首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three enzymatic activities (3 alpha/beta-hydroxysteroid dehydrogenase, 20 beta- and 20 alpha-hydroxysteroid dehydrogenases) were measured in testes of pigs as a function of age. Earlier studies reported a highly purified 20 beta-hydroxysteroid dehydrogenase from neonatal pig testes that also showed strong 3 alpha/beta-hydroxysteroid dehydrogenase activity [Ohno et al., J. Steroid Biochem. Molec. Biol. 38 (1991) 787-794]. We report here that neonatal pigs testis is rich in 3 alpha/beta- and 20 beta-hydroxysteroid dehydrogenase activities, both of which fall to low levels (measured as specific activity) at 60 days. Thereafter the activity of 3 alpha/beta-reduction rises to high levels whereas 20 beta-reduction remains low. Activity of 20 alpha-reduction is of intermediate level in the neonate, falls to a nadir at 60 days and rises to high levels in the mature animal. Western blots of cytosolic proteins show that the bifunctional enzyme (3 alpha/beta-plus 20 beta-hydroxysteroid dehydrogenase) is high in neonatal testes and falls to low levels at maturity. It is proposed that the neonatal testis possesses the bifunctional enzyme which is replaced by a second enzyme at maturity, that is a 3 alpha/beta-hydroxysteroid dehydrogenase without 20 beta-reductase activity. The possible functional significance of these changes is considered.  相似文献   

2.
We have synthesized and characterized 5'-bromoacetamido-5'-deoxyadenosine (5'-BADA), a new reagent for labeling adenine nucleotide binding sites in enzymatic and regulatory proteins. 5'-BADA possessed exceptionally high solubility and stability in aqueous buffers between pH 5.0 and 8.6 at 25 degrees C. A Dixon plot of data from enzyme kinetic measurements showed that 5'-BADA is a competitive inhibitor of NADH oxidation by 3 alpha,20 beta-hydroxysteroid dehydrogenase with a Ki value of 11.8 mM. This compares with a Ki value of 10 mM for adenosine under similar experimental conditions. Incubating 5'-BADA with a 3 alpha,20 beta-hydroxysteroid dehydrogenase at pH 7.0 and 25 degrees C caused simultaneous loss of both 3 alpha and 20 beta activity. The enzyme inactivation reaction proceeded by a first order kinetic process. The rates of enzyme inactivation as a function of 5'-BADA concentration obeyed saturation kinetics. 2-Bromoacetamide, at ten times the maximum concentration of 5'-BADA, had no measurable effect on enzyme activity during 25 h of incubation. NADH and AMP protected 3 alpha,20 beta-hydroxysteroid dehydrogenase against inactivation by 5'-BADA. The results suggest that 5'-BADA inactivates the enzyme by irreversibly binding to the adenine domain of the NADH cofactor binding region at the catalytic site of 3 alpha,20 beta-hydroxysteroid dehydrogenase. Irreversible binding follows from an alkylation reaction between the bromoacetamido side chain of 5'-BADA and an amino acid at or near the enzyme catalytic site. 5'-BADA is presented as a new reagent for selectively labeling amino acid residues at the adenine nucleotide binding sites of enzymatic and regulatory proteins.  相似文献   

3.
Besides residue of the catalytic triad that is conserved in the short-chain dehydrogenase/reductase (SDR) superfamily, a Cys side chain reportedly plays functional roles in NADP-dependent 15-hydroxyprostaglandin dehydrogenase and human carbonyl reductase (CR). The three-dimensional structure of porcine 3alpha/beta,20beta-hydroxysteroid dehydrogenase, also known as porcine testicular carbonyl reductase, demonstrates the proximity of the Cys 226 side chain to the bound NADP. However, no clear explanation with respect to the basis of the catalytic function of the Cys residue is yet available. By chemical modification, point mutation, and kinetic analysis, we determine that two Cys residues, Cys 149 and Cys 226, are involved in the enzyme activity. Furthermore, we found that pretreatment with NADP markedly protects the enzyme from inactivation by 4-(hydroxyl mercury) benzoic acid (4-HMB), thereby confirming that Cys 226 is involved in binding of the cofactor. On the basis of the tertiary structure of 3alpha/beta,20beta-HSD, the possible roles of Cys residues, especially that of Cys 226, in enzyme action and in the binding of cofactor NADPH are discussed.  相似文献   

