首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.  相似文献   

2.
In vitro pre-clinical testing of total knee replacement (TKR) devices is a necessary step in the evaluation of new implant designs. Whole joint knee simulators, like the Kansas knee simulator (KKS), provide a controlled and repeatable loading environment for comparative evaluation of component designs or surgical alignment under dynamic conditions. Experimental testing, however, is time and cost prohibitive for design-phase evaluation of tens or hundreds of design variations. Experimentally-verified computational models provide an efficient platform for analysis of multiple components, sizes, and alignment conditions. The purpose of the current study was to develop and verify a computational model of a dynamic, whole joint knee simulator. Experimental internal-external and valgus-varus laxity tests, followed by dynamic deep knee bend and gait simulations in the KKS were performed on three cadaveric specimens. Specimen-specific finite element (FE) models of posterior-stabilized TKR were created from magnetic resonance images and CAD geometry. The laxity data was used to optimize mechanical properties of tibiofemoral soft-tissue structures on a specimen-specific basis. Each specimen was subsequently analyzed in a computational model of the experimental KKS, simulating both dynamic activities. The computational model represented all joints and actuators in the experimental setup, including a proportional-integral-derivative (PID) controller to drive quadriceps actuation. The computational model was verified against six degree-of-freedom patellofemoral (PF) and tibiofemoral (TF) kinematics and actuator loading during both deep knee bend and gait activities, with good agreement in trends and magnitudes between model predictions and experimental kinematics; differences were less than 1.8 mm and 2.2° for PF and TF translations and rotations. The whole joint FE simulator described in this study can be applied to investigate a wide range of clinical and research questions.  相似文献   

3.
In this study, a constitutive law based on a nearly incompressible transversely isotropic hyperelastic potential is proposed to describe the mechanical behaviour of the anterior cruciate ligament (ACL). The constitutive formulation is valid for arbitrary kinematics (finite elasticity) and is thermodynamically admissible. Based on anatomic measurements performed on a human cadaveric knee specimen, a three-dimensional continuum finite element model of the ACL was developed. The numerical model was used to simulate clinical procedures such as the Lachman and drawer tests, which are performed to assess the existence and severity of an ACL injury. Finite element analyses showed that the two procedures have distinct effects on the behaviour of the ACL and provided new insights into the stress distributions. Moreover, good qualitative and quantitative agreement was found between the present study and results obtained experimentally in comparable conditions.  相似文献   

4.
Considering that an athlete performs at-risk sports activities countless times throughout the course of his or her career prior to the instance of anterior cruciate ligament (ACL) injury, one may conclude that non-contact ACL injury is a rare event. Nevertheless, the overall number of non-contact ACL injuries, both in the US and worldwide, remains alarming due to the growing number of recreational and professional athletes participating in high-risk activities. To date, numerous non-contact ACL injury mechanisms have been proposed, but none provides a detailed picture of sequence of events leading to injury and the exact cause of this injury remains elusive. In this perspective article, we propose a new conception of non-contact ACL injury mechanism that comprehensively integrates risk factors inside and outside the knee joint. The proposed mechanism is robust in the sense that it is biomechanically justifiable and addresses a number of confounding issues related to ACL injury.  相似文献   

5.
6.
The menisci are believed to play a stabilizing role in the ACL-deficient knee, and are known to be at risk for degradation in the chronically unstable knee. Much of our understanding of this behavior is based on ex vivo experiments or clinical studies in which we must infer the function of the menisci from external measures of knee motion. More recently, studies using magnetic resonance (MR) imaging have provided more clear visualization of the motion and deformation of the menisci within the tibio-femoral articulation. In this study, we used such images to generate a finite element model of the medial compartment of an ACL-deficient knee to reproduce the meniscal position under anterior loads of 45, 76, and 107 N. Comparisons of the model predictions to boundaries digitized from images acquired in the loaded states demonstrated general agreement, with errors localized to the anterior and posterior regions of the meniscus, areas in which large shear stresses were present. Our model results suggest that further attention is needed to characterize material properties of the peripheral and horn attachments. Although overall translation of the meniscus was predicted well, the changes in curvature and distortion of the meniscus in the posterior region were not captured by the model, suggesting the need for refinement of meniscal tissue properties.  相似文献   

7.
In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models.Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome.  相似文献   

