首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pulse-chase labeling of foot-and-mouth disease virus-infected bovine kidney cells revealed stable and unstable viral-specific polypeptides. To identify precursor-product relationships among these polypeptides, antisera against a number of structural and nonstructural viral-specific polypeptides were used. Cell-free translations programmed with foot-and-mouth disease virion RNA or foot-and-mouth disease virus-infected bovine kidney cell lysates, which were shown to contain almost identical polypeptides, were immunoprecipitated with the various antisera. To further establish identity, some proteins were compared by partial protease digestion. Evidence for a membrane association of the polypeptides coded for by the middle genome region is also presented. A biochemical map of the foot-and-mouth disease virus genome was established from the above information.  相似文献   

2.
Ten stable temperature-sensitive mutants of Japanese encephalitis virus were isolated after mutagenesis by growth of cloned wild-type virus in the presence of the nucleic acid precursor analogs 5-fluorouracil and 5-azacytidine. Mutants were selected which grew at least 100-fold better at 33 degrees C than at 41 degrees C. The 5-fluorouracil was found to be more effective at inducing temperature-sensitive mutations than was 5-azacytidine. Analysis of the virus-specific RNA and proteins synthesized by each mutant at the nonpermissive temperature was used to determine biochemical phenotypes. The mutants were analyzed for abilities to complement in mixed infections. Although inefficient and sometimes nonreciprocal, complementation occurred at higher levels than previously reported for flavivirus mutants. Interference between mutants in some mixed infections was also observed. Seven complementation groups were defined. Three groups contained mutants incapable of synthesizing virus-specific RNA at the nonpermissive temperature, whereas the remaining complementation groups displayed an RNA+ phenotype. Levels of protein synthesis comparable to that of wild type were observed at the nonpermissive temperature in three groups. Two other groups were represented by mutants which synthesized only low levels of virus-specific proteins at the higher temperature. Mutants in the remaining two groups did not produce detectable levels of proteins under nonpermissive conditions.  相似文献   

3.
Guanidine resistance (gr) mutations of foot-and-mouth disease virus were mapped by recombining pairs of temperature-sensitive mutants belonging to different subtypes. In each cross, one parent possessed a gr mutation. Recombinants were isolated by selection at the nonpermissive temperature and assayed for the ability to grow in the presence of guanidine. From the progeny of three crosses, four different types of recombinant were distinguished on the basis of protein composition and RNA fingerprint. The sequences of the RNase T1-resistant oligonucleotides were determined and located in the full-length sequence of foot-and-mouth disease virus. The resulting maps show that (i) each recombinant was generated by a single genetic crossover, and (ii) both of the gr mutations studied were located within an internal 2.9-kilobase region which spans the P34 gene. This supports our hypothesis that guanidine inhibits the growth of foot-and-mouth disease virus by acting on nonstructural polypeptide P34. Additional evidence was provided by RNA fingerprinting gr mutants. In two of four cases the gr mutation was associated with a change in an oligonucleotide located near the 3' end of the P34 gene; in one of these the nucleotide substitution was identified.  相似文献   

4.
We have completed the cloning and sequencing of all known temperature-sensitive, amino acid substitution mutants of simian virus 40 large T antigen (tsA mutants). Surprisingly, many of the mutants isolated from distinct viral strains by different laboratories are identical. Thus, 17 independently isolated mutants represent only eight distinct genotypes. This remarkable clustering of tsA mutations in a few "hot spots" in the amino acid sequence of T antigen and the temperature-sensitive phenotypes of the mutations strongly suggest that these amino acids play crucial roles in organizing the structure of one or more functional domains. Most of the mutations are located in highly conserved regions of T antigen that correlate with DNA binding, protein-protein interactions, or ATP binding. With the exception of one mutant with a lesion in the putative ATP-binding region, all the mutants are temperature sensitive for DNA replication.  相似文献   

