首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impairment of homocysteine metabolism has been related to several disorders and diseases. Recently, homocysteine has been shown to inhibit key steps of angiogenesis, including endothelial cell proliferation, invasion, and remodeling of the extracellular matrix. Since these are also key steps in tumor invasion and metastasis, it can be hypothesized that homocysteine can also interfere in these processes. Therefore, we studied the effects of homocysteine on tumor proliferation and invasion, as well as on urokinase, a key extracellular matrix-degrading protease, using a model human tumor cell line. This study demonstrates that, in fact, homocysteine inhibits HT-1080 proliferation and invasion, and is a potent inhibitor of tumor cell urokinase expression.  相似文献   

2.
Cancer biology: extracellular proteinases in malignancy.   总被引:2,自引:0,他引:2  
Secreted, matrix-degrading proteinases have been viewed as contributing to tumor metastasis. A recent study indicates that the gene for one of these enzymes, the matrix metalloproteinase stromelysin-1, can actually cause cancer when expressed in transgenic mice.  相似文献   

3.
In human tumors changes in angiogenesis and expression of extracellular matrix-degrading enzymes occur simultaneously during invasion and metastasis. Tissues from 20 biopsies of human neuroblastoma (NB) were investigated immunohistochemically by using an antibody against factor VIII to determine their microvessel number, and by in situ hybridisation to determine the expression of mRNA of the matrix metalloproteinase-2 (MMP-2) and MMP-9. The extent of angiogenesis and the expression of the MMP-2 and MMP-9 mRNA were upregulated in advancing stages. These in situ data suggest that angiogenesis and degradation of extracellular matrix occur simultaneously with NB tumor progression.  相似文献   

4.
5.
In order to assess the requirement for matrix metalloproteinases in neuronal regeneration, in vitro neurite outgrowth by chick dorsal root ganglionic neurons (DRGn) was examined within a reconstituted extracellular matrix. For these studies, cultured neurons were treated with a synthetic peptide inhibitor of metalloproteinases (spIMP), LMHKPRCGYPDVGG.spIMP inhibited all neuronal metalloproteinase activities in zymography and substrate-release assays and was used to examine the role of metalloproteinases in neurite outgrowth by DRGn. Cultures of dissociated DRGn rapidly extended neurites on planar extracellular matrix substrates and this rate of outgrowth was not affected by adding NGF or spIMP. In contrast, neurite extension within a three-dimensional gel of extracellular matrix increased nearly threefold after adding NGF. The NGF-induced neurite penetration was negated in the presence of spIMP but not by control peptide. Similar results were obtained using explanted dorsal root ganglia. These findings suggested that NGF-induced neurite outgrowth within an extracellular matrix involves metalloproteinase activity. Zymographic analysis of media conditioned by NGF-treated DRGn revealed a pair of gelatinolytic bands with apparent molecular masses 72 and 66 kDa, which comigrated as a single 66-kDa band after activation with an organomercurial agent. The gelatinase activities were calcium- and zinc-dependent and were absent from zymograms developed in the presence of spIMP, indicating that NGF-treated DRGn release and activate a 72-kDa metalloproteinase. Samples from DRGn cultures treated with low levels of NGF contained similar amounts of latent and activated metalloproteinase, while high levels of NGF induced an apparent increase in total metalloproteinase secretion and a substantially greater proportion of activated enzyme. Western blot analysis showed this metalloproteinase was immunologically similar to 72-kDa type IV collagenase and immunoassays revealed that this matrix metalloproteinase was increased threefold by high NGF. Furthermore, after high NGF treatment, DRGn media contained sixfold more metalloproteinase activity in assays of matrix degradation. In summary, these results indicate that NGF enhanced metalloproteinase-dependent neurite outgrowth of DRGn within a reconstituted extracellular matrix. Also, NGF increased the expression and activation of 72-kDa type IV collagenase, suggesting a role for this matrix-degrading metalloproteinase in neuronal regeneration.  相似文献   

6.