4.
M E Baker 《Prostaglandins》1991,42(5):391-410
The recent determination of the amino acid sequences of enzymes that metabolize prostaglandins and steroids has revealed interesting connections between some of these enzymes. Human placental 15-hydroxyprostaglandin dehydrogenase, which catalyzes the oxidation of the C15 alcohol on prostaglandins E2 and F2 alpha, is homologous to 11 beta-hydroxysteroid, 17 beta-hydroxysteroid, and 3 alpha, 20 beta-hydroxysteroid dehydrogenases. That is, these four enzymes are derived from a common ancestor. Moreover, enzymes important in synthesis of antibiotics and proteins synthesized by soil bacteria that form nitrogen-fixing nodules in alfalfa and soybeans are homologous to 15-hydroxyprostaglandin dehydrogenase. These homologies provide important insights into the origins of intercellular communication that is mediated by prostaglandins, steroids, and fatty acids.  相似文献   

5.
With the exception of 3beta-hydroxy-steroid dehydrogenase all the hydroxysteroid dehydrogenases of adult male and female rat kidney show significant sex differences in their activities. Interference with the organisms endocrine balance (gonadectomy on day 25 of life, hypophysectomy on day 50, a combination of both these operations, administration of testosterone or oestradiol) demonstrates that the sexually differentiated enzyme activities may be classified as androgen or oestrogen dependent, the respective sex hormone acting either in an inductive or repressive manner. The criteria for androgen dependency (microsomal 3alpha- and 20beta-, cytoplasmic 17beta- and 20alpha- hydroxysteroid dehydrogenase) are the feminization of the enzyme activity in male animals after castration and the masculinization of the activity in male and female castrates as well as in normal female animals after administration of testosterone. This latter effect on normal females cannot be a testosterone mediated inhibition of ovarian function since ovariectomy has no effect. For 3alpha-, 20alpha-, and 20beta-hydroxysteroid dehydrogenase the effects of hypophysectomy parallel those of gonadectomy. However, after hypophysectomy the activity of 17beta-hydroxysteroid dehydrogenase falls significantly below the gonadectomized level. The androgen effect on 3alpha and 20beta-hydroxysteroid dehydrogenase is independent of the hypophysis, whereas that of 17beta- and 20alpha-hydroxysteroid dehydrogenase is mediated by the hypophysis.  相似文献   

6.
Several 2,3- and 3,4-steroidal fused pyrazoles have been investigated as potential inhibitors of NAD(P)H-dependent steroid oxidoreductases. These compounds are proven to be potent, specific inhibitors for 3(17) beta-hydroxysteroid dehydrogenase from Pseudomonas testosteroni with Ki values of 6-100 nM. In contrast, the activities of 3 alpha,20 beta-hydroxysteroid dehydrogenase from Streptomyces hydrogenans, steroid 5 alpha-reductase from rat prostate, and 3 alpha-hydroxysteroid dehydrogenase from rat liver were unaffected by micromolar concentrations of these compounds. Product and dead-end inhibition studies indicate an ordered association to the beta-dehydrogenase with the cofactor binding prior to substrate or inhibitor. From the results of double inhibition experiments, it is proposed that inhibition occurs through formation of an enzyme-NAD+-inhibitor ternate. On the basis of pH profiles of Vm/Km, Vm, and 1/Ki and of absorbance difference spectra, a hypothetical mechanism of inhibition by the steroidal pyrazoles, drawn by analogy from the inhibition of liver alcohol dehydrogenase by alkylpyrazoles [Theorell, H., & Yonetani, T. (1963) Biochem. Z. 338, 537-553; Andersson, P., Kvassman, J. K., Lindstr?m, A., Oldén, B., & Pettersson, G. (1981) Eur. J. Biochem. 113, 549-554], is reconsidered. The pH studies and enzyme modification experiments by diethyl pyrocarbonate suggest the involvement of histidine in binding of the inhibitor. A modified proposal for the structure of the enzyme-NAD+-steroidal pyrazole complex is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The enzymes studied were cholesterol esterase, cholesterol ester synthetase 3 beta-hydroxysteroid dehydrogenase and 20 alpha-hydroxysteroid dehydrogenase. PGF-2 alpha reduced the activities of 3 beta-hydroxysteroid dehydrogenase and cholesterol esterase but did not affect those of cholesterol ester synthetase of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

