首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
存在于细菌和古菌中的获得性免疫系统CRISPR-Cas目前已被广泛应用到生物技术领域,尤其是靶向DNA的CRISPR-Cas9技术。然而CRISPR-Cas系统靶向RNA的技术还处于初步应用阶段。Ⅵ型CRISPR-Cas系统(CRISPR-Cas13)的发现,揭示了RNA引导的RNA靶向性。CRISPR-Cas13是目前CRISPR-Cas家族中唯一只靶向ssRNA的系统,为RNA靶向和RNA编辑奠定了基础。根据Cas13系统发育已证明将Ⅵ型CRISPR-Cas系统分为4种亚型(A-D)。主要对目前最新的靶向RNA技术的CRISPR-Cas13家族的分类以及防御机制进行了综述,介绍了 CRISPR-Cas13 技术的应用以及基于CRISPR-Cas13家族的RNA编辑系统的最新研究进展。最后,对目前CRISPR-Cas13 RNA编辑技术体系存在的问题进行了分析和对未来的发展进行展望。  相似文献   

2.
李登銮  王刚 《生命科学》2022,(11):1442-1455
RNA编辑指遗传信息转录后对RNA核苷酸序列的改变,包括碱基替换、核苷酸的插入和删除等过程。RNA编辑系统可分为基于CRISPR-Cas13和非CRISPR-Cas13 RNA编辑系统两种,该文分别阐述了两种系统的分子机制和编辑过程,并总结了新型RNA编辑系统的优势、缺陷以及应用价值。  相似文献   

3.
洪甜  罗庆华 《生物工程学报》2023,39(4):1363-1373
CRISPR(clustered regularly interspaced short palindromic repeats)-Cas(CRISPR associated proteins)系统是细菌和古细菌抵抗噬菌体、质粒等外源遗传物质的一种适应性免疫系统,该系统利用一种特殊的RNA(CRISPR RNA,crRNA)指导的内切酶来切割与crRNA相互补的外源遗传物质,从而阻碍外源核酸的侵染。根据效应复合物组成形式的不同,CRISPR-Cas系统分为1类(Ⅰ型、Ⅳ型和Ⅲ型)和2类(Ⅱ型、Ⅴ型和Ⅵ型)两大类。目前已发现多个CRISPR-Cas系统具有非常强的特异靶向RNA编辑能力,如Ⅵ型CRISPR-Cas13系统和Ⅲ型CRISPR-Cas7-11系统。随着研究的深入,相关系统在RNA编辑领域应用日渐广泛,使其成为基因编辑的有力工具。本文介绍了靶向RNA的CRISPR-Cas系统的组成、结构、分子机制以及其潜在应用,这为更好地研究该类系统的作用机制奠定基础,也为后期开发为稳定的基因编辑工具提供新的思路。  相似文献   

4.
CRISPR-Cas13系统(clustered regularly interspaced short palindromic repeats associated Cas system,CRISPR-Cas)是一种快速、高效、精准的新型RNA编辑工具,具有易于设计、结构简单、操作方便、特异性强的特点。综述了CRISPR-Cas13在CRISPR分类系统中的地位、CRISPR-Cas13的结构基础以及作用机制、与其他RNA水平调节方法的比较以及目前的应用前景,以期为相关研究提供参考。  相似文献   

5.
来源于细菌防御系统的CRISPR-Cas系统因其功能强大、多样性受到广泛关注,也在动物、植物、微生物等各个领域得到了应用并迅速发展。概述了CRISPR-Cas系统的作用机理和分类,并对CRISPR-Cas系统在微生物基因编辑和病毒核酸检测方面的研究及应用进展进行了综述,以期为微生物研究工作提供参考。  相似文献   

6.
为了建立一种灵敏度高、特异性强并且适合现场诊断的大口黑鲈弹状病毒(Micropterus salmoides rhabdovirus, MSRV)检测方法,研究基于CRISPR-Cas13a系统并结合多酶恒温核酸快速扩增(MIRA)技术建立了一种MSRV的检测方法。实验对MSRV序列进行多重序列比对分析后,针对MSRV衣壳蛋白(CP)基因的特异性区域设计两个靶点,并通过体外转录成特异性的crRNA,同时设计合成MIRA引物序列实现目标序列的等温扩增,最后结合Cas13a蛋白、crRNA、恒温扩增体系构建检测体系,并从高效crRNA的选择、反应温度、ssRNA报告探针浓度和Cas13a与crRNA的浓度比四个方面优化了反应体系,并采用最优检测体系对大口黑鲈样本进行检测验证。结果显示,在20μL检测体系中加入200 nmol/L Cas13a、100 nmol/L crRNA1、100 nmol/L crRNA2及500 nmol/L ssRNA报告探针,在37℃的情况下能够获得最佳的检测效果。并且该检测体系可以检测到102 fM的MSRV病毒,具有良好的特异性和灵敏...  相似文献   