Background  

The cervical mucus plug (CMP) is a semi-solid structure with antibacterial properties positioned in the cervical canal during pregnancy. The CMP contains high concentrations of matrix metalloproteinase 8 and 9 (MMP-8, MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1). This indicates a potential to degrade extracellular matrix components depending on the balance between free non-complexed inhibitors and active enzymes.  相似文献   

7.
The most common primary central nervous system tumor in adults is the glioblastoma multiforme (GBM). The highly invasive nature of GBM cells is a significant factor resulting in the inevitable tumor recurrence and poor patient prognosis. Tumor cells utilize structures known as invadopodia to faciliate their invasive phenotype. In this study, utilizing an array of techniques, including gelatin matrix degradation assays, we show that GBM cell lines can form functional gelatin matrix degrading invadopodia and secrete matrix metalloproteinase 2 (MMP-2), a known invadopodia-associated matrix-degrading enzyme. Furthermore, these cellular activities were augmented in cells that survived radiotherapy and temozolomide treatment, indicating that surviving cells may possess a more invasive phenotype posttherapy. We performed a screen of FDA-approved agents not previously used for treating GBM patients with the aim of investigating their “anti-invadopodia” and cytotoxic effects in GBM cell lines and identified a number that reduced cell viability, as well as agents which also reduced invadopodia activity. Importantly, two of these, pacilitaxel and vinorelbine tartrate, reduced radiation/temozolomide-induced invadopodia activity. Our data demonstrate the value of testing previously approved drugs (repurposing) as potential adjuvant agents for the treatment of GBM patients to reduce invadopodia activity, inhibit GBM cell invasion, and potentially improve patient outcome.  相似文献   

8.
Osteopontin: role in cell signaling and cancer progression   总被引:21,自引:0,他引:21  
Cell migration and degradation of the extracellular matrix (ECM) are crucial steps in tumor progression. Several matrix-degrading proteases, including matrix metalloproteases, are highly regulated by growth factors, cytokines and ECM proteins. Osteopontin (OPN), a chemokine-like, calcified ECM-associated protein, plays a crucial role in determining the metastatic potential of various cancers. Since its first identification in bone, the multifaceted roles of OPN have been an area of intense investigation. Extensive research has elucidated the pivotal role of OPN in regulating the cell signaling that controls tumor progression and metastasis. This review focuses on recent advances in understanding the functional role of the OPN-induced signaling pathway in the regulation of cell migration and tumor progression and the implications for identifying novel targets for cancer therapy.  相似文献   

9.
Pathological levels of homocysteine induce a metalloproteinase-dependent degradation of the elastic structures in arterial wall. This elastolytic process is preferentially localized toward the internal elastic laminae and in the first layers of the media, suggesting endothelium could participate in extracellular matrix degradation induced by homocysteine. Therefore, we studied the effects of homocysteine on proteolytic potential of endothelial cells. Human umbilical vein endothelial cells were cultured with concentrations of homocysteine matching human physiological (10 microM) and pathological (50, 100, and 250 microM) plasma homocysteine levels. Pathological levels of homocysteine increased the secretion of elastolytic metalloproteinase-2 and -9, but not of metalloproteinase-3 and -7. Homocysteine also increased the expression of human tissue kallikrein, a potential activator of matrix metalloproteinase-2 and -9, while the expression of urokinase plasminogen activator was not altered. These results suggest vascular endothelial cells could participate in the subendothelial degradation of the arterial elastic structures occurring in hyperhomocysteinemia.  相似文献   

10.
Cellular senescence acts as a potent regulator of tumor suppression and fibrosis limitation; however, its contribution and crosstalk with neovascularization during normal wound healing has not been examined. Here, we explored the role of senescent fibroblasts on neovascularization with a mouse model of alkali-induced corneal wound healing. Senescent cells accumulated in corneal stroma from day 7 to 27 after alkali burn and peaked on day 14, which was consistent with the development of corneal neovascularization (CNV). In vitro and in vivo assays confirmed that the senescent cells were derived primarily from activated corneal fibroblasts. Furthermore, senescent corneal fibroblasts exhibited enhanced synthesis and secretion of extracellular matrix-degrading enzymes (matrix metalloproteinases 2, 3, and 14 and tissue- and urokinase-type plasminogen activators) and angiogenic factors (vascular endothelial growth factor) and decreased expression of anti-angiogenic factors (pigment epithelium-derived factor and thrombospondins), which supported the proliferation, migration, and promotion of tube formation of vascular endothelial cells. Intrastromal injection of premature senescent fibroblasts induced CNV earlier than that of normal fibroblasts, while matrix metalloproteinase inhibitors blocked the early onset of senescent cell-induced CNV. Therefore, senescent fibroblasts promoted the alkali-induced CNV partially via the enhanced secretion of matrix metalloproteases.  相似文献   

