首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adhesion of enteropathogenic Escherichia coli to host cells   总被引:8,自引:1,他引:8  
Enteropathogenic Escherichia coli (EPEC) adhere to the intestinal mucosa and to tissue culture cells in a distinctive fashion, destroying microvilli, altering the cytoskeleton and attaching intimately to the host cell membrane in a manner termed the attaching and effacing effect. Typical EPEC strains also form three-dimensional microcolonies in a pattern termed localized adherence. Attaching and effacing, and in particular intimate attachment requires an outer membrane adhesin called intimin, which binds to the translocated intimin receptor, Tir. Tir is produced by the bacteria and delivered to the host cell via a type III secretion system. In addition to this well-established adhesin-receptor pair, numerous other adhesin interactions between EPEC and host cells have been described including those between intimin and cellular receptors and those involving a bundle-forming pilus and flagella and unknown receptors. Much additional work is needed before a full understanding of EPEC adhesion to host cells comes to light.  相似文献   

2.
Enteropathogenic Escherichia coli (EPEC) induce characteristic attaching and effacing (A/E) lesions on epithelial cells. This event is mediated, in part, by binding of the bacterial outer membrane protein, intimin, to a second EPEC protein, Tir (translocated intimin receptor), which is exported by the bacteria and integrated into the host cell plasma membrane. In this study, we have localized the intimin-binding domain of Tir to a central 107-amino-acid region, designated Tir-M. We provide evidence that both the amino- and carboxy-termini of Tir are located within the host cell. In addition, using immunogold labelling electron microscopy, we have confirmed that intimin can bind independently to host cells even in the absence of Tir. This Tir-independent interaction and the ability of EPEC to induce A/E lesions requires an intact lectin-like module residing at the carboxy-terminus of the intimin polypeptide. Using the yeast two-hybrid system and gel overlays, we show that intimin can bind both Tir and Tir-M even when the lectin-like domain is disrupted. These data provide strong evidence that intimin interacts not only with Tir but also in a lectin-like manner with a host cell intimin receptor.  相似文献   

3.
Enteropathogenic Escherichia coli (EPEC) is a common cause of diarrhea in children in developing countries. Protein kinase C (PKC), a serine- and threonine-directed protein kinase, is rapidly activated following EPEC infection and this is accompanied by its translocation to a membrane-bound location where it is tightly bound to phosphatidylserine (PS). EPEC infection causes host cell death, one of whose features is externalization of PS. We hypothesized that externalization of PS would be accompanied by externalization of PKC as well. We report that EPEC infection triggers the externalization of PKC to the outer surface of the host cell. Ecto-PKC remains firmly tethered to the cell but can be released by incubation with peptide or protein substrates for the enzyme. Ecto-PKC is intact and biologically active and able to phosphorylate protein substrates on the surface of the host cell. Phosphorylation of whole EPEC bacteria or EPEC-secreted proteins could not be detected. Externalization of PKC could be reproduced by the combination of an apoptotic stimulus (ultraviolet (UV) irradiation) and phorbol myristate acetate (PMA), a procedure which resulted in externalization of >25% of the total cellular content of PKC-alpha. In the presence of ATP, ecto-PKC inhibited UV-induced cell shrinkage, membrane blebbing, and propidium iodide uptake but not the activation of caspases 3 and 7. This is the first report that expression of an ecto-protein kinase is altered by a microbial pathogen and the first to note that externalization of PKC can accompany apoptosis.  相似文献   

4.
Enteropathogenic Escherichia coli (EPEC) causes diarrhoea in young children. EPEC induces the formation of actin pedestal in infected epithelial cells. A type III protein secretion system and several proteins that are secreted by this system, including EspB, are involved in inducing the formation of the actin pedestals. We have demonstrated that contact of EPEC with HeLa cells is associated with the induction of production and secretion of EspB. Shortly after infection, EPEC initiates translocation of EspB, and EspB fused to the CyaA reporter protein (EspB–CyaA), into the host cell. The translocated EspB was distributed between the membrane and the cytoplasm of the host cell. Translocation was strongly promoted by attachment of EPEC to the host cell, and both attachment factors of EPEC, intimin and the bundle-forming pili, were needed for full translocation efficiency. Translocation and secretion of EspB and EspB–CyaA were abolished in mutants deficient in components of the type III protein secretion system, including sepA and sepB mutants. EspB–CyaA was secreted but not translocated by an espB mutant. These results indicate that EspB is both translocated and required for protein translocation by EPEC.  相似文献   