8.
Thirty-three women with hirsutism and oligomenorrhea were stimulated with synthetic adrenocorticotropin, as well as 12 controls. Of these test subjects 20 demonstrated significantly greater rises of serum levels of 3,17-dihydroxy-5-pregnen-20-one as well as dehydroepiandrosterone sulfate suggesting an attenuated deficiency of 3 beta-hydroxysteroid dehydrogenase. Five did not show similar rises of these compounds but revealed significant elevations of 17-hydroxyprogesterone as would be expected in 21-hydroxylase deficiency. None of the subjects were virilized. Eight additional hirsute women were not different than the normals. It appears that a subtle deficiency of 3 beta-hydroxysteroid dehydrogenase may be more common as an explanation of a syndrome resembling polycystic ovarian disease than has been previously recognized.  相似文献   

9.
The cytochrome P450 enzyme, 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), is a potential target in hormone-dependent cancers. We report the synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a number of azole-based compounds as inhibitors of the two components of P450(17alpha), i.e., 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results suggest that the imidazole-based compounds are highly potent inhibitors of both components, with N-7-phenyl heptyl imidazole (21) (IC(50)=0.32 microM against 17alpha-OHase and IC(50)=0.10 microM against lyase) and N-8-phenyl octyl imidazole (23) (IC(50)=0.25 microM against 17alpha-OHase and IC(50)=0.21 microM against lyase) being the two most potent compounds within the current study, in comparison to ketoconazole (KTZ) (IC(50)=3.76 microM against 17alpha-OHase and IC(50)=1.66 microM against lyase). Furthermore, consideration of the inhibitory activity against the two components show that the compounds tested are less potent towards the 17alpha-OHase component, a desirable property in the development of novel inhibitors of P450(17alpha). Structure-activity relationship determination of the range of compounds synthesised suggests that logP (log of the partition coefficient) is a key physicochemical factor in determining the overall inhibitory activity. In an effort to determine the viability of these compounds becoming potential drug candidates as well as to show specificity of these compounds, we undertook the biochemical evaluation of the synthesised compounds against two isozymes of 17beta-hydroxysteroid dehydrogenase [namely type 1 (17beta-HSD1) and type 3 (17beta-HSD3)] and 3beta-hydroxysteroid dehydrogenase (3beta-HSD). Consideration of the inhibitory activity possessed by the compounds considered within the current study against 3beta-HSD, 17beta-HSD1 and 17beta-HSD3 shows that there is no clear structure-activity relationship and that the compounds appear to possess similar inhibitory activity against both 3beta-HSD and 17beta-HSD3 whilst against 17beta-HSD1, the compounds appear to possess poor inhibitory activity at [I]=100 microM. Indeed, two of the most potent inhibitors of P450(17alpha), (compounds 21 and 23), were found to possess relatively good levels of inhibition against the three enzymes-compound 21 was found to possess approximately 32%, approximately 21% and approximately 37% inhibition whilst compound 23 was found to possess approximately 38%, approximately 30% and approximately 28% inhibition against 3beta-HSD, 17beta-HSD1 and 17beta-HSD3 respectively. We therefore concluded that the azole-based compounds synthesised within the current study are not suitable for further consideration as potential drug candidates due to their lack of specificity.  相似文献   

