首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this investigation was to determine the validity of the non-exercise-based equations of Davis et al. (13), Jones et al. (20), and Neder et al. (30) for estimating the ventilatory threshold (VT) in samples of aerobically trained men and women. One hundred and forty-four aerobically trained men (mean +/- SD age, 41.0 +/- 11.6 years; N = 83) and women (37.1 +/- 9.0 years, N = 61) performed a maximal incremental test to determine VO2max and observed VT on a cycle ergometer. The observed VT was determined by gas exchange measurements using the V-slope method (VCO2/VO2) in conjunction with analyses of the ventilatory equivalents (i.e., minute ventilation VE/VO2 and VE/VCO2) and end-tidal gas tensions (i.e., P(ET)O2 and P(ET)CO2) for oxygen and carbon dioxide. The predicted VT values from 14 equations were compared to the observed VT values by examining the constant error (CE), standard error of estimate (SEE), Pearson correlation coefficient (r), and total error (TE). The results of this investigation indicated that all 14 equations resulted in significant (p < 0.008) CE values ranging from 1.13 to 1.72 L x min(-1) for the men and from 0.58 to 1.12 L x min(-1) for the women. Furthermore, the SEE, r, and TE values ranged from 0.37 to 0.54, from 0.36 to 0.53, and from 0.68 to 1.81 L x min(-1), respectively. The lowest TE values for the men and women represented 45 and 36% of the mean of the observed VT values, respectively. The results of this study indicated that the errors associated with all 14 equations were too large to be of practical value for estimating VT in aerobically trained men and women.  相似文献   

2.
The purpose of this study was to define carefully the dynamic relationship between oxygen uptake (as % Vo2max) and the respiratory Vco2/Vo2 exchange ratio (R) during maximum progressive treadmill exercise in trained and untrained men, and to determine if this relationship could be used to predict Vo2max. Respiratory gases were continuously monitored and the %Vo2max/R time profile calculated at 15 sec intervals over the final 5 min of each test. Young sedentary men (controls, n = 122) and over-60y sedentary men (n = 30) shared the same %Vo2max/R relationship but the latter group had lower R values at Vo2max (1.06 +/- 0.03 vs 1.08 +/- 0.03, p less than 0.01) than controls. Endurance trained men (n = 45) had a lower %Vo2max/R relationship and higher R at Vo2max (1.11 +/- 0.02, p less than 0.001), team athletes (n = 98) had a lower %Vo2max/R relationship but lower R at Vo2max (1.06 +/- 0.03, p less than 0.001) and the weight trained (n = 19) had a higher %Vo2max/R relationship and lower R at Vo2max (1.01 +/- 0.02, p less than 0.001) all compared to controls. From the %Vo2max/R time profile, the following formulae were devised for the estimation of Vo2max (Vo2maxR): Young Sedentary, Vo2maxR = Vo2R (3.000-1.874 R); Over-60y Sedentary, Vo2maxR = Vo2R (3.457-2.345 R); Endurance Trained, Vo2max = Vo2R (1.980-0.912 R); Team Athletes, Vo2maxR = Vo2R (2.805-1.726 R); Weight Trained, Vo2maxR = Vo2R (4.236-3.191 R).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The purposes of this study were to develop and cross-validate the "best" prediction equations for estimating fat-free body mass (FFB) from bioelectrical impedance in children and youth. Predictor variables included height2/resistance (RI) and RI with anthropometric data. FFB was determined from body density (underwater weighing) and body water (deuterium dilution) (FFB-DW) and from age-corrected density equations, which account for variations in FFB water and bone content. Prediction equations were developed using multiple regression analyses in the validation sample (n = 94) and cross-validated in three other samples (n = 131). R2 and standard error of the estimate (SEE) values ranged from 0.80 to 0.95 and 1.3 to 3.7 kg, respectively. The four samples were then combined to develop a recommended equation for estimating FFB from three regression models. R2 and SEE values and coefficients of variation from these regression equations ranged from 0.91 to 0.95, 2.1 to 2.9 kg, and 5.1 to 7.0%, respectively. As a result of all cross-validation analyses, we recommend the equation FFB-DW = 0.61 RI + 0.25 body weight + 1.31, with a SEE of 2.1 kg and adjusted R2 of 0.95. This study demonstrated that RI with body weight can predict FFB with good accuracy in Whites 10-19 yr old.  相似文献   