5.
Foot-and-mouth disease virus and poliovirus each contain several minor polypeptides, in addition to the four structural proteins. One of these, the viral RNA polymerase, can also act as a nuclease, hydrolysing the RNA and thus destroying viral infectivity. It is tightly bound to the RNA and may be the packaging signal for assembly of the particle.  相似文献   

6.
Eight temperature-sensitive mutants of simian virus 40 which transform rat cells at 32.5 C but not at 38.5 C have been isolated. All the mutants were also temperature sensitive for replication in African green monkey kidney cells and five of them were classified into a single complementation group. No mutant incapable of transforming rat cells at either temperature was isolated.  相似文献   

7.
In 1997, a devastating outbreak of foot-and-mouth disease (FMD) in Taiwan was caused by a serotype O virus (referred to here as OTai) with atypical virulence. It produced high morbidity and mortality in swine but did not affect cattle. We have defined the genetic basis of the species specificity of OTai by evaluating the properties of genetically engineered chimeric viruses created from OTai and a bovine-virulent FMD virus. These studies have shown that an altered nonstructural protein, 3A, is a primary determinant of restricted growth on bovine cells in vitro and significantly contributes to bovine attenuation of OTai in vivo.  相似文献   

8.
During co-translational protein import into the endoplasmic reticulum ribosomes are docked onto the translocon. This prevents inappropriate exposure of nascent chains to the cytosol and, conversely, cytosolic factors from gaining access to the nascent chain. We exploited this property of co-translational translocation to examine the mechanism of polypeptide cleavage by the 2A peptide of the foot-and-mouth disease virus. We find that the scission reaction is unaffected by placing 2A into a co-translationally targeted protein. Moreover, the portion of the polypeptide C-terminal to the cleavage site remains in the cytosol unless it contains its own signal sequence. The pattern of cleavage is consistent with the proposal that the 2A-mediated cleavage reaction occurs within the ribosome itself. In addition, our data indicate that the ribosome-translocon complex detects the break in the nascent chain and prevents any downstream protein lacking a signal sequence from gaining access to the endoplasmic reticulum.  相似文献   

9.
Evidence is presented which confirms that temperature-sensitive (ts) mutants with an RNA- phenotype are spontaneously selected in persistent infection of cell lines with Newcastle disease virus. Persistently infected BHK-21 cells, maintained since 1973, produce no interferon and are completely susceptible to vesicular stomatitis virus. Persistent infection of a canine kidney cell line (MDCK) terminated with destruction of all cells at about 100 days. Even under these conditions, a high proportion (33%) of RNA- temperature-sensitive mutants was present in the virus population 60 days after the infection was initiated.  相似文献   

10.
11.
12.
Herpesviruses are capable of several types of infection of a host cell. To investigate the early events which ultimately determine the nature of the virus-host cell interaction, a system was established utilizing temperature-sensitive mutants of herpes simplex virus type 2. Four mutants have been isolated which fail to induce cytopathic effects and do not replicate at 39 C in hamster embryo fibroblast cells. At least one mutant is virus DNA negative. Since intracellular complementation is detectable between pairs of mutants, a virus function is known to be temperature sensitive. However, all four mutants induce cytopathic effects and replicate to parental virus levels in rabbit kidney cells at 39 C. This suggests that a host cell function, lacking or nonfunctional in HEF cells but present in rabbit kidney cells at 39 C, is required for the replication of these mutants in hamster embryo fibroblasts cells at 39 C. Therefore, we conclude that these mutants are both temperature sensitive and exhibit host range properties.  相似文献   

13.
The coding region for the structural and nonstructural polypeptides of the type A12 foot-and-mouth disease virus genome has been identified by nucleotide sequencing of cloned DNA derived from the viral RNA. In addition, 704 nucleotides in the 5' untranslated region between the polycytidylic acid tract and the probable initiation codon of the first translated gene, P16-L, have been sequenced. This region has several potential initiation codons, one of which appears to be a low-frequency alternate initiation site. The coding region encompasses 6,912 nucleotides and ends in a single termination codon, UAA, located 96 nucleotides upstream from a 3'-terminal polyadenylic acid tract. Microsequencing of radiolabeled in vivo and in vitro translation products identified the genome position of the major foot-and-mouth disease virus proteins and the cleavage sites recognized by the putative viral protease and an additional protease(s), probably of cellular origin, to generate primary and functional foot-and-mouth disease virus polypeptides.  相似文献   