8.
The biomechanical events which accompany functional loading of the human mandible are not fully understood. The techniques normally used to record them are highly invasive. Computer modelling offers a promising alternative approach in this regard, with the additional ability to predict regional stresses and strains in inaccessible locations. In this study, we built two three-dimensional finite element (FE) models of a human mandible reconstructed from tomographs of a dry dentate jaw. The first model was used for a complete mechanical characterization of physical events. It also provided comparative data for the second model, which had an increased vertical corpus depth. In both cases, boundary conditions included rigid restraints at the first right molar and endosteal cortical surfaces of the articular eminences of temporal bones. Groups of parallel multiple vectors simulated individual masticatory muscle loads. The models were solved for displacements, stresses, strains, and forces. The simulated muscle loads in the first model deformed the mandible helically upward and toward its right (working) side. The highest principal stresses occurred at the bite point, anterior aspects of the coronoid processes, symphyseal region, and right and left sides of the mandibular corpus. In general, the observed principal stresses and strains were highest on the periosteal cortical surface and alveolar bone. At the symphyseal region, maximum principal stresses and strains were highest on the lower lingual mandibular aspect, whereas minimum principal stresses and strains were highest on its upper labial side. Subcondylar principal strains and condylar forces were higher on the left (balancing or nonbiting) side than on the right mandibular side, with condylar forces more concentrated on the anteromedial aspect of the working-side condyle and on the central and lateral aspects of the left. When compared with in vivo strain data from macaques during comparable biting events, the predictive strain values from the first model were qualitatively similar. In the second model, the reduced tensile stress on the working-side, and decreased shear stress bilaterally, confirmed that lower stresses occurred on the lower mandibular border with increased jaw depth. Our results suggested that although the mandible behaved in a beam-like manner, its corpus acted more like a combination of open and closed cross sections due to the presence of tooth sockets, at least for the task modelled.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
10.
This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.  相似文献   

11.
To investigate the characteristics and underlying mechanisms of Ca2+ wave propagation, we developed a three-dimensional (3-D) simulator of cardiac myocytes, in which the sarcolemma, myofibril, and Z-line structure with Ca2+ release sites were modeled as separate structures using the finite element method. Similarly to previous studies, we assumed that Ca2+ diffusion from one release site to another and Ca2+-induced Ca2+ release were the basic mechanisms, but use of the finite element method enabled us to simulate not only the wave propagation in 3-D space but also the active shortening of the myocytes. Therefore, in addition to the dependence of the Ca2+ wave propagation velocity on the sarcoplasmic reticulum Ca2+ content and affinity of troponin C for Ca2+, we were able to evaluate the influence of active shortening on the propagation velocity. Furthermore, if the initial Ca2+ release took place in the proximity of the nucleus, spiral Ca2+ waves evolved and spread in a complex manner, suggesting that this phenomenon has the potential for arrhythmogenicity. The present 3-D simulator, with its ability to study the interaction between Ca2+ waves and contraction, will serve as a useful tool for studying the mechanism of this complex phenomenon. cardiac muscle cell; excitation-contraction coupling; mechanoelectrical feedback; spiral wave; arrhythmia  相似文献   

12.
This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.  相似文献   

13.
Patterns of fibre elongation and orientation for the cruciate and collateral ligaments of the human knee joint and for the patellar tendon have not yet been established in three-dimensions. These patterns are essential for understanding thoroughly the contribution of these soft tissues to joint function and of value in surgical treatments for a more conscious assessment of the knee status. Measurements from 10 normal cadaver knees are here reported using an accurate surgical navigation system and consistent anatomical references, over a large flexion arc, and according to current recommended conventions. The contours of relevant sub-bundles were digitised over the corresponding origins and insertions on the bones. Representative fibres were calculated as the straight line segments joining the centroids of these attachment areas. The most isometric fibre was also taken as that whose attachment points were at the minimum change in length over the flexion arc. Changes in length and orientation of these fibres were reported versus the flexion angle. A good general repeatability of intra- and inter-specimens was found. Isometric fibres were found in the locations reported in the literature. During knee flexion, ligament sub-bundles slacken in the anterior cruciate ligament, and in the medial and lateral collateral ligaments, whereas they tighten in the posterior cruciate ligament. In each cruciate ligament the two compounding sub-bundles have different extents for the change in fibre length, and also bend differently from each other on both tibial planes. In the collateral ligaments and patellar tendon all fibres bend posteriorly. Patellar tendon underwent complex changes in length and orientation, on both the tibial sagittal and frontal planes. For the first time thorough and consistent patterns of geometrical changes are provided for the main knee ligaments and tendons after careful fibre mapping.  相似文献   

14.
Three-dimensional finite element stress analysis of bone is a key to understanding bone remodelling, assessing fracture risk, and designing prostheses; however, the cost and complexity of predicting the stress field in bone with accuracy has precluded the routine use of this method. A new, automated method of generating patient-specific three-dimensional finite element models of bone is presented — it uses digital computed tomographic (CT) scan data to derive the geometry of the bone and to estimate its inhomogeneous material properties. Cubic elements of a user-specified size are automatically defined and then individually assigned the CT scan-derived material properties. The method is demonstrated by predicting the stress, strain, and strain energy in a human proximal femur in vivo. Three-dimensional loading conditions corresponding to the stance phase of gait were taken from the literature and applied to the model. Maximum principal compressive stresses of 8–23 MPa were computed for the medial femoral neck. Automated generation of additional finite element models with larger numbers of elements was used to verify convergence in strain energy.  相似文献   

