首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of action of some quinoline alkaloids and their derivatives on respiratory chain of rat liver and Candida lipolytica yeast mitochondria was studied. The alkaloids were shown to inhibit electron transfer in the respiratory chain. The site of their action is localized between b and c cytochromes. Besides their ability to inhibit electron transfer in the respiratory chain, alkaloids are shown to be specific inhibitors of "exogenous" NADH-dehydrogenase of C. lipolytica yeast mitochondria. In addition to their inhibiting properties alkaloids can stimulate ATPase activity of mitochondria. O-alkylation of pseudane-IX permits to differentiate the inhibiting and uncoupling properties of this alkaloid.  相似文献   

2.
The ATP-dependent DNase from Hemophilus influenzae digests double-stranded linear DNA molecules exonucleolytically while hydrolyzing large amounts of ATP to ADP. Various cross-linked linear duplex DNA molecules are partially resistant to the exonuclease action. Vaccinia DNA, containing natural terminal cross-links (probably in the form of terminal single-stranded loops), is much more slowly degraded than comparable "open-ended" DNA molecules, and ATP is consumed at a proportionately lower rate. It is postulated that the vaccinia DNA molecules undergo slow terminal cleavage by the single strand specific endonuclease activity of the enzyme, and are then rapidly degraded by the double strand exonuclease activity. Phage T7 DNA, containing an average of 100 4',5'8-trimethylpsoralen cross-links/molecule at random internal sites, is digested only to the extent of 2 to 3%. However, ATP hydrolysis continues at a linear rate long after DNA digestion has ceased. A stable enzyme-DNA complex is formed as demonstrated by co-sedimentation of DNA and ATPase activity in sucrose gradients. The hypothesis is advanced that the enzyme digests exonucleolytically to the first cross-link at each end of the DNA molecules where further movement is prevented. The enzyme then remains bound at the cross-links and functions continuously as an ATPase.  相似文献   

3.
Here, we report for the first time quinol peroxidase (QPO), an enzyme that uses ubiquinol-1 as an electron donor for the reduction of H(2)O(2) to water. We purified QPO to > 90% purity from the membrane fraction of Actinobacillus actinomycetemcomitans. QPO is a 53.6-kDa protein that contains three heme c molecules. The qpo gene was predicted to encode a putative bacterial cytochrome c peroxidase with N-terminal extensions containing an additional potential heme c-binding motif. Although qpo has high sequence homology to bacterial cytochrome c peroxidases, QPO did not catalyze peroxidation in the presence of horse heart cytochrome c. In addition, the cytoplasmic membrane of A. actinomycetemcomitans had apparent QPO-dependent peroxidase activity in the presence of NADH or succinate, which are substrates for the respiratory chain. Based on these findings, we present a new mechanism for the scavenging of reactive oxygen species in which quinol in the respiratory chain is consumed.  相似文献   

4.

Aims

Metarhizin A was originally isolated from Metarhizium flavoviride as a potent inhibitor of the growth of insect and mammalian cells. In this study, we aimed to understand the molecular targets of metarhizin A involved in its anti-proliferative activity against human cells.

Main methods

Cell cycle regulators and signaling molecules were examined by immunoblotting using specific antibodies. A mitochondria-enriched fraction was prepared from mouse liver, and mitochondrial activity was monitored using an oxygen electrode. Enzyme activity was measured using purified cytochrome c oxidase and permeabilized cells.

Key findings

Metarhizin A inhibits the growth of MCF-7 cells with an IC50 value of ~ 0.2 μM and other cells in a similar manner; a cell cycle-dependent kinase inhibitor, p21, is selectively induced. Significant amounts of reactive oxygen species (ROS) are generated and ERK1/2 is activated in cells treated with metarhizin A. Metarhizin A completely suppresses oxygen consumption by mitochondria, and potently inhibits the activity of cytochrome c oxidase. It induces cell death when MCF-7 cells are cultured under limiting conditions.

Significance

Metarhizin A is a potent inhibitor of cytochrome c oxidase and activates the MAPK pathway through the generation of ROS, which induces growth arrest of cells, and, under some conditions, enhances cell death. The cytochrome c oxidase system is a possible molecular target of metarhizin A.  相似文献   

5.
Throneberry GO 《Plant physiology》1967,42(11):1472-1478
Conidia of Verticillium albo-atrum Reinke and Berthold, collected from shake cultures grown in Czapek broth, were sonified for 4 or 8 minutes or ground frozen in a mortar to obtain cell-free homogenates. These were assayed for certain enzymes associated with respiratory pathways. Malic dehydrogenase was the most active, glucose-6-P and NADH dehydrogenase were less active, NADH-cytochrome c reductase, NADPH dehydrogenase, and cytochrome oxidase were low in activity, and succinic dehydrogenase and succinic cytochrome c reductase were very low to negligible in activity. No NADH oxidase activity was detected.

