首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation describes the relative potencies of four peptide agonists, namely, peptide YY (PYY), [Leu3l,Pro34]PYY (Pro34pYY), neuropeptide Y (NPY), and [Leu31,Pro34]NPY (Pro34NPY), as antisecretory agents in human, rat, and mouse gastrointestinal preparations. The inhibition of agonist responses by the Y1-receptor antagonist BIBP 3226 was also tested in each preparation. An unexpectedly pronounced preference for PYY and Pro34PYY was observed in functional studies of two human epithelial lines stably transfected with the rat Y1 receptor (Y1-7 and C1Y1-6). NPY and Pro34NPY were at least an order of magnitude less effective than PYY in these functional studies but were only marginally less potent in displacement binding studies using membrane preparations of the same clonal lines. The orders of agonist potency obtained in Y1-7 and C1Y1-6 epithelia were compared with those obtained from a single human colonic adenocarcinoma cell line (Colony-6, which constitutively expresses Y1 receptors) and also from mucosal preparations of rat and mouse descending colon. Similar peptide orders of potency were obtained in rat and mouse colonic mucosae and Colony-6 epithelia, all of which exhibited PYY preference (although less pronounced than with Y1-7 and C1Y1-6 epithelia) and significant sensitivity to the Y1 receptor antagonist, BIBP 3226. We have compared the pharmacology of these five mammalian epithelial preparations and provide cautionary evidence against the reliance upon agonist concentration-response relationships alone, in the characterization of NPY receptor types.  相似文献   

2.
Central injections of neuropeptide Y (NPY) increase food intake in Syrian hamsters; however, the effect of NPY on sexual behavior in hamsters is not known nor are the receptor subtypes involved in feeding and sexual behaviors. We demonstrate that NPY inhibits lordosis duration in a dose-related fashion after lateral ventricular injection in ovariectomized, steroid-primed Syrian hamsters. Under the same conditions, we compared the effect of two receptor-differentiating agonists derived from peptide YY (PYY), PYY-(3-36) and [Leu(31),Pro(34)]PYY, on lordosis duration and food intake. PYY-(3-36) produced a 91% reduction in lordosis duration at 0.24 nmol. [Leu(31),Pro(34)]PYY was less potent, producing a reduction in lordosis duration (66%) only at 2.4 nmol. These results suggest NPY effects on estrous behavior are principally mediated by Y2 receptors. PYY-(3-36) and [Leu(31),Pro(34)]PYY stimulated comparable dose-related increases in total food intake (2 h), suggesting Y5 receptors are involved in feeding. The significance of different NPY receptor subtypes controlling estrous and feeding behavior is highlighted by results on expression of Fos immunoreactivity (Fos-IR) elicited by either PYY-(3-36) or [Leu(31),Pro(34)]PYY at a dose of each that differentiated between the two behaviors. Some differences were seen in the distribution of Fos-IR produced by the two peptides. Overall, however, the patterns of expression were similar. Our behavioral and anatomic results suggest that NPY-containing pathways controlling estrous and feeding behavior innervate similar nuclei, with the divergence in pathways controlling the separate behaviors characterized by linkage to different NPY receptor subtypes.  相似文献   

3.
The object of the present study was to investigate the effects of the sympathetic cotransmitter neuropeptide Y (NPY), and the closely related gut hormone peptide YY (PYY), on splanchnic blood flow regulation in the anaesthetized pig in vivo. Systemic injections of NPY, PYY and the NPY Y(1) receptor agonist [Leu(31)Pro(34)]NPY (470 pmol kg(-1) each) evoked pressor and mesenteric vasoconstrictor responses that were largely abolished by the selective NPY Y(1) receptor antagonist H 409/22 (60 nmol kg(-1) min(-1)). In contrast, the NPY Y(2) receptor agonist N-acetyl[Leu(28)Leu(31)]NPY(24-36) (1.1 nmol kg(-1)), a dose of which potently evoked splenic NPY Y(2) receptor mediated (not affected by H 409/22) vasoconstriction, did not evoke any mesenteric vascular response. Mesenteric vascular responses to angiotensin II (10 pmol kg(-1)), alpha,beta-methylene ATP (10 nmol kg(-1)) and the alpha(1)-adrenoceptor agonist phenylephrine (15 nmol kg(-1)), were not inhibited by H 409/22. It is concluded that NPY and PYY evokes porcine mesenteric vasoconstriction mediated by the NPY Y(1) receptor subtype, as demonstrated by selective and specific inhibition exerted by the NPY Y(1) receptor antagonist H 409/22, in vivo.  相似文献   

