual facilities for controlling CO2 concentration, temperature, and the combination of the two. The chambers can provide a wide variety of climatic conditions that are similar to natural regimes. In this experiment the target CO2 concentration in the EC chambers was set at a fixed constant of 700 µmol mol–1 and the target air temperature in the ET chambers to track the ambient temperature but with a specified addition. Chamber performance was assessed on the base of recordings covering three consecutive years. The CO2 and temperature control in these closed chambers was in general accurate and reliable. CO2 concentration in the EC chambers was within 600–725 µmol mol–1 for 90 % of the exposure time during the "growing-season" (15 April – 15 September) and 625–725 µmol mol–1 for 88 % of the time in the "off-season" (16 September – 14 April), while temperatures in the chambers were within ±2.0 °C of the ambient or target temperature in the "growing season" and within ±3.0 °C in the "off season". There were still some significant chamber effects. Solar radiation in the chambers was reduced by 50–60 % for 82 % of the time in the "growing season" and 55–65 % for 78 % of the time in the "off season", and the relative humidity of the air was increased by 5–10 % for 72 % of the time in the "growing season" and 2–12 % for 91 % of the time in the "off season". The crown architecture and main phenophase of the trees were not modified significantly by enclosure in the chambers, but some physiological parameters changed significantly, e.g., the radiant energy-saturated photosynthesis rate, transpiration rate, maximum photochemical efficiency of photosystem 2, and chlorophyll content.  相似文献   

15.
Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3 enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels.  相似文献   

16.
Higher plants not only provide human beings renewable food, building materials and energy, but also play the most important role in keeping a stable environment on earth. Plants differ from animals in many aspects, but the important is that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. The machinery related to molecular biology is the most important basis. The elucidation of it will extremely and purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under different scales. This molecular mechanism at least includes drought signal recognition (input), signal transduction (many cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, which is a multi-dimension network system and contains many levels of gene expression and regulation. We will focus on the physiological and molecular adaptive machinery of plants under soil water stress and draw a possible blueprint for it. Meanwhile, the issues and perspectives are also discussed. We conclude that biological measures is the basic solution to solving various types of issues in relation to sustainable development and the plant measures is the eventual way.Key Words: Higher plants, soil water stress, gene regulatory network, drought, anti-drought gene resources, signal, ion homeostasis, physiological mechanisms.  相似文献   

17.
CO2 浓度升高对两种沈阳城市森林树种光合特性的影响   总被引:1,自引:0,他引:1  
利用开顶式气室, 研究了CO2浓度升高条件下城市森林主要树种油松(Pinus tabulaefomis)和银杏(Ginkgo biloba)主要光合特性的变化。结果表明, 整个生长季, CO2浓度升高(700 mmol.mol-1)条件下2树种叶片的净光合速率、可溶性糖、淀粉和可溶性蛋白含量均接近或高于相应对照(自然CO2浓度)值, 但不同树种增加的幅度不同; 而2树种的叶绿素含量和Chl a/Chl b值对CO2浓度升高反应不一, 表现为CO2浓度升高条件下油松的叶绿素含量较对照值高, Chl a/Chl b值降低, 银杏的叶绿素含量为前期升高, 后期降低, Chl a/Chl b值变化与之正好相反, 说明城市森林组成树种对CO2浓度升高的响应具有复杂性。CO2浓度升高条件下, 两树种均未发生光合适应现象。  相似文献   

