首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma.

Methods

We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging.

Results

We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402.

Discussion

In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching bronchioalveolar-like structures in 3-D culture. This novel model of human airway morphogenesis can be used to study critical events in human lung development and suggests a supportive role for the endothelium in promoting branching of airway epithelium.  相似文献   

2.
3.
Respiratory syncytial virus (RSV) is a major cause of morbidity and mortality worldwide, causing severe respiratory illness in infants and immune compromised patients. The ciliated cells of the human airway epithelium have been considered to be the exclusive target of RSV, although recent data have suggested that basal cells, the progenitors for the conducting airway epithelium, may also become infected in vivo. Using either mechanical or chemical injury models, we have demonstrated a robust RSV infection of p63+ basal cells in air-liquid interface (ALI) cultures of human bronchial epithelial cells. In addition, proliferating basal cells in 2D culture were also susceptible to RSV infection. We therefore tested the hypothesis that RSV infection of this progenitor cell would influence the differentiation status of the airway epithelium. RSV infection of basal cells on the day of seeding (MOI≤0.0001), resulted in the formation of an epithelium that showed a profound loss of ciliated cells and gain of secretory cells as assessed by acetylated α-tubulin and MUC5AC/MUC5B immunostaining, respectively. The mechanism driving the switch in epithelial phenotype is in part driven by the induced type I and type III interferon response that we demonstrate is triggered early following RSV infection. Neutralization of this response attenuates the RSV-induced loss of ciliated cells. Together, these data show that through infection of proliferating airway basal cells, RSV has the potential to influence the cellular composition of the airway epithelium. The resulting phenotype might be expected to contribute towards both the severity of acute infection, as well as to the longer-term consequences of viral exacerbations in patients with pre-existing respiratory diseases.  相似文献   

4.
Regulation of airway tight junctions by proinflammatory cytokines   总被引:12,自引:0,他引:12       下载免费PDF全文
Epithelial tight junctions (TJs) provide an important route for passive electrolyte transport across airway epithelium and provide a barrier to the migration of toxic materials from the lumen to the interstitium. The possibility that TJ function may be perturbed by airway inflammation originated from studies reporting (1) increased levels of the proinflammatory cytokines interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-alpha), interferon gamma (IFN-gamma), and IL-1beta in airway epithelia and secretions from cystic fibrosis (CF) patients and (2) abnormal TJ strands of CF airways as revealed by freeze-fracture electron microscopy. We measured the effects of cytokine exposure of CF and non-CF well-differentiated primary human airway epithelial cells on TJ properties, including transepithelial resistance, paracellular permeability to hydrophilic solutes, and the TJ proteins occludin, claudin-1, claudin-4, junctional adhesion molecule, and ZO-1. We found that whereas IL-1beta treatment led to alterations in TJ ion selectivity, combined treatment of TNF-alpha and IFN-gamma induced profound effects on TJ barrier function, which could be blocked by inhibitors of protein kinase C. CF bronchi in vivo exhibited the same pattern of expression of TJ-associated proteins as cultures exposed in vitro to prolonged exposure to TNF-alpha and IFN-gamma. These data indicate that the TJ of airway epithelia exposed to chronic inflammation may exhibit parallel changes in the barrier function to both solutes and ions.  相似文献   

5.
6.
7.
Highly regulated programs for airway epithelial cell proliferation and differentiation during development and repair are often disrupted in disease. These processes have been studied in mouse models; however, it is difficult to isolate and identify epithelial cell-specific responses in vivo. To investigate these processes in vitro, we characterized a model for primary culture of mouse tracheal epithelial cells. Small numbers of cells seeded at low density (7.5 x 10(4) cells/cm2) rapidly proliferated and became polarized. Subsequently, supplemented media and air-liquid interface conditions resulted in development of highly differentiated epithelia composed of ciliated and nonciliated cells with gene expression characteristic of native airways. Genetically altered or injured mouse tracheal epithelial cells also reflected in vivo patterns of airway epithelial cell gene expression. Passage of cells resulted in continued proliferation but limited differentiation after the first passage, suggesting that transit-amplifying cell populations were present but with independent programs for proliferation and differentiation. This approach provides a high-fidelity in vitro model for evaluation of gene regulation and expression in mouse airway epithelial cells.  相似文献   