4.
The rat glucocorticoid-induced receptor (rGIR) is an orphan G protein-coupled receptor awaiting pharmacological characterization. Among known receptors, rGIR exhibits highest sequence similarity to the neuropeptide Y (NPY)-Y(2) receptor (38-40%). The pharmacological profile of rGIR was investigated using (125)I-PYY(3-36), a Y(2)-preferring radioligand and several NPY analogs. rGIR displayed a similar displacement profile as reported for the Y(2) receptor, in that the Y(2)-selective C terminus fragments of NPY and PYY (NPY(3-36) and PYY(3-36)) showed high affinity binding and activation of rGIR (low nanomolar range). The rank order potency for displacement was NPY(3-36)>PYY(3-36)=NPY>NPY(13-36)>Ac, Leu NPY(24-36)>[D-Trp(32)]-NPY>Leu(31), Pro(34)-NPY=hPP. NPY and Y(2)-selective agonists NPY(3-36) and PYY(3-36) led to significant activation of (35)S-GTPgammaS binding to rGIR transfected cells. BIIE0246, a specific Y(2) antagonist, displaced (125)I-PYY(3-36) binding to rGIR with high affinity (95nM). Activation of (35)S-GTPgammaS binding by Y(2)-selective agonist in rGIR transfected cells was also completely abolished by BIIE0246. Our data report, for the first time, an interaction of NPY ligands with rGIR expressed in vitro, and indicate similarities between GIR and the NPY-Y(2) receptor.  相似文献   

5.
The present study evaluated the effects of both intraperitoneal (i.p. ) and intracerebroventricular administration of selective Y(1) [(Leu(31), Pro(34))-NPY] and Y(2) [(Pro(13), Tyr(36))-NPY (13-36)] receptor agonists on food intake in satiated goldfish. Food intake (FI) was significantly increased by central administration of the Y(1) agonist (1 microg), but not by the Y(2) agonist, at 2 h postinjection. The feeding increase induced by (Leu(31), Pro(34))-NPY was in a similar magnitude to that obtained after ICV injection of the neuropeptide Y, and both feeding stimulations were reversed by the NPY (27-36), a general NPY antagonist. The i.p. administration of the agonists either did not significantly modify (Y(2) agonist) or decreased (Y(1) agonist) food intake in goldfish. These data indicate that it is the Y(1)-like (similar to Y(1) and/or Y(5)) receptor, and not Y(2), that is involved in the central modulation of the feeding behavior in goldfish. We also investigated the possible involvement of opioid peptides as mediators of the NPY stimulatory action on food intake in goldfish. The ICV administration of naloxone (10 microg), a general opioid antagonist, blocked the NPY-induced feeding in goldfish, suggesting that the opioidergic system is involved in feeding regulation by NPY.  相似文献   

6.
Aldegunde M  Mancebo M 《Peptides》2006,27(4):719-727
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in mammals, but very little is known about NPY actions in fish. The present study investigated the role of NPY in food intake in the rainbow trout (Oncorhynchus mykiss). Food intake was monitored at different times after intracerebroventricular administration of porcine NPY (4 or 8 microg). Both doses significantly increased food intake at 2 and 3 h, and this effect was dose-dependent. However, 50 h after administration of NPY, food intake was significantly lower than in control fish, and cumulative food intake had returned to levels similar to those seen in the control group. The NPY antagonist (D-Tyr27,36, D-Thr32)-NPY (10 microg) inhibited food intake 2 h after icv administration, but did not block the orexigenic effect of NPY when administered jointly with 4 microg NPY. To identify the NPY receptor subtypes involved in the effects of NPY on food intake, we studied the effects of the Y1 receptor agonist (Leu31, Pro34)-NPY (4 microg), the Y2 receptor agonist NPY(3-36) (4 microg), and the highly specific Y5 receptor agonist (cPP(1-7), NPY19-23, Ala31, Aib32, Gln34)-hPP (4 microg). Short-term (2 h) food intake was moderately stimulated by the Y1 agonist, more strongly stimulated by the Y2 agonist, and unaffected by the Y5 agonist. We found that administration of NPY (8 microg icv) had no effect on aminergic systems in several brain regions 2 and 50 h after NPY administration. These results indicate that NPY stimulates feeding in the rainbow trout, and suggest that this effect is cooperatively mediated by Y2- and Y1-like NPY receptors, not by Y5-like receptors.  相似文献   

