首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With a view to evaluate the cardioprotective effect of ethanolic extract of S. anacardium nut and the possible interaction with propranolol against isoproterenol induced myocardial damage in rats, female Sprague-Dawley rats were pre-treated with propranolol (10 mg/kg for 7 days), low and high doses of S. anacardium (100 and 500 mg/kg for 21 days) and their combination orally and subsequently subjected to isoproterenol administration (150 mg/kg, sc) for two consecutive days. The influence of prophylactic treatment was analysed by quantification of biomarkers and antioxidants, electocardiographic parameters and histopathological observations. The activities of lactate dehydrogenase and creatinine phosphokinase-MB were reduced in serum and raised in heart tissue with concurrent elevation in superoxide dismutase and catalase activities as well as reduction in thiobarbituric acid reactive species levels significantly in all treated groups compared to isoproterenol group. Similarly, electrocardiographic changes were restored to normalcy in all treated groups. To conclude, combination of high dose of S. anacardium with propranolol was found to be most effective in alleviating the abnormal conditions induced by isoproterenol.  相似文献   

2.
PURPOSE OF REVIEW: Low HDL-cholesterol, diabetes mellitus and elevated C-reactive protein as well as various inflammatory diseases are risk factors for coronary heart disease. Both diabetes mellitus and inflammation decrease HDL-cholesterol. We summarize recent findings on the mechanisms underlying low HDL-cholesterol in diabetes and inflammation, as well as on novel functions of HDL that may protect not only from atherosclerosis but also from diabetes mellitus and inflammation-induced organ damage. RECENT FINDINGS: Elevated levels of non-esterified fatty acids and disturbed insulin action contribute to low HDL-cholesterol in diabetes mellitus by modifying lipolysis, apolipoprotein A-I production, as well as the activities of adenosine triphosphate-binding cassette transporter A1 and lipid transfer. Inflammation causes low HDL-cholesterol by increasing the activities of endothelial lipase and soluble phospholipase A2 and by replacing apolipoprotein A-I in HDL with serum amyloid A. HDL and lysosphingolipids therein have been identified as activators of the protein kinase Akt, which in turn is a regulator of apoptosis in beta-cells, endothelial cells, and smooth muscle cells, as well as a regulator of nitric oxide production and adhesion molecule expression in endothelial cells. SUMMARY: The protective properties of HDL in cytokine production, lipid oxidation, cholesterol efflux and reverse cholesterol transport make HDL a protective agent in inflammation-induced organ damage including diabetes mellitus. However, inflammation and diabetes cause a decrease in HDL-cholesterol concentrations and impair HDL function, placing HDL into the centre of a vicious cycle that may escalate into diabetes mellitus, inflammation-induced organ damage and atherosclerosis.  相似文献   

3.
Several lines of evidence have suggested that triglyceride accumulation in skeletal muscle and pancreatic islets is causally related to type 2 diabetes mellitus. We recently showed that alpha-lipoic acid (ALA), a potent antioxidant and cofactor of mitochondrial respiratory enzymes, reduces body weight of rodents by suppressing food intake and increasing energy expenditure. We sought to determine if ALA can prevent the development of diabetes mellitus in obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Most (78%) untreated OLETF rats showed glycosuria at 40 weeks of age, but this was completely prevented by ALA. Compared with untreated OLETF rats, ALA reduced body weight and protected pancreatic beta-cells from destruction. ALA also reduced triglyceride accumulation in skeletal muscle and pancreatic islets. These results indicate that ALA prevents diabetes mellitus in obese diabetes-prone rats by reducing lipid accumulation in non-adipose tissue as well as in adipose tissue.  相似文献   