With the exception of NADH-cytochrome c reductase and possibly succinic dehydrogenase and cytochrome c reductase, there was no evident increase in specific activity of the enzymes during germination. Some NADH-cytochrome c reductase and a small amount of succinic-dehydrogenase and cytochrome c reductase were associated with the particulate fraction from 105,000 × g centrifugation. The other enzymes, including cytochrome oxidase, almost completely remained in the supernatant fraction.

Menadione and vitamin K-S(II) markedly stimulated NADH-cytochrome c reductase activity in the supernatant fraction but had much less effect on NADPH-cytochrome c reductase in this fraction or on either of these enzyme systems in the particulate fraction. Electron transport inhibitors affected particulate NADH- and NADPH-cytochrome c reductase activity but had no effect on these in the supernatant fraction.

  相似文献   

6.
The properties of the ubiquinol-cytochrome c reductase complex (bc1 complex) have been studied in respiratory defective mutants of Saccharomyces cerevisiae bearing lesions in the core 1 subunit. All the cor1 mutants examined have greatly reduced concentrations of mitochondrial cytochrome b and display succinate-cytochrome c reductase activities near the limits of detection. Two mutants (E576 and C7), however, had 5% of wild type activity when the cells were grown at 23 degrees C, but not at 37 degrees C. The temperature-sensitive phenotype was determined to result from substitution of either Arg or Glu for Gly68 of the core 1 subunit. The respiratory competent revertants E576/R8 and C7/R4 derived from E576 and C7 retain the temperature sensitivity of the original mutants. Both revertants are temperature sensitive in vivo, but only mitochondria isolated from E576/R8 are temperature sensitive in vitro. The bc1 complex of mitochondria isolated from this revertant displays a normal value of the ratio Kcat/Km for cytochrome c and four times higher than the wild type for duroquinol. The succinate-cytochrome c reductase activity of E576/R8 is almost completely abolished after incubation at 37 degrees C for 90 min. It is inferred that the quaternary structure of ubiquinol-cytochrome c reductase complex is more labile at the nonpermissive temperature in the mutant and undergoes an alteration such that cytochrome b is no longer able to receive electrons through either the "o" or the "i" site pathway. The temperature lability and kinetic properties of the mutant enzyme point to a requirement of the core 1 not only for assembly but also for the catalytic activity of the complex.  相似文献   

7.
Abstract A CO-reactive hemoprotein was purified from the mitochondrial membrane fraction of Tetrahymena pyriformis . It showed absorption peaks at 615 and 455 nm in the reduced form and an α peak at 565 nm in the pyridine ferrohemochrome spectrum. Although the spectral properties were apparently similar to those of 'cytochrome a 620' which was previously proposed as a mitochondrial terminal oxidase in T. pyriformis , it did not contain any molecules of heme a or copper atoms. Further, it showed neither cytochrome c oxidase nor cytochrome c peroxidase activity. These results suggest that 'cytochrome a 620' may not be the terminal oxidase in the mitochondrial respiratory chain of T. pyriformis .  相似文献   

8.
The supra-molecular assembly of the main respiratory chain enzymatic complexes in the form of "super-complexes" has been proved by structural and functional experimental evidence. This evidence strongly contrasts the previously accepted Random Diffusion Model stating that the complexes are functionally connected by lateral diffusion of small redox molecules (i.e. Coenzyme Q and cytochrome c). This review critically examines the available evidence and provides an analysis of the functional consequences of the intermolecular association of the respiratory complexes pointing out the role of Coenzyme Q and of cytochrome c as channeled or as freely diffusing intermediates in the electron transfer activity of their partner enzymes.  相似文献   