7.
A Cervin 《Regulatory peptides》1992,39(2-3):237-246
Recent investigations have shown neuropeptide Y (NPY) to be present in the rabbit maxillary sinus, and NPY is known to be released upon sympathetic nerve stimulation. To study, in vivo, the effect on mucociliary activity and blood flow, NPY 1-36 and some of its analogues were injected intra-arterially. The effects of the Y1/Y2 agonist NPY 1-36 was compared with the ones of the Y2 agonist NPY 16-36, the Y1-agonist [Leu31,Pro34]NPY and the Y1/Y2 agonist peptide YY. Mucociliary response was recorded photoelectrically and expressed as a percentage of the basal mucociliary activity immediately prior to challenge. The effect on blood flow was measured with laser Doppler flowmetry and expressed as a percentage of the mean blood flow during the 60 s preceding challenge. NPY 1-36 and NPY 16-36 both reduced mucociliary activity dose-dependently at equimolar dosages (0.024-1.2 nmol/kg). The greatest effect was seen after the highest dosage tested. NPY 1-36 reduced mucociliary activity by 14.6 +/- 1.8%, and NPY 16-36 by 13.2 +/- 1.4%. At the highest dosage tested the Y1 receptor agonist [Leu31,Pro34]NPY did not significantly reduce mucociliary activity, whereas PYY reduced mucociliary activity by 15.0 +/- 1.8%. Injections of NPY 16-36 had no effect on blood flow whereas NPY 1-36, [Leu31,Pro34]NPY and PYY all reduced blood flow dose-dependently. Maximal decrease was seen at the highest dosage tested and was 47.1 +/- 5.4%, 70.4 +/- 7.4% and 58.2 +/- 8.4%, respectively. These findings suggest the mucociliary effects to be mediated via Y2 receptors whereas blood flow is regulated via Y1 receptors.  相似文献   

8.
Malmström RE 《Life sciences》2001,69(17):1999-2005
The effects of the first selective, non-peptide, NPY Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamid (BIIE0246) were studied on splenic vascular responses evoked in the pig in vivo. BIIE0246 abolished the splenic vasoconstrictor response to the NPY Y2 receptor agonist N-acetyl[Leu25Leu31]NPY(24-36), but did not affect the response to the NPY Y1 receptor agonist [Leu31Pro34]NPY, which in turn was abolished by the selective NPY Y1 receptor antagonist (2R)-5-([amino(imino)methyl]amino)-2-[(2,2-diphenylacetyl)amino]-N-[(IR)-1-(4-hydroxyphenyl)ethyl]-pentanamide (H 409/22). Furthermore, the PYY-evoked splenic vasoconstrictor response was partially antagonized by BIIE0246 and subsequently almost abolished by the addition of H 409/22. It is concluded that BIIE0246 exerts selective (vs the NPY Y1 receptor) NPY Y2 receptor antagonism, and thus represents an interesting tool for classification of NPY receptors, in vivo. In addition, evidence for NPY Y2 receptor mediated vasoconstriction was presented. Furthermore, both NPY Y1 and Y2 receptors are involved in the splenic vasoconstrictor response to PYY.  相似文献   

9.
Activation of the NPY2 receptor to reduce appetite while avoiding stimulation of the NPY1 and NPY5 receptors that induce feeding provides a pharmaceutical approach to modulate food intake. The naturally occurring peptide PYY(3-36) is a nonselective NPY1, NPY2, and NPY5 agonist. N-terminal truncation of PYY to abrogate affinity for the NPY1 and NPY5 receptors and subsequent N-terminal modification with aminobenzoic analogs to restore NPY2 receptor potency results in a series of highly selective NPY2 receptor peptide agonists.  相似文献   