4.
The purpose of this study was to develop and cross-validate predictive equations for estimating skeletal muscle (SM) mass using bioelectrical impedance analysis (BIA). Whole body SM mass, determined by magnetic resonance imaging, was compared with BIA measurements in a multiethnic sample of 388 men and women, aged 18-86 yr, at two different laboratories. Within each laboratory, equations for predicting SM mass from BIA measurements were derived using the data of the Caucasian subjects. These equations were then applied to the Caucasian subjects from the other laboratory to cross-validate the BIA method. Because the equations cross-validated (i.e., were not different), the data from both laboratories were pooled to generate the final regression equation SM mass (kg) = [(Ht2/ R x 0.401) + (gender x 3.825) + (age x -0. 071)] + 5.102 where Ht is height in centimeters; R is BIA resistance in ohms; for gender, men = 1 and women = 0; and age is in years. The r(2) and SE of estimate of the regression equation were 0.86 and 2.7 kg (9%), respectively. The Caucasian-derived equation was applicable to Hispanics and African-Americans, but it underestimated SM mass in Asians. These results suggest that the BIA equation provides valid estimates of SM mass in healthy adults varying in age and adiposity.  相似文献   

5.
To determine the relation between habitual endurance exercise status and the age-associated decline in maximal aerobic capacity [i.e., maximal O(2) consumption (Vo(2 max))] in men, we performed a well-controlled cross-sectional laboratory study on 153 healthy men aged 20-75 yr: 64 sedentary and 89 endurance trained. Vo(2 max) (ml. kg(-1). min(-1)), measured by maximal treadmill exercise, was inversely related to age in the endurance-trained (r = -0.80) and sedentary (r = -0.74) men but was higher in the endurance-trained men at any age. The rate of decline in Vo(2 max) with age (ml. kg(-1). min(-1)) was greater (P < 0.001) in the endurance-trained than in the sedentary men. Whereas the relative rate of decline in Vo(2 max) (percent decrease per decade from baseline levels in young adulthood) was similar in the two groups, the absolute rate of decline in Vo(2 max) was -5.4 and -3.9 ml. kg(-1). min(-). decade(-1) in the endurance-trained and sedentary men, respectively. Vo(2 max) declined linearly across the age range in the sedentary men but was maintained in the endurance-trained men until approximately 50 yr of age. The accelerated decline in Vo(2 max) after 50 yr of age in the endurance-trained men was related to a decline in training volume (r = 0.46, P < 0.0001) and was associated with an increase in 10-km running time (r = -0.84, P < 0.0001). We conclude that the rate of decline in maximal aerobic capacity during middle and older age is greater in endurance-trained men than in their sedentary peers and is associated with a marked decline in O(2) pulse.  相似文献   

6.
7.
最大摄氧量(Vo2max)是评价人体体力的重要指标,其测定方法分直接法和间接法两种。目前所推导的间接计算公式都是在平原、或是在进入高原初期推导的,不适用于高原习服人群。本研究采用逐步回归的方法,推导出移居高原7-27个月、不同高度的青年男性Vo2max间接计算公式。在海拔3680m地区,Vo2max(L/min)=1.1531+0.007327身高(cm)+0.01613体重(kg)-0.005883晨脉(b/min)-0.004534运动心率(60W,6/min),R=0.745,P<0.01,SS=3.7799;或Vo2max(L/min)=1.2186+0.01984体重(kg)+0.07259肺活量(L)-0.006659晨脉(b/min),R=0.713,p<0.01,ss=3.9636。在4350m地区,Vo2.max(L/min)=0.4917+0.01687体重(kg)+0.1109肺活量(L)+0.001983屏气时间(S),R=0.781,P<0.01,SS=2.1356。计算值与实测值比较,变异系数在13%以内,结果准确可靠,适用于青年男性高原习服移居者。  相似文献   