7.
卢亚兰  唐标  杨华  孙东昌 《微生物学报》2022,62(4):1308-1321
原核生物可利用由CRISPR-Cas系统(clustered regularly interspaced short palindromic repeats-CRISPR associated)介导的适应性免疫机制防御外源核酸入侵.在适应性免疫过程中,原核生物将外源核酸部分片段整合至自身CRISPR阵列中,表达并加工的...  相似文献   

8.
随着合成生物学的兴起,CRISPR-Cas系统作为基因编辑的核心工具在医药、农业和工业生物技术等领域展现了巨大潜力。本文综述了人工智能(artificial intelligence, AI)技术在CRISPR-Cas系统设计、挖掘与改造中的应用进展。AI技术,特别是机器学习,通过分析高通量测序数据,优化sgRNA设计、提升编辑效率、预测脱靶效应。本文讨论了AI在单链引导RNA (single guide RNA, sgRNA)设计与评估中的应用,并对基于机器学习的CRISPR阵列、Cas蛋白的注释与挖掘,以及AI在CRISPR相关的基因编辑关键蛋白改造中的潜力也进行了重点探讨。这些研究不仅提高了基因编辑的效率和精确性,还为基因组工程开辟了新的可能性,也为实现智能化和精准化的基因组编辑奠定了基础。  相似文献   

9.
在活细胞条件下观察RNA分子的亚细胞定位和动态变化对了解它们的功能十分重要,而目前活细胞RNA标记的工具十分有限。中国科学院生物化学与细胞生物学研究所陈玲玲研究组的最新研究成果成功利用CRISPR-Cas13系统实现了在活细胞中对RNA的特异性标记。研究人员筛选出了RNA标记能力较强的dPspCas13b和dPguCas13b蛋白,优化后可以有效标记非编码RNA和mRNA,进一步联合使用dPspCas13b和dPguCas13b蛋白实现了对活细胞内不同RNA的双色标记,与标记DNA的CRISPRdCas9系统联用实现了RNA转录和基因位点的同时标记。该工作为在活细胞中研究RNA的定位、不同RNA之间的相互关系、DNA与RNA转录调控的关系提供了简单有效的新手段。  相似文献   

10.
CRISPR(clustered regulatory interspersed short palindromic repeat)序列源于原核生物的一种获得性免疫系统,协同Cas(CRISPR-associated)蛋白家族参与抵抗噬菌体或其它病毒的二次感染,广泛存在于细菌(60%)和古菌(90%)中.病菌和宿主的共同进化导致了CRISPR-Cas系统具有多样性,可分为3大类(Ⅰ-Ⅲ),又分为10亚类.在Ⅱ型CRISPR-Cas系统基础上建立了RNA介导的CRISPR-Cas系统来修饰(删除、添加、激活、抑制)靶细胞中特定的基因序列,现已在人类细胞、小鼠、斑马鱼、酵母、细菌、果蝇、线虫、拟南芥中得以应用.本文主要介绍了Ⅱ型CRISPR-Cas系统的结构特点、作用机理及作为新型基因组定点修饰技术的研究进展,分析该技术优势,并展望CRISPRCas系统的应用前景.  相似文献   

11.
    
CRISPR-Cas are adaptable natural prokaryotic defense systems that act against invading viruses and plasmids. Among the six currently known major CRISPR-Cas types, the type VI CRISPR-Cas13 is the only one known to exclusively bind and cleave foreign RNA. Within the last couple of years, this system has been adapted to serve numerous, and sometimes not obvious, applications, including some that might be developed as effective molecular therapies. Indeed, Cas13 has been adapted to kill antibiotic-resistant bacteria. In a cell-free environment, Cas13 has been used in the development of highly specific, sensitive, multiplexing-capable, and field-adaptable detection tools. Importantly, Cas13 can be reprogrammed and applied to eukaryotes to either combat pathogenic RNA viruses or in the regulation of gene expression, facilitating the knockdown of mRNA, circular RNA, and noncoding RNA. Furthermore, Cas13 has been harnessed for in vivo RNA modifications including programmable regulation of alternative splicing, A-to-I and C to U editing, and m6A modifications. Finally, approaches allowing for the detection and characterization of RNA-interacting proteins have also been demonstrated. Here, we provide a comprehensive overview of the applications utilizing CRISPR-Cas13 that illustrate its versatility. We also discuss the most important limitations of the CRISPR-Cas13-based technologies, and controversies regarding them. This article is categorized under:
  • RNA Methods > RNA Analyses in Cells
  • RNA Processing > RNA Editing and Modification
  • RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications
  相似文献   