10.
The Y5 receptor has been postulated to be the main receptor mediating NPY-induced food intake in rats, based on its pharmacological profile and mRNA distribution. To further characterize this important receptor subtype, we isolated the Y5 gene in the guinea pig, a widely used laboratory animal in which all other known NPY receptors (Y1, Y2, Y4, y6) [2,13,33,37] have recently been cloned by our group. Our results show that the Y5 receptor is well conserved between species; guinea pig Y5 displays 96% overall amino acid sequence identity to human Y5, the highest identity reported for any non-primate NPY receptor orthologue, regardless of subtype. Thirteen of the twenty substitutions occur in the large third cytoplasmic loop. The identities between the guinea pig Y5 receptor and the dog, rat, and mouse Y5 receptors are 93%, 89%, and 89% respectively. When transiently expressed in EBNA cells, the guinea pig Y5 receptor showed a high binding affinity to iodinated porcine PYY with a dissociation constant of 0.41 nM. Competition experiments showed that the rank order of potency for NPY-analogues was PYY = NPY = NPY2-36 > gpPP > rPP > NPY 22-36. Thus the pharmacological profile of the guinea pig Y5 receptor agrees well with that reported for the Y5 receptor from other cloned species.  相似文献   

11.
Cardiovascular and respiratory effects of intracerebroventricular (icv) administration of neuropeptide Y (NPY) and separate, preferential agonists for NPY Y1 and Y2 receptors were observed in anaesthetised dogs. Central injections of NPY resulted in significant cardiac slowing and decreases in arterial pressure. These cardiovascular effects were blocked by central injection of the NPY Y1- preferring antagonist 1229U91. Central injection of NPY did not have a significant effect on ventilation, but the NPY Y1 antagonist 1229U91 administered alone caused a significant increase in ventilation. The NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreased ventilation while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24--36 significantly increased it. A similar inverse relationship was seen with respect to blood pressure, with the NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreasing blood pressure, while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24-36 significantly increased it. These findings suggest a role for NPY Y1 receptors in pathways mediating decreases in ventilation and blood pressure, and for NPY Y2 receptors in those mediating increased ventilation and blood pressure.  相似文献   

12.
Neuropeptide Y (NPY) elicits eating when injected directly into the paraventricular nucleus (PVN) or perifornical hypothalamus (PFH). To identify the essential regions of the NPY molecule and the relative contributions of Y1 and Y2 receptors, the eating stimulatory potency of NPY was compared to that of its fragments, analogues, and agonists when injected into the PVN or PFH of satiated rats. Additionally, antisera to NPY was injected into the cerebral ventricles (ICV) to determine whether passive immunization suppresses the eating produced by mild food deprivation. Tests with NPY fragments revealed that NPY(2-36) was surprisingly potent, nearly three times more so than intact NPY. In contrast, fragments with further N-terminal deletions were progressively less effective or ineffective, as was the free acid form of NPY. Collectively, this suggests that both N- and C-terminal regions of NPY participate in the stimulation of eating. Tests with agonists revealed that the putative Y1 agonist [Pro34]NPY elicited a strong dose-dependent feeding response, while the putative Y2 agonist, C2-NPY, had only a small effect at the highest doses. Although this suggests mediation by Y1 receptors, the uncharacteristically high potency of NPY(2-36) may additionally suggest that the receptor subtype underlying feeding is distinct from that mediating other responses. Additional results revealed that ICV injection of antisera to NPY, which should inactivate endogenous NPY, produced a concentration-dependent suppression of eating induced by mild food deprivation. This finding, along with published work demonstrating enhanced levels of hypothalamic NPY in food-deprived rats, suggests that endogenous NPY mediates the eating produced by deprivation.  相似文献   

13.
Effects of neuropeptide Y (NPY) on motility of the proximal stomach was examined in anesthetized rats. Intragastric pressure was measured using a balloon situated in the proximal part of the stomach. Administration of NPY into the fourth ventricle induced relaxation of the proximal stomach in a dose-dependent manner. Administration of an Y1 receptor (Y1R) agonist [Leu31, Pro34]NPY induced a larger relaxation than NPY. The administration of an Y2 receptor agonist (NPY 13-36) did not induce significant changes in motility. Microinjections of [Leu31, Pro34]NPY into the caudal part of the dorsal vagal complex (DVC) induced relaxation of the proximal stomach. In contrast, similar injections into the intermediate part of the DVC increased IGP of the proximal stomach. Administration of NPY into the fourth ventricle did not induce relaxation after bilateral injections of the Y1R antagonist (1229U91) into the caudal DVC. These results indicate that NPY induces relaxation in the proximal stomach via Y1Rs situated in the DVC. Because bilateral vagotomy below the diaphragm abolished the relaxation induced by the administration of NPY into the fourth ventricle, relaxation induced by NPY is probably mediated by vagal preganglionic neurons. Intravenous injection of atropine methyl nitrate reduced relaxation induced by administration of NPY. Therefore, relaxation induced by NPY is likely mediated by peripheral cholinergic neurons.  相似文献   