8.
Maximal O2 consumption (VO2max) and maximal endurance time at 80% Vo2max (T80) were determined in 49 subjects with varying degrees of nutritional compromise. Vo2max was lover by 21% and 52% in subjects with moderate and severe undernutrition, respectively, when compared to men with mild nutritional compromise. Most (80%) of the change in Vo2max could be related to the estimated differences in muscle cell mass (MCM). A significant reduction (-18%) in the Vo2max per unit of MCM was found in the severely undernourished subjects, indicating basic physiological changes. Total body hemoglobin showed the highest correlation with Vo2max (r = 0.709) and at constant MCM (partial r = 0.796). A multiple regression equation was derived to estimate the Vo2max of populations on the basis of simple anthropometry and blood hemoglobin levels. T80 (93-103 min) and estimated maximum sustained 8-h percent effort (32%) in mild, intermediate, or severe undernutrition were not significantly different; by contrast, endurance at a given absolute work load was markedly lower in severe undernutrition (8 vs. 1.5 h) due presumably to the difference in Vo2max.  相似文献   

9.
The purpose of this study was to investigate the effect of single bouts of exercise at three different intensities on the redox state of human serum albumin (HSA) and on carbonyl groups on protein (CP) concentrations in plasma. Trained men [n = 44, maximal oxygen consumption (Vo(2max)): 55 +/- 5 ml.kg(-1).min(-1), nonsmokers, 34 +/- 5 years of age] from a homogenous population, volunteers from a police special forces unit, were randomly assigned to perform on a cycle ergometer either at 70% (n = 14), 75% (n = 14), or 80% (n = 16) of Vo(2max) for 40 min. Blood was collected before exercise, immediately after the exercise test (IE), and 30 min after each test (30M) and 30 h after each test (30H). The reduced fraction of HSA, human mercaptalbumin (HMA), decreased at all three exercise intensities IE and 30M, returning to preexercise values by 30H (P < 0.05). HMA was primarily oxidized to its reversible fraction human nonmercaptalbumin 1 (HNA1). CP concentrations increased at 75% of Vo(2max) IE and 30M with a tendency (P < 0.1) and at 80% Vo(2max) IE and 30M significantly, returning to preexercise concentrations by 30H (P < 0.01). These results indicate that the HSA redox system in plasma is activated after a single bout of cycle ergometer exercise at 70% Vo(2max) and 40 min duration. The extent of the HSA modification increased with exercise intensity. Oxidative protein damage, as indicated by CP, was only significantly increased at 80% Vo(2max) intensity in this homogenous cohort of trained men.  相似文献   

10.
Acclimatization to hypoxia has minimal effect on maximal O2 uptake (Vo2 max). Prolonged hypoxia shows reductions in cardiac output (Q), maximal heart rate (HR-max), myocardial beta-adrenoceptor (beta-AR) density, and chronotropic response to isoproterenol. This study tested the hypothesis that exercise training (ET), which attenuates beta-AR downregulation, would increase HRmax and Q of acclimatization and result in higher Vo2 max. After 3 wk of ET, rats lived at an inspired Po2 of 70 Torr for 10 days (acclimatized trained rats) or remained in normoxia, while both groups continued to train in normoxia. Controls were sedentary acclimatized and nonacclimatized rats. All rats exercised maximally in normoxia and hypoxia (inspired Po2 of 70 Torr). Myocardial beta-AR density and the chronotropic response to isoproterenol were reduced, and myocardial cholinergic receptor density was increased after acclimatization; all of these receptor changes were reversed by ET. Normoxic Vo2 max (in ml.min-1.kg-1) was 95.8 +/- 1.0 in acclimatized trained (n = 6), 87.7 +/- 1.7 in nonacclimatized trained (P < 0.05, n = 6), 74.2 +/- 1.4 in acclimatized sedentary (n = 6, P < 0.05), and 72.5 +/- 1.2 in nonacclimatized sedentary (n = 8; P > 0.05 acclimatized sedentary vs. nonacclimatized sedentary). A similar distribution of Vo2 max values occurred in hypoxic exercise. Q was highest in trained acclimatized and nonacclimatized, intermediate in nonacclimatized sedentary, and lowest in acclimatized sedentary groups. ET preserved Q in acclimatized rats thanks to maintenance of HRmax as well as of maximal stroke volume. Q preservation, coupled with a higher arterial O2 content, resulted in the acclimatized trained rats having the highest convective O2 transport and Vo2 max. These results show that ET attenuates beta-AR downregulation and preserves Q and Vo2 max after acclimatization, and support the idea that beta-AR downregulation partially contributes to the limitation of Vo2 max after acclimatization in rats.  相似文献   