10.
When grown in the presence of bile acids, two strains of Clostridium limosum were found to contain significant amounts of NADP-dependent 7 alpha/7 beta-hydroxysteroid dehydrogenase and NAD-dependent 7 alpha-hydroxysteroid dehydrogenase which were active against conjugated and unconjugated bile acids. No measurable activity could be found when deoxycholic acid (3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid) was used as substrate. No 7 beta-hydroxysteroid dehydrogenase activity and only a trace of 7 alpha-hydroxysteroid dehydrogenase activity could be demonstrated when bile acid was deleted from the growth medium. If bile acid was added after the time of inoculation, the amounts of 7 alpha/7 beta-hydroxysteroid dehydrogenase were greatly reduced. Enzyme enhancement was blocked by addition of rifampicin. The 7 alpha/7 beta-hydroxysteroid dehydrogenase components had pH optima of approximately 10.5. Both the 7 alpha/7 beta-hydroxysteroid dehydrogenase activities were heat-labile, with the 7 beta-component being the more stable of the two. When ranked according to the level of enzymes induced, the order in increasing bile acid induction power on an equimolar scale (0.4 mM) was: 7-ketodeoxycholic acid, cholic acid, chenodeoxycholic acid, and deoxycholic acid. Both 7-ketolithocholic acid and ursodeoxycholic acid were ineffective as enzyme inducers. Optimal induction was achieved with high concentrations of cholic acid (5 mM) and a harvest time of 24 hr. Addition of ursodeoxycholic acid to medium containing optimal concentrations of deoxycholic acid suppressed enzyme induction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Seven multiforms of indanol dehydrogenase were isolated in a highly purified state from male rabbit liver cytosol. The enzymes were monomeric proteins with similar molecular weights of 30,000-37,000 but with distinct electrophoretic mobilities. All the enzymes oxidized alicyclic alcohols including benzene dihydrodiol and hydroxysteroids at different optimal pH, but showed clear differences in cofactor specificity, steroid specificity, and reversibility of the reaction. Two NADP+-dependent enzymes exhibited both 17 beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes and 3 alpha-hydroxysteroid dehydrogenase activity for 5 beta-androstan-3 alpha-ol-17-one. Three of the other enzymes with dual cofactor specificity catalyzed predominantly 5 beta-androstane-3 alpha,17 beta-diol dehydrogenation. The reverse reaction rates of these five enzymes were low, whereas the other two enzymes, which had 3 alpha-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes or 3(17)beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes, highly reduced 3-ketosteroids and nonsteroidal aromatic carbonyl compounds with NADPH as a cofactor. All the enzymes exhibited Km values lower for the hydroxysteroids than for the alicyclic alcohols. The results of kinetic analyses with a mixture of 1-indanol and hydroxysteroids, pH and heat stability, and inhibitor sensitivity suggested strongly that, in the seven enzymes, both alicyclic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities reside on a single enzyme protein. On the basis of these data, we suggest that indanol dehydrogenase exists in multiple forms in rabbit liver cytosol and may function in in vivo androgen metabolism.  相似文献   

12.
D A Holt  M A Levy  M Brandt  B W Metcalf 《Steroids》1986,48(3-4):213-222
A novel A-ring pyrazole steroid, 2,3-bisaza-A-nor-1,5(10)-estradien-17 beta-ol (3), was synthesized as a potential inhibitor of steroidal NAD(P)H-dependent oxidoreductases. Compound 3 proved to be a potent inhibitor of 3(17)beta-hydroxysteroid dehydrogenase (from P. testosteroni) exhibiting a Ki of 90 +/- 20 nM. The activities of 3 alpha,20 beta-hydroxysteroid dehydrogenase (from S. hydrogenans), steroid-5 alpha-reductase (from rat prostate), and 3 alpha-hydroxysteroid dehydrogenase (from rat liver) were unaffected by pyrazole 3. Dead end inhibition studies indicate an ordered binding of cofactor prior to substrate or pyrazole inhibitor.  相似文献   