9.
The specificity of the interaction between the α-helices in two-chain coiled-coils is investigated by studying the formation of hybrid molecules in which one α-helix is a clam paramyosin chain and the other a worm paramyosin chain. Hybrids are formed by mixing, denaturation, and subsequent renaturation. Comparison is made with a blank solution in which renaturation precedes mixing, thus precluding hybridization. Hybrids are detected by a ruse based on the presence of free sulfhydryl functions on calm chains. This allows molecules comprising two clam chains to be covalently crosslinked by oxidation with 5,5′-dithiobis(2-nitrobenzoate). Worm paramyosin chains have no sulfhydryl, so molecules comprising two worm chains or hybrid molecules comprising one chain of each type cannot crosslink. When run on sodium dodecyl sulfate polyacrylamide gel electrophoresis, therefore, the protein separates into two well-resolved regions, one containing one-chain species and the other two-chain species. When the gels are scanned and quantitated, the hybrids show up as an increase in the fraction of material in the one-chain band compared with the fraction in the blank solution. When renaturation is direct, we find that the fraction of renaturated molecules that are hybrids varies from ~10% at 5°C to ~5% at 25°C. These are judged to be nonequilibrium (quenched) values. When renaturation is by slow annealing, the equilibrium fraction hybrids are ~4% and show a modest, but measurable, increase with increasing temperature. These data allow calculation of the equilibrium constant Kh and standard free energy for the hybridization reaction: (1/2)CC + (½)WW = CW, in which C(W) stands for an α-helical clam (worm) polypeptide chain. The temperature dependence gives the standard enthalpy and entropy of the reaction. We find ΔH ? 1800 cal mol?1 and ΔH ? 1.4 cal mol?1 K?1, using molarity concentration units and the infinitely dilute solution in NaCl/phosphate buffer as reference state. The possible molecular significance of these values is discussed, and it is concluded that the observed standard entropy arises essentially entirely from the rotational dissymmetry of the hybrids.  相似文献   

10.
The biochemical characteristics of the electron transfer chain are evaluated in purified non-synaptic (free) mitochondria from the forebrain of 60-week-old rats weekly subjected to peroxidative stress (once, twice, or three times) by the electrophilic prooxidant 2-cyclohexene-1-one. The following parameters are evaluated: (a) content of respiratory components, namely ubiquinone, cytochrome b, cytochrome c1, cytochrome c; (b) specific activity of enzymes, namely citrate synthase, succinate dehydrogenase, rotenone-sensitive NADH: cytochrome c reductase, cytochrome oxidase; (c) concentration of reduced glutathione (GSH). Before the first peroxidative stress induction, the rats are administered for 8 weeks by intraperitoneal injection of vehicle, papaverine, -yohimbine, almitrine or hopanthenate. The rats are treated also during the week(s) before the second or third peroxidative stress. The cerebral peroxidative stress induces: (a) initially, a decrease in brain GSH concentration concomitant with a decrease in the mitochondrial activity of cytochrome oxidase of aa3-type (complex IV), without changes in ubiquinone and cytochrome b populations; (b) subsequently, an alteration in the transfer molecule cytochrome c and, finally, in rotenone-sensitive NADH-cytochrome c reductase (complex I) and succinate dehydrogenase (complex II). The selective sensitivity of the chain components to peroxidative stress is supported by the effects of the concomitant subchronic treatment with agents acting at different biochemical steps. In fact, almitrine sets limits to its effects at cytochrome c content and aa3-type cytochrome oxidase activity, while -yohimbine sets limits to its effects at the level of tricarboxylic acid cycle (citrate synthase) and/or of intermediary between tricarboxylic acid cycle and complex II (succinate dehydrogenase). The effects induced by sequential peroxidative stress and drug treatment are supportive of the hypothesis that leakage of electrons (as a mandatory side-effect of the normal flux of electrons from both NADH and succinate to molecular oxygen) would be due to alteration in both availability of GSH and the content of components in the respiratory chain associated to energy-transducing system. In this field there is a cascade of derangements involving, at the beginning, the complex IV and, subsequently, other chain components, including cytochrome c and, finally, complexes II and I.  相似文献   

11.
A single intraperitoneal injection of hepatocarcinogen diethylnitrosamine induced emergence of a new subpopulation of "small" hepatocytes (64-128 mkm2), disappearing by the 30th day after carcinogen injection. But 5 injections of the tumor promotor phenobarbital 7 days after carcinogen treatment prolonged the existence of such "small" hepatocytes up to 3 months. The quantitative cytochemical measurement of succinic dehydrogenase activity (respiratory enzyme of mitochondria) showed these cells to be resistant to cytotoxic action of CCl4. These data are consistent with the earlier reported results obtained in analogous experiments with 4-dimethylaminoazobenzene and phenobarbital.  相似文献   