5.
Enteropathogenic Escherichia coli (EPEC) is a major cause of paediatric diarrhoea and a model for the family of attaching and effacing (A/E) pathogens. A/E pathogens encode a type III secretion system to transfer effector proteins into host cells. The EPEC Tir effector protein acts as a receptor for the bacterial surface protein intimin and is involved in the formation of Cdc42-independent, actin-rich pedestal structures beneath the adhered bacteria. In this paper, we demonstrate that EPEC binding to HeLa cells also induces Tir-independent, cytoskeletal rearrangement evidenced by the early, transient formation of filopodia-like structures at sites of infection. Filopodia formation is dependent on expression of the EPEC Map effector molecule - a protein that targets mitochondria and induces their dysfunction. We show that Map-induced filopodia formation is independent of mitochondrial targeting and is abolished by cellular expression of the Cdc42 inhibitory WASP-CRIB domain, demonstrating that Map has at least two distinct functions in host cells. The transient nature of the filopodia is related to an ability of EPEC to downregulate Map-induced cell signalling that, like pedestal formation, was dependent on both Tir and intimin proteins. The ability of Tir to downregulate filopodia was impaired by disrupting a putative GTPase-activating protein (GAP) motif, suggesting that Tir may possess such a function, with its interaction with intimin triggering this activity. Furthermore, we also found that Map-induced cell signalling inhibits pedestal formation, revealing that the cellular effects of Tir and Map must be co-ordinately regulated during infection. Possible implications of the multifunctional nature of EPEC effector molecules in pathogenesis are discussed.  相似文献   

6.
Enteropathogenic and enterohaemorrhagic Escherichia coli use a novel infection strategy to colonize the gut epithelium, involving translocation of their own receptor, Tir, via a type III secretion system and subsequent formation of attaching and effecting (A/E) lesions. Following integration into the host cell plasma membrane of cultured cells, and clustering by the outer membrane adhesin intimin, Tir triggers multiple actin polymerization pathways involving host and bacterial adaptor proteins that converge on the host Arp2/3 actin nucleator. Although initially thought to be involved in A/E lesion formation, recent data have shown that the known Tir‐induced actin polymerization pathways are dispensable for this activity, but can play other major roles in colonization efficiency, in vivo fitness and systemic disease. In this review we summarize the roadmap leading from the discovery of Tir, through the different actin polymerization pathways it triggers, to our current understanding of their physiological functions.  相似文献   

7.
Enteric bacterial pathogens commonly use a type III secretion system (T3SS) to successfully infect intestinal epithelial cells and survive and proliferate in the host. Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC; EHEC) colonize the human intestinal mucosa, form characteristic histological lesions on the infected epithelium and require the T3SS for full virulence. T3SS effectors injected into host cells subvert cellular pathways to execute a variety of functions within infected host cells. The EPEC and EHEC effectors that subvert innate immune pathways – specifically those involved in phagocytosis, host cell survival, apoptotic cell death and inflammatory signalling – are all required to cause disease. These processes are reviewed within, with a focus on recent work that has provided insights into the functions and host cell targets of these effectors.  相似文献   

8.
Given the critical roles of inflammation and programmed cell death in fighting infection, it is not surprising that many bacterial pathogens have evolved strategies to inactivate these defences. The causative agent of infant diarrhoea, enteropathogenic Escherichia coli (EPEC), is an extracellular, intestinal pathogen that blocks both inflammation and programmed cell death. EPEC attaches to enterocytes, remains in the gut lumen and utilizes a type III secretion system (T3SS) to inject multiple virulence effector proteins directly into the infected cell, many of which subvert host antimicrobial processes through the disruption of signalling pathways. Recently, T3SS effector proteins from EPEC have been identified that inhibit death receptor‐induced apoptosis. Here we review the mechanisms used by EPEC T3SS effectors to manipulate apoptosis and promote host cell survival and discuss the role of these activities during infection.  相似文献   