13.
14.
Human brain short chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) was found to catalyze the oxidation of 17beta-estradiol and dihydroandrosterone as well as alcohols. Mitochondria have been demonstrated to be the proper location of this NAD+-dependent dehydrogenase in cells, although its primary structure is identical to an amyloid beta-peptide binding protein reportedly associated with the endoplasmic reticulum (ERAB). This fatty acid beta-oxidation enzyme was identified as a novel 17beta-hydroxysteroid dehydrogenase responsible for the inactivation of sex steroid hormones. The catalytic rate constant of the purified enzyme was estimated to be 0.66 min-1 with apparent Km values of 43 and 50 microM for 17beta-estradiol and NAD+, respectively. The catalytic efficiency of this enzyme for the oxidation of 17beta-estradiol was comparable with that of peroxisomal 17beta-hydroxysteroid dehydrogenase type 4. As a result, the human SCHAD gene product, a single-domain multifunctional enzyme, appears to function in two different pathways of lipid metabolism. Because the catalytic functions of human brain short chain L-3-hydroxyacyl-CoA dehydrogenase could weaken the protective effects of estrogen and generate aldehydes in neurons, it is proposed that a high concentration of this enzyme in brain is a potential risk factor for Alzheimer's disease.  相似文献   

15.
Rat liver contains two cytosolic enzymes (TBER1 and TBER2) that reduce 6-tert-butyl-2,3-epoxy-5-cyclohexene-1,4-dione into its 4R- and 4S-hydroxy metabolites. In this study, we cloned the cDNA for TBER1 and examined endogenous substrates using the homogenous recombinant enzyme. The cDNA encoded a protein composed of 323 amino acids belonging to the aldo-keto reductase family. The recombinant TBER1 efficiently oxidized 17beta-hydroxysteroids and xenobiotic alicyclic alcohols using NAD+ as the preferred coenzyme at pH 7.4, and showed low activity towards 20alpha- and 3alpha-hydroxysteroids, and 9-hydroxyprostaglandins. The enzyme was potently inhibited by diethylstilbestrol, hexestrol and zearalenone. The coenzyme specificity, broad substrate specificity and inhibitor sensitivity of the enzyme differed from those of rat NADPH-dependent 17beta-hydroxysteroid dehydrogenase type 5, which was cloned from the liver and characterized using the recombinant enzyme. The mRNA for TBER1 was highly expressed in rat liver, gastrointestinal tract and ovary, in contrast to specific expression of 17beta-hydroxysteroid dehydrogenase type 5 mRNA in the liver and kidney. Thus, TBER1 represents a novel type of 17beta-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. In addition, TBER2 was identified as 3alpha-hydroxysteroid dehydrogenase on chromatographic analysis of the enzyme activities in rat liver cytosol and characterization of the recombinant 3alpha-hydroxysteroid dehydrogenase.  相似文献   

16.
M E Baker  R Blasco 《FEBS letters》1992,301(1):89-93
Mammalian 3 beta-hydroxysteroid dehydrogenase and plant dihydroflavonol reductases are descended from a common ancestor. Here we present evidence that Nocardia cholesterol dehydrogenase, E. coli UDP-galactose-4 epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus are homologous to 3 beta-hydroxysteroid dehydrogenase and dihydroflavonol reductase. Analysis of a multiple alignment of these sequences indicates that viral ORFs are most closely related to the mammalian 3 beta-hydroxysteroid dehydrogenases. The ancestral protein of this superfamily is likely to be one that metabolized sugar nucleotides. The sequence similarity between 3 beta-hydroxysteroid dehydrogenase and the viral ORFs is sufficient to suggest that these ORFs have an activity that is similar to 3 beta-hydroxysteroid dehydrogenase or cholesterol dehydrogenase, although the putative substrates are not yet known.  相似文献   

17.
In addition to the well-known 3 alpha,20 beta-hydroxysteroid dehydrogenase ('cortisone reductase'), Streptomyces hydrogenans produces a relatively stable, NAD-dependent 20 alpha-hydroxysteroid dehydrogenase of molecular mass approximately 48 kDa. This enzyme catalyzes the transfer of hydrogen from the 4-pro-S position of NADH.  相似文献   