11.
Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including adherence and immunomodulation, thus contributing to S. aureus pathogenesis. Eap binding to host macromolecules is unusually promiscuous and includes matrix or matricellular proteins as well as plasma proteins. The structural basis of this promiscuity is poorly understood. Here, we show that in spite of the preferential location of the binding epitopes within triple helical regions in some collagens there is a striking specificity of Eap binding to different collagen types. Collagen I, but not collagen II, is a binding substrate in monomolecular form. However, collagen I is virtually unrecognized by Eap when incorporated into banded fibrils. By contrast, microfibrils containing collagen VI as well as basement membrane-associated networks containing collagen IV, or aggregates containing fibronectin bound Eap as effectively as the monomeric proteins. Therefore, Eap-binding to extracellular matrix ligands is promiscuous at the molecular level but not indiscriminate with respect to supramolecular structures containing the same macromolecules. In addition, Eap bound to banded fibrils after their partial disintegration by matrix-degrading proteinases, including matrix metalloproteinase 1. Therefore, adherence to matrix suprastructures by S. aureus can be supported by inflammatory reactions.  相似文献   

12.
Mononuclear phagocytes have the capacity to directly participate in extracellular matrix turnover via secretion of neutral proteinases. We have studied the effects of in vivo and in vitro differentiation upon cellular content or secretion of a spectrum of neutral proteinases, along with a counter-regulatory metalloproteinase inhibitor (TIMP). We found 1) matrix-degradative serine proteinases (leukocyte elastase and cathepsin G) were lost during cellular maturation and/or differentiation; 2) the 92-kDa type IV/type V collagenase and TIMP were secreted earliest in mononuclear phagocyte differentiation, whereas stromelysin secretion was observed only by LPS-stimulated alveolar macrophages; 3) exposure of alveolar macrophages, but not monocytes, to phorbol esters and LPS resulted in markedly augmented secretion of all studied metalloproteinases and TIMP; 4) monocyte-derived macrophages partially (but not completely) mimicked the metalloproteinase secretory phenotype of alveolar macrophages; and 5) the secretory phenotype of alveolar macrophages for interstitial collagenase (but not TIMP) was largely lost during in vitro culture. These results underscore the complexity of the process of differentiation in human mononuclear phagocytes, and provide insights into the variable capacity of mononuclear phagocytes to degrade extracellular matrix components. Moreover, we anticipate that human mononuclear phagocytes at various stages of differentiation will provide a useful model system for study of the variable regulation of secretion of human matrix-degrading metalloproteinases.  相似文献   

13.
14.
Marmoset monkey blastocysts maintained in culture produced trophoblastic vesicles up to 4 mm in diameter that were subdivided into fragments and subcultured to produce new vesicles. These tissues are composed of an outer layer of trophoblast-like cells and an inner layer of endoderm-like cells, and resemble a blastocyst wall. When such vesicles were cultured in serum-free medium for 14 days, they increased in size but there was no significant difference in their protein content at the end of culture. The proliferation index, measured by BrdU incorporation, varied considerably within and between vesicles. The purpose of this investigation was to determine which matrix metalloproteinases are secreted by marmoset monkey trophoblastic tissue in vitro, and the effect of extracellular laminin on this secretion. It was determined by zymography that the vesicles secreted matrix metalloproteinase 2, but not matrix metalloproteinase 9, and that matrix metalloproteinase 2 was secreted as the proenzyme (72 kDa). Matrix metalloproteinases 1, 3 and 7 were not detectable in the culture medium. The addition of laminin (5-20 micrograms ml-1), either as a substrate or in solution in the medium, did not have a consistent effect on matrix metalloproteinase 2 secretion during the culture period. The vesicles were found to express both matrix metalloproteinases 2 and 9 in both types of cell when examined by immunohistochemistry. The expression of matrix metalloproteinase 9 in the vesicles, but the absence of its secretion, indicates that specific factors, possibly of endometrial origin, may be required for inducing secretion.  相似文献   

15.
基质金属蛋白酶是一类可降解细胞外基质的蛋白酶,基质金属蛋白酶-2和-9为明胶酶,可降解细胞外基质中的胶原蛋白及弹性蛋白,其动态平衡对维持细胞外基质的稳定具有重要意义。主动脉的细胞外基质是主动脉中层重要的组成部分,细胞外基质成分的改变可导致主动脉中层结构的损伤,在主动脉疾病的发生、发展过程中起着重要作用。主动脉基质金属蛋白酶-2和-9的表达失衡可引起主动脉中层细胞外基质的降解,导致主动脉中层结构的损伤,从而促进主动脉疾病的发生。同时,主动脉疾病也可导致血浆中MMP-2、MMP-9浓度的升高。本文对近年来基质金属蛋白酶与主动脉疾病相关性的研究及进展作一综述,为心血管疾病发生机制的研究和治疗提供文献依据。  相似文献   