9.
Abstract Enteropathogenic strains of faecal Escherichia coli produced significantly ( P < 0.01) more maltase than the non-pathogenic strains of the organism. The enzyme was induced by maltose but repressed by glucose and fructose. The maltase was partially purified by ammonium sulphate precipitation, followed by dialysis and gel permeation chromatography. The partially purified maltase had an M r of 144500 and an apparent K m of approx. 7.6 mM for maltose. The enzyme was stimulated by Ca2+, inhibited by Cu2+, Hg2+, Uo2+, IAA and EDTA, and exhibited optimum activity at pH 6.5 at 30°C.  相似文献   

10.
The time course of morphological changes during lysis of Escherichia coli cells was examined with respect to an undisturbed release of nucleoids. The addition of detergents to plasmolyzed, osmotic sensitive cells resulted in the immediate reversal of plasmolysis followed by the appearance of rod-shaped ghost cells without any detectable spheroplast formation. Electron microscopic examination of the rod-shaped ghost cells revealed a zonal gap in the cell envelope, allowing the free release of the nucleoid. Due to the high ionic strength, a suitable cell lysis was shown to require higher incubation temperatures. However, in the absence of an appropriate control this may result in the sphering and vesiculation of ghost cell envelopes and even the unfolding of released nucleoids. To avoid this unfavorable consequence of lysis at high temperatures, a microscopic examination on the course of rod-shaped ghost formation is suggested.  相似文献   

11.
Many significant bacterial pathogens use a type III secretion system to inject effector proteins into host cells to disrupt specific cellular functions, enabling disease progression. The injection of these effectors into host cells is often dependent on dedicated chaperones within the bacterial cell. In this report, we demonstrate that the enteropathogenic Escherichia coli (EPEC) chaperone CesT interacts with a variety of known and putative type III effector proteins. Using pull-down and secretion assays, a degenerate CesT binding domain was identified within multiple type III effectors. Domain exchange experiments between selected type III effector proteins revealed a modular nature for the CesT binding domain, as demonstrated by secretion, chaperone binding, and infection assays. The CesT-interacting type III effector Tir, which is crucial for in vivo intestinal colonization, had to be expressed and secreted for efficient secretion of other type III effectors. In contrast, the absence of other CesT-interacting type III effectors did not abrogate effector secretion, indicating an unexpected hierarchy with respect to Tir for type III effector delivery. Coordinating the expression of other type III effectors with cesT in the absence of tir partially restored total type III effector secretion, thereby implicating CesT in secretion events. Collectively, the results suggest a coordinated mechanism involving both Tir and CesT for type III effector injection into host cells.  相似文献   

12.
Enteropathogenic Escherichia coli (EPEC) causes diarrhoea in children in developing countries. Many EPEC genes involved in virulence are contained within the locus of enterocyte effacement (LEE), a large pathogenicity island. One of the genes at the far righthand end of the LEE encodes EspF, an EPEC secreted protein of unknown function. EspF, like the other Esps, is a substrate for secretion by the type III secretory system. Previous studies found that an espF mutant behaved as wild type in assays of adherence, invasion, actin condensation and tyrosine phosphorylation. As EPEC can kill host cells, we tested esp gene mutants for host cell killing ability. The espF mutant was deficient in host cell killing despite having normal adherence. The addition of purified EspF to tissue culture medium did not cause any damage to host cells, but expression of espF in COS or HeLa cells caused cell death. The mode of cell death in cells transfected with espF appeared to be pure apoptosis. EspF appears to be an effector of host cell death in epithelial cells; its proline-rich structure suggests that it may act by binding to SH3 domains or EVH1 domains of host cell signalling proteins.  相似文献   