11.
The purpose of this study was to examine the accuracy of the American College of Sports Medicine (ACSM) walking equation at low walking speeds, altitude (1,550 m), and higher grades. Twenty men and women (mean +/- SD, age, 28 +/- 6 years; height, 171 +/- 13 cm; weight, 67.8 +/- 18.1 kg) completed 2 randomized testing sessions under altitude (AL) (P(I)o(2) = 123.1 mm Hg [20.93%]) and sea level control (SLC) (P(I)o(2) = 147.3 mm Hg [25.00%]) conditions. Steady-state oxygen uptake (Vo(2)) was measured while subjects walked at 50 m.min(-1) at 8 separate grades (0, 5, 10, 15, 18, 21, 24, and 27%). Steady-state Vo(2) measurements from the last 2 minutes of each grade in AL and SLC were compared to the predicted Vo(2) of each grade according to the ACSM walking equation. Mean Vo(2) differences between predicted and AL values ranged from -0.5 to 1.4 ml.kg(-1).min(-1), averaged -0.1 ml.kg(-1).min(-1) across all grades, and were significant (p < 0.05) at 0 percent grade. Mean Vo(2) differences between predicted and SLC values ranged from 0.6 to 3.0 ml.kg(-1).min(-1), averaged 1.4 ml.kg(-1).min(-1) across all grades, and were statistically significant (p < 0.05) at 0 and 5 percent. The standard error of the estimate (SEE) for the prediction of Vo(2) under AL and SLC were 2.2 and 2.0 ml.kg(-1).min(-1), respectively. Total errors for the prediction of Vo(2)max under AL and SLC were 2.3 and 2.6 ml.kg(-1).min(-1), respectively. Overall, the findings indicate that the current ACSM prediction equation for walking is appropriate for application at low speeds, moderate altitude, and higher grades.  相似文献   

12.
The predictability of anaerobic threshold (AT) from maximal aerobic power, distance running performance, chronological age, and total running distance achieved on the treadmill (TRD) was investigated in a sample of 53 male distance runners, 17-23 years of age. The dependent variable was oxygen uptake (Vo2) at which AT was detected (i.e. Vo2 @ AT). A regression analysis of the data indicated Vo2 @ AT could be predicted from the following four measurements with a multiple R = 0.831 and a standard error of the estimate of 2.66 ml . min-1 . kg-1: Vo2max (67.9 +/- 5.7 ml . min-1 . kg-1), 1,500-m running performance (254.5 +/- 14.2 s), TRD (6.82 +/- 1.13 km), and age (19.4 +/- 2.2 years). When independent variables were limited to Vo2max (X1) and 1,500-m running performance (X2) for simpler assessment, a multiple R = 0.806 and a standard error of the estimate of 2.76 ml . min-1 . kg-1 were computed. A useful prediction equation with this predictive accuracy was considered to be Vo2 @ AT = 0.386X1 - 0.128X2 + 57.11. To determine if the prediction equation developed for the 53 male distance runners could be generalized to other samples, cross-validation of the equation was tested, using 21 different distance runners, 17-22 years of age. A high correlation (R = 0.927) was obtained between Vo2 AT predicted from the above equation and directly measured Vo2 @ AT. It is concluded that the generalized equation may be applicable to young distance runners for indirect assessment of Vo2 @ AT.  相似文献   