16.
基底膜和肿瘤转移   总被引:3,自引:0,他引:3  
Zhou J  Cheng Y  Ding J 《生理科学进展》2006,37(4):307-312
基底膜是一种特化的细胞外基质,是肿瘤转移过程中必须穿越的物理屏障。基底膜的组成成分通过和细胞表面受体整合素相互作用,在调节肿瘤转移的过程中发挥了重要作用。另一方面,肿瘤细胞通过分泌基质降解酶类破坏基底膜的组织结构,同时调节细胞外基质受体整合素的表达,为穿过:基底膜和在靶器官粘附、增殖创造有利条件。了解细胞和基底膜的相互作用可以为抗转移药物的研发提供新的策略。  相似文献   

17.
18.
ECM degrading proteases and tissue remodelling in the mammary gland   总被引:12,自引:0,他引:12  
Matrix degradation and tissue remodelling directed by matrix-degrading proteases are activated in physiological situations such as wound healing and involution of the prostate, ovaries and uterus. Recently, other activities, in addition to the cleavage of matrix proteins, have been attributed to matrix proteases including the release of growth factors from the extracellular matrix and roles in the maturation of adipocytes. This review describes extracellular proteases, including MMPs, plasminogen and cathepsins involved in the tissue remodelling processes that occur in the breast during pubertal mammary development and the mammary cycle of pregnancy, lactation and weaning. It particularly focuses on development and weaning, termed mammary gland involution, when the majority of remodelling occurs. It also brings together recent findings on the exciting new functions of matrix-degrading proteases.  相似文献   

19.
The tumor microenvironment is now recognized as a major factor in determining the survival and growth of disseminated tumor cells at potential metastatic sites. Tumor cells send signals to stroma cells and stimulate them to produce factors that in turn create favorable conditions for tumor cell metastasis. Activated fibroblasts constitute an important component of the tumor-associated stroma. We have previously shown that S100A4 protein produced by stromal fibroblasts in the primary tumor stimulates metastasis formation. Here we show that activated fibroblasts also stimulate the formation of metastases independently of S100A4 expression during organ colonization. To identify genes that could potentially interfere with fibroblast-driven metastasis, we used gene expression profiling of S100A4-deficient fibroblasts treated with and without tumor cell-conditioned media. Five differentially expressed genes encoding cell surface and secreted proteins with potential metastasis-modulating activity were selected. Expression of lymphocyte antigen 6 complex (Ly6c) and matrix metalloproteinase 3 (Mmp3) was upregulated in fibroblasts in response to tumor-conditioned medium, whereas expression of cadherin-16 (Cdh16), Ccn2, and fibulin-5 (Fbln5) was downregulated. Further analysis showed that Fibulin-5 is able to suppress the metastatic colonization of lungs and liver. Additional studies suggest a mechanism in which Fibulin-5 suppresses metastasis formation by inhibiting production of matrix metalloproteinase 9 (MMP9) and reducing the invasive behavior of fibroblasts. Together our data are consistent with the notion that tumors secrete factors that downregulate expression of Fbln5 in fibroblasts at sites of metastatic colonization, in turn upregulating Mmp9 expression and stimulating metastatic organ colonization.  相似文献   

20.
Homocysteine in microvascular endothelial cell barrier permeability   总被引:1,自引:0,他引:1  
Redox stress activates the endothelium and upregulates matrix metalloproteinases (MMPs), which degrade the matrix and lead to blood-endothelial barrier leakage. Interestingly, elevated levels of plasma homocysteine (Hcy) are associated with vascular dementia, seizure, stroke, and Alzheimer disease. Hcy competes with the γ-aminobutyric acid (GABA)-A/B receptors and behave like an excitatory neurotransmitter. GABA stimulates the inhibitory neurotransmitter GABA-A/B receptor and decreases arterial blood pressure. However, the neural mechanisms of microvascular remodeling in hyperhomocysteinemia are unclear. This review addresses the idea that Hcy induces microvascular permeability by attenuating the GABA-A/B receptors and increasing redox stress, which activates a disintegrin and metalloproteinase that suppresses tissue inhibitors of metalloproteinase. This process causes disruption of the matrix in the blood-brain barrier. Understanding the mechanism of Hcy-mediated changes in permeability of the blood-brain barrier and extracellular matrix that can alter the neuronal environment in cerebral-vascular dementia is of great importance in developing treatments for this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号