18.
Vu JC  Allen LH  Bowes G 《Plant physiology》1987,83(3):573-578
Soybean (Glycine max [L.] cv Bragg) was grown at 330 or 660 microliters CO2 per liter in outdoor, controlled-environment chambers. When the plants were 50 days old, drought stress was imposed by gradually reducing irrigation each evening so that plants wilted earlier each succeeding day. On the ninth day, as the pots ran out of water CO2 exchange rate (CER) decreased rapidly to near zero for the remainder of the day. Both CO2-enrichment and drought stress reduced the total (HCO3/Mg2+-activated) extractable ribulose-1,5-bisphosphate carboxylase (RuBPCase) activity, as expressed on a chlorophyll basis. In addition, drought stress when canopy CER values and leaf water potentials were lowest, reduced the initial (nonactivated) RuBPCase activity by 50% compared to the corresponding unstressed treatments. This suggests that moderate to severe drought stress reduces the in vivo activation state of RuBPCase, as well as lowers the total activity. It is hypothesized that stromal acidification under drought stress causes the lowered initial RuBPCase activities. The Km(CO2) values of activated RuBPCase from stressed and unstressed plants were similar; 15.0 and 12.6 micromolar, respectively. RuBP levels were 10 to 30% lower in drought stressed as compared to unstressed treatments. However, RuBP levels increased from near zero at night to around 150 to 200 nanomoles per milligram chlorophyll during the day, even as water potentials and canopy CERs decreased. This suggests that the rapid decline in canopy CER cannot be attributed to drought stress induced limitations in the RuBP regeneration capability. Thus, in soybean leaves, a nonstomatal limitation of leaf photosynthesis under drought stress conditions appears due, in part, to a reduction of the in vivo activity of RuBPCase. Because initial RuBPCase activities were not reduced as much as canopy CER values, this enzymic effect does not explain entirely the response of soybean photosynthesis to drought stress.  相似文献   

19.
The objectives of this study were to quantify changes in leaffreezing resistance and carbohydrate concentrations caused bylong-term (6 years) exposure to elevated CO2(ambient: 360 µll-1, elevated: 600 µl l-1) in five dominant plant speciesgrowing in situ in a native temperate grassland. Across allfive species tested from three functional groups, the mean temperatureat which all leaves were damaged (T100) significantly (P = 0.016)increased from -9.6 to -8.5 °C under elevated CO2 , anda similar marginally significant (P = 0.079) reduction was observedfor the mean temperature that caused 50% leaf damage (T50),from -6.7 to -6.0 °C. The mean temperature at which initialleaf damage was observed (T0) was not significantly influencedby elevated CO2 . Although concentrations of soluble sugars(+25%,P = 0.042), starch (+53%, P < 0.001), and total non-structuralcarbohydrates (TNC, +40%, P < 0.001) were significantly higherunder elevated CO2 , leaf freezing resistance actually decreasedunder elevated CO2 . Concentrations of soluble sugars were positivelycorrelated with freezing resistance when viewed across all fivecommunity dominants, but within any individual species, no suchrelationships were found. We also found no evidence for ouroriginal hypothesis that increased concentrations of solublesugars increase freezing resistance. Thus, future atmosphericCO2levels may instead increase the risk of late spring freezingdamage. Furthermore, the strong differences in freezing resistanceobserved among the species, along with decreased freezing resistance,may increase the risk of losing species that have inherentlyweak freezing resistances from the plant community. Copyright2001 Annals of Botany Company CO2enrichment, frost hardiness, sugar, starch, total non-structural carbohydrates (TNC)  相似文献   

20.
Panicum tricanthum Nees, Panicum antidotale Retz., and Panicum decipiens Nees ex Trin. were selected to represent C3, C4, and C3/C4 intermediate perennial species of Panicum, respectively. Plants grown from seed with 900 ppm [CO2] under natural sunlight and controlled temperatures (30 degrees /22 degrees C) were compared with plants grown with ambient [CO2]. The anatomy of the last fully expanded leaf of the main tiller was studied by light microscopy with computerized graphic image analysis and by transmission electron microscopy. Leaf anatomy did not change qualitatively in response to elevated [CO2], but there were changes in leaf thickness and in the proportions of total transsectional area occupied by mesophyll, bundle sheath cells, vascular elements, and sclerenchyma, according to species. The abaxial stomatal frequency decreased by 22% for P. tricanthum but increased by ca. 30% for the other two species. With 900 ppm CO2, all three species showed a considerable increase in leaf starch content (to >30% of dry matter). Starch granules accumulated in chloroplasts of the mesophyll and bundle sheath cells. Increased leaf glaucousness in response to elevated [CO2] was the result of increased or modified deposition of epicuticular wax on both leaf surfaces, a response to elevated [CO2] that is unusual and one that has not been previously recorded for monocotyledons. The wax patterns were studied by scanning electron microscopy. Panicum decipiens did not respond to elevated [CO2] in a truly intermediate fashion; its responses resembled those of either the C3 or the C4 species. C3/C4 intermediates may thus be interpreted as developmental chimeras and not as species in transition between C3 and C4 modes in an evolutionary sense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号