13.
We investigated whether markers of inflammation, including a cytokine (IL-6), acute-phase reactants [C-reactive protein (CRP) and fibrinogen], and white blood cell (WBC) count are associated with maximal O(2) consumption (Vo(2 max)) in men without coronary heart disease (CHD). In asymptomatic men (n = 172, 51 +/- 9.3 yr old), Vo(2 max) was measured during a symptom-limited graded treadmill exercise test. Physical activity level was assessed by a standardized questionnaire. IL-6 and CRP were measured by immunoassays, fibrinogen by the Clauss method, and WBC count with a Coulter counter. IL-6 and CRP were logarithmically transformed to reduce skewness. Multivariable regression was used to assess whether markers of inflammation were associated with Vo(2 max) after adjustment for age, body mass index, CHD risk factors, and lifestyle variables (physical activity level, percent body fat, and alcohol intake). Vo(2 max) was 34.5 ml.kg(-1).min(-1) (SD 6.1). Log IL-6 (r = -0.38, P < 0.001), log CRP (r = -0.40, P < 0.001), fibrinogen (r = -0.42, P < 0.001), and WBC count (r = -0.22, P = 0.004) were each correlated with Vo(2 max). In separate multivariable linear regression models that adjusted for age, body mass index, CHD risk factors, and lifestyle variables, log IL-6 [beta-coeff = -1.66 +/- 0.63 (SE), P = 0.010], log CRP [beta-coeff = -0.99 +/- 0.33 (SE), P = 0.003], fibrinogen [beta-coeff = -1.51 +/- 0.44 (SE), P = 0.001], and WBC count [beta-coeff = -0.52 +/- 0.30 (SE), P = 0.088] were each inversely associated with Vo(2 max). In conclusion, higher circulating levels of IL-6, CRP, and fibrinogen are independently associated with lower Vo(2 max) in asymptomatic men.  相似文献   

14.
The purpose of this study was to explore whether selected anthropometric measures such as specific skinfold sites, along with weight, height, body mass index (BMI), waist and hip circumferences, and waist/hip ratio (WHR) were associated with sit-ups (SU) and push-ups (PU) performance, and to build a regression model for SU and PU tests. One hundred apparently healthy adults (40 men and 60 women) served as the subjects for test validation. The subjects performed 60-second SU and PU tests. The variables analyzed via multiple regression included weight, height, BMI, hip and waist circumferences, WHR, skinfolds at the abdomen (SFAB), thigh (SFTH), and subscapularis (SFSS), and sex. An additional cohort of 40 subjects (17 men and 23 women) was used to cross-validate the regression models. Validity was confirmed by correlation and paired t-tests. The regression analysis yielded a four-variable (PU, height, SFAB, and SFTH) multiple regression equation for estimating SU (R2 = 0.64, SEE = 7.5 repetitions). For PU, only SU was loaded into the regression equation (R2 = 0.43, SEE = 9.4 repetitions). Thus, the variables in the regression models accounted for 64% and 43% of the variation in SU and PU, respectively. The cross-validation sample elicited a high correlation for SU (r = 0.87) and PU (r = 0.79) scores. Moreover, paired-samples t-tests revealed that there were no significant differences between actual and predicted SU and PU scores. Therefore, this study shows that there are a number of selected, health-related anthropometric variables that account significantly for, and are predictive of, SU and PU tests.  相似文献   