12.
13.
RNA interference is one of the most important mechanisms regulating gene expression. Small interfering RNAs (siRNAs) play an essential role in cell defense against virus infection or retrotransposons. The use of siRNAs gives wide opportunities for treating virus infections and cancer. RNA interference allows rapid construction of monogenic functional knockouts, thereby providing a convenient tool for researchers. The review considers the current views of the mechanisms of RNA interference and modern approaches to its practical application.  相似文献   

14.
15.
成簇规律间隔短回文序列(clustered regularly interspaced short palindromic repeats,CRISPR)系统是广泛存在于细菌中的一种特有的免疫防御机制,与特殊的Cas蛋白结合后能够有效的对外源的核酸分子进行特异性片段化,并进一步促进其降解。CRISPR-Cas系统具有独特的靶向性,为开发针对于核酸为底物的生物传感器提供了新的概念。越来越多的研究人员根据不同Cas蛋白的性质,建立了独特的逻辑系统对靶标物质进行准确识别,基于CRISPR技术的生物传感器也开拓了该技术在基因编辑以外领域的应用。介绍了CRISPR-Cas系统的起源、作用机制和科学分类,根据生物传感器的作用方式以及识别底物进行了分类,并对基于CRISPR-Cas系统的高效生物传感器的应用前景进行了展望。  相似文献   

16.
CRISPR-Cas9驱动的基因编辑新纪元   总被引:1,自引:0,他引:1       下载免费PDF全文
在自然界生物长期的进化过程中,细菌和古细菌演化出了一种适应性免疫系统用以抵御外源病毒与质粒的入侵,该系统由成簇规律间隔的短回文重复序列与相关基因组成,称之为CRISPR-Cas。近年来,这一领域突飞猛进,如今已经发展成为一种功能强大的基因编辑工具并在生物学及其相关领域得到广泛应用。本文重点综述了近年来CRISPR-Cas9系统在基因编辑、基因调节以及作为体外工具酶和特异性等方面的若干前沿进展。  相似文献   

17.
A sensitive in vitro editing assay for the pea chloroplast petB editing site has been developed and utilized to study the mechanism of C-to-U editing in chloroplast extracts. The in vitro editing assay was characterized by several criteria including: linearity with extract amount; linearity over time; dependence on assay components; and specificity of editing site conversion. The increase in the extent C-to-U conversion of the petB editing site was nearly linear with the amount chloroplast protein extract added, although the reaction appeared to decline in rate after approximately 30 min. The assay was tested for the importance of various assay components, and the omission of protease inhibitor and ATP was shown to dramatically reduce the extent of the editing reaction. Sequence analysis of cDNA clones obtained after an in vitro editing reaction demonstrated that 12 of 17 (71%) clones were edited, and that no other nucleotide changes in these cDNAs were detected. Thus, the fidelity and specificity of the in vitro editing system appears to be excellent, and this system should be suitable to study both mechanism of the editing reaction and editing site selection. The in vitro editing reaction was strongly stimulated by the addition of ATP, and all four NTPs and dNTPs stimulated the editing reaction except for rGTP, which had no effect. Thus, the nucleotide specificity of the editing reaction is broad, and is similar in this respect to the mitochondrial editing system. Most enzyme or processes specifically utilize ATP or GTP for phosphorylation and the ability to substitute other NTPs and dNTPs is unusual. RNA helicases have a similar broad nucleotide specificity and this may reflect the involvement of an RNA helicase in plant organelle editing.  相似文献   

18.
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely used in gene/genome targeting. Modifications of Cas9 enable these systems to become platforms for precise DNA manipulations. However, the utilization of CRISPR-Cas systems in RNA targeting remains preliminary. The discovery of type VI CRISPR-Cas systems (Cas13) shed light on RNA-guided RNA targeting. Cas13d, the smallest Cas13 protein, with a length of only ~930 amino acids, is a promising platform for RNA targeting compatible with viral delivery systems. Much effort has also been made to develop Cas9, Cas13a and Cas13b applications for RNA-guided RNA targeting. The discovery of new RNA-targeting CRISPR-Cas systems as well as the development of RNA-targeting platforms with Cas9 and Cas13 will promote RNA-targeting technology substantially. Here, we review new advances in RNA-targeting CRISPR-Cas systems as well as advances in applications of these systems in RNA targeting, tracking and editing. We also compare these Cas protein-based technologies with traditional technologies for RNA targeting, tracking and editing. Finally, we discuss remaining questions and prospects for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号