15.
The purpose of this study was to develop a three-dimensional finite element model of the craniofacial skeleton using a dry human skull. The model consisted of 2918 nodes and 1776 solid elements, and was used to investigate the biomechanical effect of a distally directed orthopaedic force on the craniofacial complex. The force was applied at the level of the maxillary first molar. The results indicated that in response to the force system applied: the nasomaxillary complex displaces in a backward and downward direction and rotates in clockwise sense; the nasomaxillary complex, including the zygomatic bone, experiences high stress levels in comparison with those at the remaining bones; the stress distribution in the maxillary basal bone area is relatively uniform; and the stress distribution across the opposing surface of the bony margins of the sutures is non-uniform.  相似文献   

16.
17.
Primary objective: The hip joint suffers from a high prevalence of degenerative conditions. Athough patient's well-being could be improved through early and more effective interventions, without a greater understanding of the mechanics of the hip, these developments cannot be attained. Thus, this review article summarises the current literature on this subject in order to provide a platform for future developments. To illustrate the influence computational simulations have had on the knowledge advancement in hip mechanics, we explored two methodological approaches: finite element (FE) analysis and multibody dynamics (MBD). Main outcomes and results: Notwithstanding the unique capabilities of FE and MBD, the former generally offers the micromechanics of the articulating surfaces whereas the latter the macromechanics of the skeleton, these two methodologies also provide the bulk of the literature regarding computational modelling of the musculoskeletal system. Although FE has provided significant knowledge on contact pressures and the effects of musculoskeletal geometries, in particular cartilage and bone shapes, MBD has afforded a wealth of understanding on the influence of gait patterns and muscle attachment locations on force magnitudes. Conclusions: These two computational techniques have, and will continue to, provide significant contributions towards the development of interventions. It is hoped that this article will help focus ongoing technological developments by highlighting areas of success, but also areas of under development.  相似文献   

18.
As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (ie., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.  相似文献   

19.
The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Understanding the complex mechanical interactions of these load-bearing structures is of use when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament (ACL) in the knee is one of four main ligaments that connects the femur to the tibia and is often torn during sudden twisting motions, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint and evaluate the differences in its response for three different states, i.e., intact, ACL-deficient, and surgically treated (reconstructed) knee. The finite element models corresponding to these states were developed. For the reconstructed model, a novel repair device was developed and patented by the author in previous work. Static load cases were applied, as have already been presented in a previous work, in order to compare the calculated results produced by the two models the ACL-deficient and the surgically reconstructed knee joint, under the exact same loading conditions. Displacements were calculated in different directions for the load cases studied and were found to be very close to those from previous modeling work and were in good agreement with experimental data presented in literature. The developed finite element model for both the intact and the ACL-deficient human knee joint is a reliable tool to study the kinematics of the human knee, as results of this study show. In addition, the reconstructed human knee joint model had kinematic behavior similar to the intact knee joint, showing that such reconstruction devices can restore human knee stability to an adequate extent.  相似文献   

20.
Anatomically placed grafts are believed to more closely restore the function of the ACL. This study measured the effect of femoral tunnel placement on graft orientation and length during weight-bearing flexion. Both knees of twelve patients where the graft was placed near the anteroproximal border of the ACL and ten where the graft was placed near the center of the ACL were imaged using MR. These images were used to create 3D models of the reconstructed and intact contralateral knees, including the attachment sites of the native ACL and graft. Next, patients were imaged using biplanar fluoroscopy while performing a quasi-static lunge. The models were registered to the fluoroscopic images to reproduce in vivo knee motion. From the relative motion of the attachment sites on the models, the length and orientation of the graft and native ACL were measured. Grafts placed anteroproximally on the femur were longer and more vertical than the native ACL in both the sagittal and coronal planes, while anatomically placed grafts more closely mimicked ACL motion. In full extension, the grafts placed anteroproximally were 12.3±5.2° (mean and 95%CI) more vertical than the native ACL in the sagittal plane, whereas the grafts placed anatomically were 2.9±3.7° less vertical. Grafts placed anteroproximally were up to 6±2 mm longer than the native ACL, while the anatomically placed grafts were a maximum of 2±2 mm longer. In conclusion, grafts placed anatomically more closely restored native ACL length and orientation. As a result, anatomic grafts are more likely to restore intact knee kinematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号