14.
We have evaluated 3 newly developed neuropeptide Y receptor antagonists in various in vitro binding and bioassays: BIBO3304 (Y1), T4[NPY33-36]4 (Y2), and CGP71683A (Y5). In rat brain homogenates, BIBO3304 competes for the same population of [125I][Leu31,Pro34] peptide YY (PYY) binding sites (75%) as BIBP3226, but with a 10 fold greater affinity (IC50 of 0.2 +/- 0.04 nM for BIBO3304 vs. 2.4 +/- 0.07 nM for BIBP3226),while CGP71683A has high affinity for 25% of specific [125I][Leu31,Pro34]PYY binding sites. Both BIBO3304 and CGP71683A (at 1.0 microM) were unable to compete for a significant proportion of specific [125I]PYY3-36/Y2 sites. The purported Y2 antagonist T4[NPY33-36]4 competed against [125I]PYY3-36 binding sites with an affinity of 750 nM. These results were confirmed in HEK 293 cells transfected with either the rat Y1, Y2, Y4, or Y5 receptor cDNA. BIBO3304, but not CGP71683A, competed with high affinity for [125I][Leu31,Pro34]PYY binding sites in HEK 293 cells transfected with the rat Y1 receptor cDNA, whereas the reverse profile was observed upon transfection with the rat Y5 receptor cDNA. Additionally, both molecules were inactive at Y2 and Y4 receptor subtypes expressed in HEK 293 cells. Receptor autoradiographic studies revealed the presence of [125I][Leu31,Pro34]PYY/BIBO3304-insensitive sites in the rat brain as reported previously for BIBP3226. Finally, the selective antagonistic properties of BIBO3304 were demonstrated in a Y1 bioassay (rabbit saphenous vein; pA2 value of 9.04) while being inactive in Y2 (rat vas deferens) and Y4 (rat colon) bioassays. These results confirm the high affinity and selectivity of BIBO3304 and CGP71683A for the Y1 and Y5 receptor subtypes, respectively, while the purported Y2 antagonist, T4[NPY33-36]4 possesses rather low affinity for this receptor.  相似文献   

15.
Activation of the NPY2 receptor to reduce appetite while avoiding activation of the NPY1 and NPY5 receptors that stimulate feeding provides a pharmaceutical approach to modulate food intake. The naturally occurring peptide and development candidate PYY(3-36) is a non-selective NPY1, NPY2, and NPY5 agonist of limited in vivo duration of action. N-terminal modification with 20 kDa PEG of a selective NPY2 receptor agonist peptide results in a long-acting agent that outperforms PYY(3-36) in reducing food intake in mice. The results suggest that PEGylated, selective NPY2 peptide agonists offer a significantly improved therapeutic benefit over PYY(3-36) for obesity management.  相似文献   

16.
The influence of intravenous peptide YY (PYY) on the gastric injury induced by 45% ethanol was investigated in urethane-anesthetized rats. PYY (25, 75, 125, and 250 pmol x kg(-1) x h(-1)) significantly reduced gastric lesions by 36, 59, 40, and 38%, respectively. Antibody against ratPYY (2 mg/rat) injected intravenously completely prevented the gastroprotective effect of intravenous PYY (75 pmol x kg(-1) x h(-1)), whereas injected intracisternally (460 microg/20 microl), it significantly prevented intracisternal PYY (24 pmol/rat)-induced 58% reduction of ethanol lesions but not that induced by intravenous PYY. Vagotomy did not influence the gastroprotective effect of intravenous PYY. The Y(1)/"PYY-preferring" receptor agonist [Pro(34)]PYY (75 pmol x kg(-1) x h(-1) iv) significantly decreased ethanol-induced gastric lesions by 82%, whereas [Leu(31), Pro(34)]NPY, a Y(1)/Y(3) agonist, and PYY-(3-36), a Y(2) agonist, had no effect. These data indicate that PYY-infused intravenously at doses reported to mimic postprandial peak blood levels prevents ethanol-induced gastric injury through vagal independent pathways and PYY-preferring receptors.  相似文献   