15.
We investigated the validity of employing a fuzzy piecewise prediction equation (PW) [Gonzalez et al. J Appl Physiol 107: 379-388, 2009] defined by sweat rate (m(sw), g·m(-2)·h(-1)) = 147 + 1.527·(E(req)) - 0.87·(E(max)), which integrates evaporation required (E(req)) and the maximum evaporative capacity of the environment (E(max)). Heat exchange and physiological responses were determined throughout the trials. Environmental conditions were ambient temperature (T(a)) = 16-26°C, relative humidity (RH) = 51-55%, and wind speed (V) = 0.5-1.5 m/s. Volunteers wore military fatigues [clothing evaporative potential (i(m)/clo) = 0.33] and carried loads (15-31 kg) while marching 14-37 km over variable terrains either at night (N = 77, trials 1-5) or night with increasing daylight (N = 33, trials 6 and 7). PW was modified (Pw,sol) for transient solar radiation (R(sol), W) determined from measured solar loads and verified in trials 6 and 7. PW provided a valid m(sw) prediction during night trials (1-5) matching previous laboratory values and verified by bootstrap correlation (r(bs) of 0.81, SE ± 0.014, SEE = ± 69.2 g·m(-2)·h(-1)). For trials 6 and 7, E(req) and E(max) components included R(sol) applying a modified equation Pw,sol, in which m(sw) = 147 + 1.527·(E(req,sol)) - 0.87·(E(max)). Linear prediction of m(sw) = 0.72·Pw,sol + 135 (N = 33) was validated (R(2) = 0.92; SEE = ±33.8 g·m(-2)·h(-1)) with PW β-coefficients unaltered during field marches between 16°C and 26°C T(a) for m(sw) ≤ 700 g·m(-2)·h(-1). PW was additionally derived for cool laboratory/night conditions (T(a) < 20°C) in which E(req) is low but E(max) is high, as: PW,cool (g·m(-2)·h(-1)) = 350 + 1.527·E(req) - 0.87·E(max). These sweat prediction equations allow valid tools for civilian, sports, and military medicine communities to predict water needs during a variety of heat stress/exercise conditions.  相似文献   

16.
The purpose of this investigation was to crossvalidate 2 equations that use the ratio of maximal heart rate (HRmax) to resting HR (HRrest) for predicting maximal oxygen consumption (VO2max) in white and black men. One hundred and nine white (n = 51) and black (n = 58) men completed a maximal exercise test on a treadmill to determine VO2max. The HRrest and HRmax were used to predict VO2max via the HRindex and HRratio equations. Validity statistics were done to compare the criterion versus predicted VO2max values across the entire cohort and within each race separately. For the entire group, VO2max was significantly overestimated with the HRindex equation, but the HRratio equation yielded no significant difference compared with the criterion. In addition, there were no significant differences shown between VO2max and either HR-based prediction equation for the white subgroup. However, both equations significantly overestimated VO2max in the black group. Furthermore, large standard error of estimates (ranging from 6.92 to 7.90 ml·kg(-1)·min(-1)), total errors (ranging from 8.30 to 8.62 ml·kg(-1)·min(-1)), and limits of agreement (ranging from upper limits of 16.65 to lower limits of -18.25 ml·kg(-1)·min(-1)) were revealed when comparing the predicted to criterion VO2max for both the groups. Considering the results of this investigation, the HRratio and HRindex methods appear to crossvalidate and prove useful for estimating the mean VO2max in white men as a group but not for an age-matched group of black men. However, because of inflated values for error, caution should be exercised when using these methods to predict individual VO2max.  相似文献   

17.
Longitudinal changes in aerobic power in older men and women.   总被引:2,自引:0,他引:2  
The purpose of this study was to describe the longitudinal (10 yr) decline in aerobic power [maximal O(2) uptake (Vo(2 max))] and anaerobic threshold [ventilatory threshold (T(Ve))] of older adults living independently in the community. Ten years after initial testing, 62 subjects (34 men, mean age 73.5 +/- 6.4 yr; 28 women, 72.1 +/- 5.3 yr) achieved Vo(2 max) criteria during treadmill walking tests to the limit of tolerance, with T(Ve) determined in a subset of 45. Vo(2 max) in men showed a rate of decline of -0.43 ml.kg(-1).min(-1).yr(-1), and the decline in Vo(2 max) was consequent to a lowered maximal heart rate with no change in the maximum O(2) pulse. The women showed a slower rate of decline of Vo(2 max) of -0.19.ml.kg(-1).min(-1).yr(-1) (P < 0.05), again with a lowered HR(max) and unchanged O(2) pulse. In this sample, lean body mass was not changed over the 10-yr period. Changes in Vo(2 max) were not significantly related to physical activity scores. T(Ve) showed a nonsignificant decline in both men and women. Groupings of young-old (65-72 yr at follow-up) vs. old-old (73-90 yr at follow-up) were examined. In men, there were no differences in the rate of Vo(2 max) decline. The young-old women showed a significant decline in Vo(2 max), whereas old-old women, initially at a Vo(2 max) of 19.4 +/- 3.1 ml.kg(-1).min(-1), showed no loss in Vo(2 max). The longitudinal data, vs. cross-sectional analysis, showed a greater decline for men but similar estimates of the rates of change in women. Thus the 10-yr longitudinal study of the cohort of community-dwelling older adults who remained healthy, ambulatory, and independent showed a 14% decline in Vo(2 max) in men, and a smaller decline of 7% in women, with the oldest women showing little change over the 10-yr period.  相似文献   