14.
We document the rapid alteration of fitness of two foot-and-mouth disease virus (FMDV) mutants resistant to a neutralizing monoclonal antibody. Both mutants showed a selective disadvantage in BHK-21 cells when passaged in competition with their parental FMDV. Upon repeated replication of the mutants alone, they acquired a selective advantage over the parental FMDV and fixed additional genomic substitutions without reversion of the monoclonal antibody-resistant phenotype. Thus, variants that were previously kept at low frequency in the mutant spectrum of a viral quasispecies rapidly became the master sequence of a new genomic distribution and dominated the viral population.  相似文献   

15.
Typing of foot-and-mouth disease (FMD) virus was performed by the direct fluorescent antibody (FA) technique. Type-specific FA was prepared from the following two sorts of procedures: (1) FA against live virus (FA-live) was prepared from hyperimmune serum taken from guinea pigs having received live FMD virus. Then it was adsorbed with concentrated heterotype antigen. (2) FA against inactivated virus (FA-Inact) was prepared from antiserum taken from guinea pigs immunized with purified FMD virus inactivated with acetylethyleneimine. Seventeen strains of FMD virus (seven strains of type A, seven strains of type O, and three strains of thpe C) were used. Type-specific FMD virus antigen was detected distinctly from the monolayer of BHK cells infected with each type of virus and fixed in acetone, in spite of negative results obtained from the cells fixed in methyl alcohol. All the 17 strains were typed successfully by the implementation of these two FA methods.  相似文献   

16.
Temperature-sensitive (ts) mutants of vesicular stomatitis virus belonging to complementation groups I, II and IV inhibited the replication of wild-type vesicular stomatitis virus when mixed infections were carried out in BHK21 cells at 32, 37, and 39.5 C. The group IV mutant (ts G 41) was most effective in this regard; wild-type virus yields were inhibited almost 1,000-fold in mixed infections with this mutant at 32 C. In the case of group I and II mutants, inhibition of wild-type virus replication at 37 and 39.5 C was accompanied by an enhancement (up to 15,000-fold) of the yields of the coinfecting ts mutant. The yields of the group IV mutant (ts G 41) were not enhanced by mixed infections with wild-type virus at any temperature, although this mutant inhibited wild-type virus replication at all temperatures. The dominance of the replication of ts mutants at 37 C provides a rationale for the selection and maintenance of ts virus in persistently infected cells.  相似文献   

17.
Eight temperature-sensitive mutants of human cytomegalovirus have been isolated after mutagenesis with nitrosoguanidine. Three of these mutants have been classified into three separate complementation groups and are capable of synthesizing virus DNA at the nonpermissive temperature (39.5 degrees C). Two others appear unable to synthesize virus DNA at the elevated temperature.  相似文献   

18.
We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I(248)-->T in 2C, Q(44)-->R in 3A, and L(147)-->P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L(147)-->P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L(147)-->P, and this infection was inhibited by antibodies to alphavbeta6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin alphavbeta6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T(248)-->N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species.  相似文献   

19.
Temperature-sensitive mutants of Neisseria gonorrhoeae.   总被引:1,自引:0,他引:1       下载免费PDF全文
Nine temperature-sensitive (Ts) mutants of Neisseria gonorrhoeae strain 49191 were isolated. They were proven to be different from each other by results of transformation experiments. None of the Ts mutations appeared to be linked to antibiotic resistance genes from strain 24392. However, Ts-9 demonstrated 8% linkage with a nalidixic acid resistance marker from strain RW-2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号