12.
BackgroundType 2C and 2D limb girdle muscular dystrophies (LGMD) are a group of autosomal recessive limb girdle muscular dystrophies manifested by proximal myopathy, impaired respiratory muscle function and cardiomyopathy. The correlation and the prognostic impact of respiratory and heart impairment are poorly described. We aimed to describe the long-term cardiac and respiratory follow-up of these patients and to determine predictive factors of cardio-respiratory events and mortality in LGMD 2C and 2D.MethodsWe reviewed the charts of 34 LGMD patients, followed from 2005 to 2015, to obtain echocardiographic, respiratory function and sleep recording data. We considered respiratory events (acute respiratory failure, pulmonary sepsis, atelectasis or pneumothorax), cardiac events (acute heart failure, significant cardiac arrhythmia or conduction block, ischemic stroke) and mortality as outcomes of interest for the present analysis.ResultsA total of 21 patients had type 2C LGMD and 13 patients had type 2D. Median age was 30 years [IQR 24–38]. At baseline, median pulmonary vital capacity (VC) was 31% of predicted value [20–40]. Median maximal inspiratory pressure (MIP) was 31 cmH2O [IQR 20.25–39.75]. Median maximal expiratory pressure (MEP) was 30 cm H2O [20–36]. Median left ventricular ejection fraction (LVEF) was 55% [45–64] with 38% of patients with LVEF <50%. Over a median follow-up of 6 years, we observed 38% respiratory events, 14% cardiac events and 20% mortality. Among baseline characteristics, LVEF and left ventricular end diastolic diameter (LVEDD) were associated with mortality, whilst respiratory parameters (VC, MIP, MEP) and the need for home mechanical ventilation (HMV) were associated with respiratory events.ConclusionIn our cohort of severely respiratory impaired type 2C and 2D LGMD, respiratory morbidity was high. Cardiac dysfunction was frequent in particular in LGMD 2C and had an impact on long-term mortality.

Trial Registration

ClinicalTrials.gov NCT02501083  相似文献   

13.
We have recently demonstated the dissection of the transduction process in the barnacle photoreceptor into antagonistic "excitor" and "inhibitor" processes. We now show that (a) the interaction between the two processes proceeds even when they are induced in different pigment molecules; (b) the excitor process appears to be slightly facilitated if those pigment molecular unaffected by the stimulus are in the stable metarhodopsin state or slightly inhibited if they are in the rhodopsin state; (c) there is a facilitatory interaction among the excitor processes induced in different pigment molecules. In case a, the interaction has a range of at least a few hundred angstroms, taking place in a time of less than a fraction of a second; in cases b and c, the range could be as little as "nearest neighbors" and the time as much as a few seconds. All these interactions could be intermediated by the "excitor" if it is a transmitter.  相似文献   

14.
Membrane fractions were isolated from Streptococcus faecalis cells of a glycolyzing microorganism, devoid of the respiratory chain, using the methods of osmotic shock of the protoplasts, ultrasonic treatment of the cells and ultrasonic treatment of the protoplasts. All fractions possessed the ATPase activity, the highest activity being observed in the fraction isolated by ultrasonication of the protoplasts. All preparations were estimated with respect to the presence of vesicles, formed by the "inside-out" and "inside-in" membranes, using ATPase as a marker of the membrane orientation. In the membrane fractions obtained by ultrasonication of the protoplasts, the "inside-out" vesicles were prevalent. ATP-dependent energization of the membranes, sensitive to the action of dicyclohexylcarbodiimide and tetrachlorotrifluoromethyl benzimidazole, was demonstrated by measuring the transport of the lipophylic anion of phenyldicarbaundecaborane and aniline naphthalene sulfonate fluorescence.  相似文献   

15.
Partially reduced oxygen species are toxic, yet activated sea urchin eggs produce H2O2, suggesting that the control of oxidant stress might be critical for early embryonic development. We show that the Ca2(+)-stimulated NADPH oxidase that generates H2O2 in the "respiratory burst" of fertilization is activated by a protein kinase, apparently to regulate the synthesis of this potentially lethal oxidant. The NADPH oxidase was separated into membrane and soluble fractions that were both required for H2O2 synthesis. The soluble fraction was further purified by anion exchange chromatography. The factor in the soluble fraction that activated the membrane-associated oxidase was demonstrated to be protein kinase C (PKC) by several criteria, including its Ca2+/phophatidylserine/diacyl-glycerol-stimulated histone kinase activity, its response to phorbol ester, its inhibition by a PKC pseudosubstrate peptide, and its replacement by purified mammalian PKC. Neither calmodulin-dependent kinase II, the catalytic subunit of cyclic AMP-dependent protein kinase, casein kinase II, nor myosin light chain kinase activated the oxidase. Although the PKC family has been ubiquitously implicated in cellular regulation, enzymes that require PKC for activation have not been identified; the respiratory burst oxidase is one such enzyme.  相似文献   