8.
9.
10.
As pattern recognition receptors capable of eliciting responses to a diverse array of microbial products, Toll-like receptors (TLRs) participate in the activation of host defense mechanisms that protect against infectious pathogens. Given that epithelial cells lie at the interface between the host and its environment, we designed experiments to determine whether human airway epithelial cells express TLRs and respond to TLR agonists. Immunohistochemical labeling of TLR2 in normal human airways revealed TLR2 expression throughout the epithelium, with an apparently higher level of expression on noncolumnar basal epithelial cells. Two-color immunofluorescent labeling of TLR2 and cytokeratins 8 and 15 revealed that TLR2 is coexpressed with the epithelial cell markers. In addition, airway epithelial cells grown at air-liquid interface responded to bacterial lipopeptide in a TLR2-dependent manner with induction of mRNA and protein of the antimicrobial peptide human beta defensin-2. Stimulation of epithelial cell cultures with lipopeptide resulted in a small and variable reduction of bacteria on the apical surface. Together, these data suggest that TLRs monitor epithelial surfaces to enhance host defense by inducing the production of an antimicrobial peptide.  相似文献   

11.
Epithelial cells attach to the basement membrane through adhesive contacts between the basal cells of the epithelium and the proteins of the extracellular matrix (ECM). The hemidesmosome (HD) is a specialized cell-ECM contact, that mediates the attachment of the epithelial cell basal surface to the ECM. In bronchial epithelial cells, the protein components that constitute the HD have not been demonstrated. Using immunohistochemical techniques, we determined that normal human bronchial epithelial (NHBE) cells express the HD cell surface integrin alpha6beta4 and produce laminin 5, the ECM protein associated with HDs. Furthermore, expression of the HD-associated structural proteins, bullous pemphigoid antigens 1 (BPAG 1) and 2 (BPAG 2), was demonstrated in NHBE cells by immunofluorescence microscopy and immunoblot analyses. In addition, we confirmed the presence of laminin 5 in the basement membrane (BM) of bronchial epithelial biopsy specimens and of BP230, BP180, and the alpha6beta4 integrin heterodimer at the site of bronchial epithelial cell-ECM interaction in vivo. Finally, using electron microscopy, we were able to demonstrate intact HDs in a glutaraldehyde-fixed NHBE cell monolayer. These findings suggest that bronchial epithelium forms HDs and that the laminin 5-alpha6beta4 integrin interaction may be important in stabilizing epithelial cell adhesion to the BM in the lung.  相似文献   

12.
用低温酶消化法分离兔气管上皮细胞,具有细胞损伤小,活力及纯度高的优点,成纤维细胞污染极低。人胎盘胶原提高了气管上皮细胞贴壁性。无血清培养基能促进细胞增殖,分化和成熟。气液界面培养方式更好地模拟了气管上皮细胞的天然生长环境,在膜上呈复层生长,有利于细胞的分化成熟及功能表达。光镜下细胞形态及免疫组化细胞角蛋白染色阳性证实培养细胞为气管上皮细胞。本文所建立的兔气管上皮细胞体外气液界面无血清培养方法为研究气 管上皮细胞的生理和病理提供了一个十分有用的模型。  相似文献   

13.

Background

As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype.

Methods

To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed.

Results

We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process.