18.
Alveolar macrophages obtained by bronchoalveolar lavage of lungs of male and female guinea pigs were incubated with tritium-labelled androstenedione to evaluate the steroid metabolizing enzymes in these cells. The radiolabeled metabolites were isolated and thereafter characterized as testosterone, 5 alpha-androstanedione, 5 alpha-dihydrotestosterone, androsterone, isoandrosterone, 5 alpha-androstane-3 alpha, 17 beta-diol and 5 alpha-androstane-3 beta, 17 beta-diol. Thus, the following androstenedione metabolizing enzymes are present in guinea-pig alveolar macrophages: 17 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase, 3 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase. The predominant androstenedione metabolizing enzyme activity present in alveolar macrophages was 17 beta-hydroxysteroid dehydrogenase. The rate of testosterone formation increased with incubation time up to 4 h, and with macrophage number up to 1.6 X 10(7) cells per ml. Androstenedione metabolism was similar in alveolar macrophages obtained both from male and female guinea pigs. These results suggest that alveolar macrophages may be a site of peripheral transformation of blood-borne androstenedione to biologically potent androgens in vivo and, therefore, these cells may contribute to the plasma levels of testosterone in the guinea pig.  相似文献   

19.
The role of aldosterone in regulation of electrogenic Na+ transport is well established, though mineralocorticoid receptors bind glucocorticoids with similar binding affinity as aldosterone and plasma concentration of aldosterone is much lower than glucocorticoids. In mammals, the aldosterone specificity is conferred on the low-selective mineralocorticoid receptors by glucocorticoid inactivating enzyme 11beta-hydroxysteroid dehydrogenase (11HSD) that converts cortisol or corticosterone into metabolites (cortisone, 11-dehydrocorticosterone) with lower affinity for these receptors. The present study examined the chicken intestine, whether changes in 11HSD activity are able to modulate the effect of corticosterone on Na+ transport, and how the metabolism of this hormone is distributed within the intestinal wall. This study shows that not only aldosterone, but also corticosterone (B), was able to increase the electrogenic Na+ transport in chicken caecum in vitro. The effect of corticosterone was higher in the presence of carbenoxolone, an inhibitor of steroid dehydrogenases, and was comparable to the effect of aldosterone. The metabolism of B in the intestine was studied; results showed oxidation of this steroid to 11-dehydrocorticosterone (A) and reduction to 11-dehydro-20beta-dihydrocorticosterone (20diA) as the main metabolic products at low nanomolar concentration of the substrate. In contrast, 20beta-dihydrocorticosterone and 20diA were the major products at micromolar concentration of B. Progesterone was converted to 20beta-dihydroprogesterone. The metabolism of corticosterone was localized predominantly in the intestinal mucosa (enterocytes). In conclusion, the oxidation at position C11 and reduction at position C20 suggest that both 11HSD and 20beta-hydroxysteroid dehydrogenase (20HSD) operate in the chicken intestine and that the mucosa of avian intestine possesses a partly different system of modulation of corticosteroid signals than mammals. This system seems to protect the aldosterone target tissue against excessive concentration of corticosterone and progesterone.  相似文献   

20.
Epidemiologic data suggest a relationship between dietary intake of phytochemicals and a lower incidence of some cancers. Modulation of steroid hormone metabolism has been proposed as a basis for this effect. It has been shown that aromatase, 3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase (17beta-HSD) are inhibited by the isoflavones, genistein and daidzein, and by coumestrol. In general, the extent of inhibition has been expressed in terms of IC50-values, which do not give information as to the pattern of inhibition, i.e., competitive, non-competitive, or mixed. Less is known of the effects of these compounds on 3alpha-HSD. The human lung is known to have a high level of 17beta-HSD and 3alpha-HSD activity. During the course of studies to characterize both activities in normal and inflamed lung and lung tumors we noted that 3alpha-HSD activity with 5alpha-DHT of microsomes from normal, adult lung was particularly susceptible to inhibition by coumestrol. To clarify the pattern of inhibition, the inhibition constants Ki and K'i were evaluated from plots of 1/v versus [I] and [S]/v versus [I]. Genistein, daidzein and coumestrol gave mixed inhibition patterns versus both 5alpha-DHT and NADH. In contrast, 5alpha-androstane-3,17-dione and 5alpha-pregnane-3,20-dione were competitive with 5alpha-DHT. NAD inhibited competitively with NADH. Our findings demonstrate that phytochemicals have the potential to inhibit 5alpha-DHT metabolism and thereby affect the androgen status of the human lung. The observation of a mixed inhibition pattern suggests these compounds bind to more than one form of the enzyme within the catalytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号