18.
19.
GORAN, MICHAEL I AND M ABU KHALED. Cross-validation of fat-free mass estimated from body density against bioelectrical resistance: effects of obesity and gender. Obes Res. The major purpose of this study was to examine whether estimates of body composition from bioelectrical resistance were systematically biased by obesity and/or gender (using hydrodensitometry as a comparison method). We compared fat-free mass (FFM) by bioelectrical resistance (BR) using 5 equations (Lukaski, Kushner, Rising, Khaled, and Segal) to FFM by hydrodensitometry (HD) in 20 lean men, 30 lean women, 33 obese men and 22 obese women. None of the BR equations was successfully cross-validated against FFM by HD in all 4 sub-groups. The Lukaski equation significantly underestimated FFM in all 4 groups by 2.7 to 4.7 kg; the Kushner equation significantly underestimated FFM by 2.0 to 2.9 kg except in obese women; the Rising equation significantly overestimated FFM in obese women (5.3 kg) and men (2.9 kg); the Khaled equation successfully predicted FFM in all groups except obese men; and the Segal equation successfully predicted FFM in all groups except lean men. In some groups, a portion of the discrepancy could be explained by bias originating from body fat. Analysis of our data by forward regression analysis demonstrated that height2/resistance, body weight, gender and suprailiac skinfold thickness provide the most accurate estimates of FFM (R2=0.92; SEE = 3.58kg) that are free of bias originating from gender and body fat. We conclude that the estimation of fat-free mass by BR is significantly influenced by gender and obesity. An alternative equation is proposed for estimating fat-free mass based on measurement of height2/resistance, body weight, gender and suprailiac skinfold thickness.  相似文献   

20.
In practice, the Bruce protocol is the most commonly used treadmill protocol to assess maximal oxygen consumption (V(.-)O2max). It has been suggested that a running protocol (e.g., Astrand) may elicit a comparatively higher V(.-)O2max and different cardiorespiratory responses when applied to moderately trained runners. Thus, the purpose of this study was to compare V(.-)O2max and other cardiorespiratory responses as elicited by the standard Bruce and a modified Astrand treadmill protocol in moderately trained runners. Fifteen women (age = 21 years, height = 171.5 cm, weight = 63 kg, and body fat = 18%) and 15 men (age = 26 years, height = 177 cm, weight = 72 kg, and body fat = 9%) who were moderately trained runners completed a standard Bruce and modified Astrand protocol (random order), separated by approximately 7 days. Heart rate, Borg ratings of perceived exertion, blood pressure, and pulmonary gas exchange variables were measured during the exercise tests using standard laboratory procedures. This study revealed V(.-)O2max values between the Bruce protocol (51.3 +/- 11.6 ml x kg(-1) x min(-1)) and modified Astrand (51.5 +/- 10.9 ml x kg(-1) x min(-1)) were not significantly different in either the men or the women. However, the Bruce protocol elicited significantly higher maximum treadmill time in men and maximum respiratory exchange ratio (RERmax) and maximum minute ventilation (VEmax) values in both genders. Conversely, the modified Astrand elicited a higher HRmax. These data suggest that V(.-)O2max in both moderately trained men and women runners is independent of treadmill protocol despite differences in HRmax, RERmax, and VEmax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号