Conclusion

Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents.  相似文献   

14.
Summary In the present study we describe the establishment of serial cultures of human bronchial epithelial cells derived from biopsies obtained by fiberoptic bronchoscopy. The cell cultures were initiated from small amounts of material (2 mm forceps biopsies) using either explants or epithelial cell suspensions in combination with a feeder-layer technique. The rate of cell proliferation and the number of passages (up to 8 passages) achieved were similar, irrespective of whether the explants or dissociated cells were used. To modulate the extent of differentiation, the bronchial epithelial cells were cultured either under submerged, low calcium (0.06 mM) (proliferating), normal calcium (1.6 mM) (differentiation enhancing) conditions, or at the air-liquid interface. Characterization of the bronchial epithelial cell cultures was assessed on the basis of cell morphology, cytokeratin expression, and ciliary activity. The cells cultured under submerged conditions formed a multilayer consisting of maximally three layers of polygonal-shaped, small cuboidal cells, an appearance resembling the basal cells in vivo. In the air-exposed cultures, the formed multilayer consisted of three to six layers exhibiting squamous metaplasia. The cytokeratin profile in cultured bronchial epithelial cells was similar in submerged and air-exposed cultures and comparable with the profile found in vivo. In addition to cytokeratins, vimentin was co-expressed in a fraction of the subcultured cells. The ciliary activity was observed in primary culture, irrespective of whether the culture had been established from explants or from dissociated cells. This activity was lost upon subculturing and it was not regained by prolongation of the culture period. In contrast to submerged cultures and despite the squamous metaplasia appearance, the cells showed a reappearance of cilia when cultured at the air-liquid interface. Human bronchial epithelial cell cultures can be a representative model for controlling the mechanisms of regulation of bronchial epithelial cell function.  相似文献   

15.
Jun ES  Kim YS  Yoo  Roh HJ  Jung JS 《Life sciences》2001,68(7):827-840
Integrity of the airway epithelium is important for pulmonary defense mechanisms to infection. The lining of the airway contains a diverse population of cell types. Understanding about progenitor-progeny relationships during renewal of airway epithelium is important for elucidating mechanisms of injury repair or oncogenesis. Primary culture of airway epithelia is a good model for studying differentiation process of epithelial cells. Ion channels and aquaporins(AQPs) play a critical role on ion and fluid transport across airway epithelia. However, changes in their expression during differentiation of airway epithelial cells have not been reported yet. This study was undertaken to identify isoforms of aquaporins in cultured normal human nasal epithelial cells (NHNE) and effects of various culture conditions on expression of differentiation markers and channels. 1. Degenerative RT-PCR revealed that AQP3 and AQP4 are expressed in cultured NHNE cells. 2. Culture of NHNE cells on permeable filters induced expression of mucin, aquaporins and CFTR. 3. Retinoic acid induced morphological changes in NHNE cells and inhibited their proliferation. The treatment of retinoic acid induced expression of mucin and CFTR, whereas it inhibited expression of cornifin. The effect of retinoic acid was enhanced by culture of cells on permeable filters. 4. Dexamethasone induced ENaC expression in NHNE cells grown on permeable supports only, but did not affect expression of mucin, aquaporins and CFTR. These results indicate that cultured NHNE cells express aquaporins (AQP3 and 4), CFTR and ENaC, and culture of NHNE cells on permeable filters induces differentiation in to mucosecretory and surface epithelial cells, and that effects of retinoic acid and dexamethasone on gene expression are affected by culture conditions.  相似文献   

16.
17.
In stratified squamous epithelia constituent proteins of tight junctions (TJs) are not restricted to the zonula occludens-related structures of the uppermost living cell layer such as the stratum granulosum of the epidermis but TJ membrane proteins such as occludin and certain members of the claudin family as well as TJ plaque proteins, notably cingulin and protein ZO-1, have also been identified by immunofluorescence and immunoelectron microscopy in more basal layers where they form special cell-cell-connecting structures such as the "lamellated" and the "sandwich" junctions. In the present study, we describe another TJ protein-containing structure, the very small puncta occludentia ("stud junctions"), as the smallest identifiable TJ-like unit that occurs in most, perhaps all strata. We have also determined the specific distributions of TJ proteins in the cell layers of squamous cell metaplasias of the human bronchial tract. Moreover, we show that the occludin-related tetraspanin protein tricellulin-alpha connects and seals the membranes of adjacent "three corner" cell structures of the uppermost layer in keratinocytes growing in culture. We hypothesize the possible occurrence of tricellulin-beta in more basal cell layers of keratinocyte cultures and the general occurrence of different tricellulin splice forms in stratified epithelia in situ, and discuss the possible functions of TJ proteins in stratified epithelia and tumors derived therefrom.  相似文献   