16.
17.
Brain stem respiratory neuron activity in the cat was studied in relation to efferent outflow (phrenic discharge) under the influence of several forcing inputs: 1) CO2 tension: hypocapnia produces disappearance of firing in some neurons, and conversion of respiratory-modulated to continuous (tonic) firing in others. 2) Lung inflation: during the Bruer-Hering reflex, some neurons have "classical" responses and others have "paradoxical" responses (i.e., opposite in direction to peripheral discharge). 3) Electrical stimulation: stimulus trains to the pneumotaxic center region (rostral lateral pons) produce phase-switching, whose threshold is: a) sharp (indicating action of positive-feedback mechanisms), and b) dependent on timing of stimulus delivery (indicating continuous excitability changes during each respiratory phase). Auto- and crosscorrelation analysis revealed the existence of short-term interactions between: a) medullary inspiratory (I) neurons and phrenic motoneurons; b) pairs of medullary I neurons; c) medullary I neurons and expiratory (E) neurons. A model of the respiratory oscillator is presented, in which the processes of conversion of tonic to phasic activity and switching of the respiratory phases are explained by recurrent excitatory and inhibitory loops.  相似文献   

18.
Hemorphins are multifunctional peptides derived from hemoglobin or blood processing. They have been found at high levels within the central nervous system where they have a direct effect on neuronal cells via peptidergic receptors. As relatively few studies have examined their metabolic stability in the brain, such investigation was performed to locate the cellular distribution of enzymatic activity against these peptides. High-performance liquid chromatography (HPLC) combined with electrospray ionisation mass spectrometry (ESI-MS) allows identification of degradation products resulting from incubation of hemorphin-7 peptides (LVV-hemorphin-7, VV-hemorphin-7 and hemorphin-7) with subcellular fractions isolated from rat brain tissue. Metabolic activities were found against the three peptides in brain homogenate and subcellular fractions with the highest metabolic activity (<3% peptide remaining after 10 min) observed in the microsomal fraction which processed hemorphin-7 peptides mainly into N-terminal fragments (giving LVVH5) suggesting action of brain-membrane enzymes with C-terminal specificity. Incubation of the ACE inhibitor captopril (0.2 μM) with microsomal fraction, together with LVVH7, decreased the processing of LVVH7 to form LVVH5 by 85%.  相似文献   

19.
Mitochondria were isolated from detergent-treated Epstein-Barr virus-transformed human lymphocytes to examine their potential use in the study of the functional expression of genetic disorders of the respiratory chain. The increase of cytochrome c oxidase activity in the mitochondrial fraction indicated a 6-fold purification of intact mitochondria. Polarographic and spectrophotometric studies revealed that the isolated mitochondria were functionally well preserved. Furthermore, the isolated mitochondria supported an active in organello protein synthesis, which was dependent on the presence of a respiratory substrate generating ATP and was essentially abolished by chloramphenicol or by a specific respiratory chain inhibitor, such as antimycin. Thus, B lymphoblastoid cell lines constitute a valuable source of mitochondria to investigate mitochondrial functions in patients affected by respiratory chain disorders.  相似文献   

20.
Coptidis Rhizoma is derived from the dried rhizome of Ranunculaceous plants and is a commonly used traditional Chinese medicine. Although Coptidis Rhizoma is commonly used for its many therapeutic effects, antiviral activity against respiratory syncytial virus (RSV) has not been reported in detail. In this study, we evaluated the antiviral activities of Coptidis Rhizoma extract (CRE) against RSV in human respiratory tract cell line (HEp2) and BALB/c mice. An effective dose of CRE significantly reduces the replication of RSV in HEp2 cells and reduces the RSV-induced cell death. This antiviral activity against RSV was through the induction of type I interferon-related signaling and the antiviral state in HEp2 cells. More importantly, oral administration of CRE exhibited prophylactic effects in BALB/c mice against RSV. In HPLC analysis, we found the presence of several compounds in the aqueous fraction and among them; we confirmed that palmatine was related to the antiviral properties and immunemodulation effect. Taken together, an extract of Coptidis Rhizoma and its components play roles as immunomodulators and could be a potential source as promising natural antivirals that can confer protection to RSV. These outcomes should encourage further allied studies in other natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号