13.
Qiu F  Wang J  Spray DC  Scemes E  Dahl G 《FEBS letters》2011,585(21):3430-3435
Erythrocytes are exceptionally suited for analysis of non-exocytotic release mechanisms of ATP, because these cells under physiological conditions lack vesicles. Previous studies have indicated, that Pannexin1 (Panx1) provides a key ATP permeation pathway in many cell types, including human and frog erythrocytes. Here we show that erythrocytes of Panx1(-/-) mice lend further support to this conclusion. However, ATP release, although attenuated, was still observed in Panx1(-/-) mouse erythrocytes. In contrast to Panx1(+/+) cells, this release was not correlated with uptake of extracellularly applied dyes, was insensitive to Panx1 channel blockers, and was inhibited by dipyridamole and stimulated by iloprost. Thus, in erythrocytes, two independent pathways mediate the release of ATP. We also show that glyburide is a strong inhibitor of Panx1 channels.  相似文献   

14.
15.
16.
17.
Aims:  To establish the role of maltoporin (LamB) in adherence of enteropathogenic Escherichia coli (EPEC) to epithelial cells in vitro.
Methods and Results:  Three strains, wild type (WT) EPEC, a maltoporin (LamB) mutant ΔlamB , and DH5α were used to study adherence to cultured HEp-2 cells. Mutant ΔlamB was found to be deficient in adherence compared to WT EPEC. Adherence of ΔlamB was restored to wild type levels when complemented with the cloned lamB gene. The non–adherent strain DH5α also adhered to HEp-2 cells when it harboured the cloned lamB gene. The LamB protein was isolated from WT EPEC by electroelution and antibodies were raised in rabbits. The specificity of the antibodies was analysed by Western blotting. Anti-LamB antiserum reduced adherence of WT EPEC to HEp-2 cells. The LamB protein was coated on latex beads and the beads adhered to HEp-2 cells. Anti-LamB antiserum prevented bead adherence to HEp-2 cells. Multiple sequence alignment showed that the L9 loop of EPEC LamB had four amino acids different from the L9 loop of LamB from several other related pathogens.
Conclusions:  LamB serves as an alternative or additional adherence factor for EPEC.
Significance and Impact of the Study:  Adherence is an important component of the pathogenesis of noninvasive pathogens like EPEC. A putative adhesin such as LamB, which has already been found to be co-expressed with virulence factor EspB may be a potential vaccine candidate for control of EPEC and related pathogens.  相似文献   

18.
Bundle-forming pili (BFP) are essential for the full virulence of enteropathogenic Escherichia coli (EPEC) because they are required for localized adherence to epithelial cells and auto-aggregation. We report the high resolution structure of bundlin, the monomer of BFP, solved by NMR. The structure reveals a new variation in the topology of type IVb pilins with significant differences in the composition and relative orientation of elements of secondary structure. In addition, the structural parameters of native BFP filaments were determined by electron microscopy after negative staining. The solution structure of bundlin was assembled according to these helical parameters to provide a plausible atomic resolution model for the BFP filament. We show that EPEC and Vibriocholerae type IVb pili display distinct differences in their monomer subunits consistent with data showing that bundlin and TcpA cannot complement each other, but assemble into filaments with similar helical organization.  相似文献   

19.
Type 3 secretion systems (T3SSs) are critical for the virulence of numerous deadly Gram-negative pathogens. T3SS translocator proteins are required for effector proteins to traverse the host cell membrane and perturb cell function. Translocator proteins include two hydrophobic proteins, represented in enteropathogenic Escherichia coli (EPEC) by EspB and EspD, which are thought to interact and form a pore in the host membrane. Here we adapted a sequence motif recognized by a host kinase to demonstrate that residues on the carboxyl-terminal side of the EspB transmembrane domain are localized to the host cell cytoplasm. Using functional internal polyhistidine tags, we confirm an interaction between EspD and EspB, and we demonstrate, for the first time, an interaction between EspD and the hydrophilic translocator protein EspA. Using a panel of espB insertion mutations, we describe two regions on either side of a putative transmembrane domain that are required for the binding of EspB to EspD. Finally, we demonstrate that EspB variants incapable of binding EspD fail to adopt the proper host cell membrane topology. These results provide new insights into interactions between translocator proteins critical for virulence.  相似文献   

20.
Eukaryotic cells utilize multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood‐brain barrier, but the entry route remains unclear. Here, we demonstrate that the bacteria trigger an actin‐mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin‐mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into human brain microvascular endothelial cells.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号