18.
Respiratory pathogens and toxins often assault the lung from the airway lumen. Airway epithelia may initiate and amplify inflammation in response to these attacks, but under certain conditions confinement of inflammation to the airway lumen may be beneficial to the host. Accordingly, we hypothesized that airway epithelial polarity allows different responses to basolateral vs apical stimuli that may modulate inflammation. Using primary human airway epithelial cells differentiated at an air-liquid interface in culture, we found that responses to several cytokines required basolateral mediator application. In contrast, responses to Haemophilus influenzae occurred after either basolateral or apical interaction with airway epithelia. Experiments focused on IFN-gamma receptor polarity confirmed its predominant basolateral location in cultured airway epithelia as well as in normal human airway tissue. Furthermore, physical and pharmacologic disruption of barrier function in airway epithelia allowed responses to apical application of IFN-gamma and other cytokines. These in vitro studies directly correlated with experiments in mice in which an airway epithelial response to IFN-gamma injected into the airway lumen was seen only after disruption of barrier function. The results indicate that airway epithelia with intact barrier function restrict inflammatory responses by limitation of cell activation through requiring interaction of selected mediators with the basolateral surface. However, loss of barrier integrity allows epithelial responses to these mediators if located in the airway lumen to amplify airway defenses.  相似文献   

19.
Herein, we reconstructed a rabbit corneal epithelium on a lyophilized amniotic membrane (LAM) using a modified version of two Teflon rings (the Ahn’s supporter). We compared the corneal epithelial cells we had differentiated in vitro using air-liquid interface (6 days, 12 days) and submerged (6 days, 12 days) cultures and followed a six-day tilting dynamic air-liquid interface culture with a six-day tilting submerged culture. We characterized the reconstructed corneal epithelium using digital photography, histological imaging, and transmission electron microscopy. The reconstructed corneal epithelium created under air-liquid interface culture exhibited a healthier basal corneal epithelial layer than that created under submerged culture. The reconstructed corneal epithelium on the LAM that was produced using the tilting dymanic culture exhibited a healthy basal layer. We therefore proposed that tilting submerged culture not only supplied nutrients from the medium to the corneal epithelial cells on the LAM, but it also removed the horny layer in the upper part of the reconstructed corneal epithelium, presumably by mimicking the effects of blinking. This study demonstrated that corneal epithelium reconstruction on a LAM using a tilting submerged culture after a tilting air-liquid interface culture may be useful not only for allogeneic or autologous transplantation, but also for in vitro toxicological test kits.  相似文献   

20.
Experimental models for esophageal epithelium in vitro either suffer from poor differentiation or complicated culture systems. An air-liquid interface system with normal human bronchial epithelial cells can serve as a model of esophageal-like squamous epithelial cell layers. Here, we explore the influence of bile acids on barrier function and tight junction (TJ) proteins. The cells were treated with taurocholic acid (TCA), glycocholic acid (GCA), or deoxycholic acid (DCA) at different pH values, or with pepsin. Barrier function was measured by transepithelial electrical resistance (TEER) and the diffusion of paracellular tracers (permeability). The expression of TJ proteins, including claudin-1 and claudin-4, was examined by Western blotting of 1% Nonidet P-40-soluble and -insoluble fractions. TCA and GCA dose-dependently decreased TEER and increased paracellular permeability at pH 3 after 1 h. TCA (4 mM) or GCA (4 mM) did not change TEER and permeability at pH 7.4 or pH 4. The combination of TCA and GCA at pH 3 significantly decreased TEER and increased permeability at lower concentrations (2 mM). Pepsin (4 mg/ml, pH 3) did not have any effect on barrier function. DCA significantly decreased the TEER and increased permeability at pH 6, a weakly acidic condition. TCA (4 mM) and GCA (4 mM) significantly decreased the insoluble fractions of claudin-1 and claudin-4 at pH 3. In conclusion, acidic bile salts disrupted the squamous epithelial barrier function partly by modulating the amounts of claudin-1 and claudin-4. These results provide new insights for understanding the role of TJ proteins in esophagitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号