17.
Subtypes of the neuropeptide Y (NPY) receptor in the rat brain were identified by the use of the selective Y-1 analog, [Leu34-Pro34] NPY. In rat brain homogenate binding studies, [Leu31-Pro34] NPY was found to produce a partial inhibition of 100 pM 125I-labeled peptide YY (PYY) binding with a plateau at 50-1000 nM [Leu31-Pro34] NPY resulting in a 70% inhibition of binding. The C-terminal fragment NPY 13-36, a putative Y-2 agonist, exhibited very little selectivity in rat brain homogenates. Scatchard analysis of 125I-labeled PYY binding to rat brain homogenate yielded biphasic plots with Kd values of 40 and 610 pM. Inclusion of 100 nM [Leu31-Pro34] NPY was found to eliminate the low affinity component of 125I-labeled PYY binding leaving a single, high affinity binding site with a Kd of 68 pM. In autoradiographic studies, displacement curves indicated that [Leu31-Pro34] NPY completely inhibited binding in the cerebral cortex with little effect on the binding in the hypothalamus. On the other hand NPY 13-36 inhibited binding in the hypothalamus at low concentrations but required higher concentrations to inhibit binding in the cerebral cortex. Other brain regions such as the hippocampus, appeared to contain both subtypes. Subsequent to these studies, a quantitative autoradiographic map was conducted using 50-100 pM 125I-labeled PYY in the presence and absence of [Leu31-Pro34] NPY which produced a selective displacement of binding in certain distinct brain regions. These areas included the cerebral cortex, certain thalamic nuclei and brainstem while ligand binding was retained in other brain regions including the zona lateralis of the substantia nigra, lateral septum, nucleus of the solitary tract and the hippocampus. Numerous brain regions appeared to contain both receptor subtypes. Therefore, the Y-1 and Y-2 receptor subtypes exhibited a somewhat distinct distribution in the brain. In addition, 125I-labeled PYY appears to label the Y-2 receptor with relatively higher affinity when compared to the Y-1 receptor.  相似文献   

18.
To study the effect of NPY deletion on the regulation of its receptors in the NPY knockout (NPY KO) mice, the expression and binding of NPY receptors were investigated by in situ hybridization and receptor autoradiography using (125)I-[Leu(31),Pro(34)]PYY and (125)I-PYY(3-36) as radioligands. A 6-fold increase in Y2 receptor mRNA was observed in the CA1 region of the hippocampus in NPY KO mice, but a significant change could not be detected for Y1, Y4, Y5 and y6 receptors. Receptor binding reveals a 60-400% increase of Y2 receptor binding in multiple brain areas. A similar increase in Y1 receptor binding was seen only in the hypothalamus. These results demonstrate the NPY receptor expression is altered in mice deficient for its natural ligand.  相似文献   

19.
Neuropeptide Y (NPY) and peptide YY (PYY) were injected intracerebroventricularly (ICV) in broiler chicks. Both NPY and PYY markedly increased food intake during the first hour post-injection compared to saline (SAL) controls. Food intake doubled in chicks given 5 micrograms NPY. A response surface analysis suggested that following ICV injection of NPY, maximum food intake occurred, using a dose of 9 micrograms. In contrast, an estimated dose between one and 5 micrograms PYY resulted in maximum food intake, giving the latter a slightly higher potency. Time spent drinking was not significantly different among NPY, PYY and SAL groups. Chicks given NPY or PYY also spent significantly less time standing while those given PYY spent significantly less time preening compared to controls.  相似文献   

20.
Central administration of neuropeptide Y (NPY) stimulates hyperphagia and hyperinsulinemia. Recent evidence has suggested that the Y1 and Y5 receptor subtypes may both mediate NPY-stimulated feeding. The present study attempts to further characterize the role of central NPY receptor subtypes involved in hyperinsulinemia. NPY and peptide analogs of NPY that selectively activated the NPY Y1 or Y5 receptor subtype induced feeding and hyperinsulinemia in satiated Long Evans rats, whereas NPY analogs that selectively activated the NPY Y2 or Y4 receptor subtype did not. To determine whether NPY-induced hyperinsulinemia is secondary to its hyperphagic effect, we compared the plasma insulin levels in the presence and absence of food after a 1-min central infusion of NPY and its analogs at 15, 60, and 120 min postinfusion. Our data suggest that selective activation of central NPY Y1 receptor subtype induced hyperinsulinemia independent of food ingestion, whereas the NPY Y5 receptor-induced hyperinsulinemia was dependent on food ingestion. Central administration of the selective Y1 receptor agonist D-Arg25 NPY eventually decreased plasma glucose levels 2 h postinfusion in Long Evans rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号