4.
Spontaneously beating heart myocytes were prepared from adult rat ventricular tissues to study the correlation between beta-adrenergic receptor-stimulated changes in contractile performance and protein phosphorylation in vitro. The plasma membrane of isolated myocardial cells was permeabilized by saponin in the presence of EGTA and Mg-ATP. The permeabilized myocytes, which formed a homogeneous cell population, retained the rod-cell morphology of heart cells in situ and showed spontaneous cyclic contractions. Their contractile activity in response to extracellularly added cAMP mimicked the effects caused by beta-adrenergic stimulation of the whole heart: both the frequency and longitudinal velocity of free contraction and relaxation of the cells increased. Similar increases were observed when beta-agonist, isoproterenol, and GTP were added to suspending medium. In addition, isoproterenol maximally enhanced the adenylate cyclase activity of the cells in the presence of GTP. Both of these effects of isoproterenol were completely blocked by the beta-antagonist propranolol. cAMP-mediated phosphorylation of proteins in the permeabilized myocytes was investigated under conditions in which the beating frequency increased. cAMP elevated the phosphorylation level of five proteins; three of them with apparent molecular masses of 24, 15, and 12 kDa were membrane proteins and the other two with apparent molecular masses of 150 and 28 kDa were myofibrillar proteins. The 24-kDa phosphoprotein dissociated into 12-kDa molecules when boiled in sodium dodecyl sulfate, suggesting that these proteins are oligomeric and monomeric forms of phospholamban. The phosphorylation of these five proteins was stimulated by isoproterenol. The effect of isoproterenol was enhanced by GTP but completely blocked by propranolol. The time course of their phosphorylation correlated well with that of the increase in the beating frequency of the cells; both were measured after the administration of isoproterenol and GTP. When propranolol was added after the start of the stimulation by isoproterenol, only phospholamban and the 15-kDa protein were rapidly dephosphorylated in close correlation with the decrease of the beating frequency. These results demonstrate for the first time that the permeabilized myocytes retain the functional beta-adrenergic receptor and cellular responses to beta-adrenergic stimulation. They also suggest that cAMP-mediated phosphorylation of proteins, possibly phospholamban and/or the 15-kDa protein, is involved in the increased contractile activity of permeabilized heart cells.  相似文献   

5.
The activity of phosphofructokinase in the perfused rabbit psoas muscle was investigated after perfusion in the presence of either propranolol or isoproterenol, and after 48 hr starvation. The phosphofructokinase activities were correlated with the concentrations of glucose 1,6-bisphosphate in the muscles. A considerable fraction of enzymes of the glycogen metabolism and of phosphofructokinase was bound to glycogen particles. The extent of binding was not regulated by the glycogen content.  相似文献   

6.
Homogenates of isolated pancreatic islets contain 40-70 times as much flavin-linked glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) as homogenates of whole pancreas, liver, heart, or skeletal muscle when the activity is assayed with either iodonitrotetrazolium or with dichloroindophenol as an electron acceptor. Intact mitochondria from islets release 3HOH from [2-3H]glycerol phosphate 7 times faster than do skeletal muscle mitochondria. The activity of the cytosolic, NAD-linked, glycerol phosphate dehydrogenase (EC 1.1.1.8) in pancreatic islets is comparable to that of the mitochondrial dehydrogenase so a glycerol phosphate shuttle is possible in pancreatic islets. Diazoxide, an inhibitor of insulin release in vivo and in vitro, inhibits the islet mitochondrial glycerol phosphate dehydrogenase in all three of the assays mentioned above at concentrations that inhibit insulin release and CO2 formation from glucose by isolated pancreatic islets. Diazoxide does not inhibit the dehydrogenase in mitochondria from skeletal muscle, liver, and heart. A slight inhibition in mitochondria from whole pancreas can be accounted for as inhibition of the islet dehydrogenase because no inhibition is observed in mitochondria from pancreas of rats treated with alloxan, an agent that causes diabetes by destroying pancreatic beta cells. The results of this study are compatible with the hypothesis that the mitochondrial glycerol phosphate dehydrogenase has a key role in stimulus-secretion coupling in the pancreatic beta cell during glucose-induced insulin release.  相似文献   

7.
Morphological aspects on pancreatic islets of non-obese diabetic (NOD) mice   总被引:2,自引:0,他引:2  
The pancreatic islets of female non-obese diabetic (NOD) mice (a model of insulin-dependent diabetes mellitus), have been examined by both light and electron microscopy. At about the age of 2 weeks, mononuclear cells began to infiltrate in or near the islets and some of these cells were in contact with the islet cells. Following this degeneration of islet B-cells took place, the process occurring in two ways. In many cells numerous secretory granules with extremely dense cores occupied the cytoplasm. Other cells, however, were filled with low-density secretory granules and the nuclei of these cells became pycnotic. After degeneration of B-cells, the islets were effaced by numerous mononuclear cells. With the onset of the diabetic state these mononuclear cells gradually disappeared, and thereafter small islets remained. By electron microscopy, retrovirus-like particles were observed in cisternae of the rough endoplasmic reticulum in islet B-cells at all stages. With an anti-retrovirus serum (goat anti-KiMSV-NIHxeno serum), positive immunofluorescence was observed in some pancreatic islet cells of NOD mice aged 1 day and 4, 6, 8, 9, 10 and 14 weeks. It is suggested that these virus particles may be intimately related to the inflammatory reaction occurring in the islets and to the development of diabetes mellitus.  相似文献   

8.
Diabetes mellitus is a complex disease that is characterized by the defection of insulin sensitivity in such peripheral tissues as skeletal muscle, adipose tissue and liver. We have previously demonstrated that certain inositol derivatives stimulated glucose uptake accompanied by the translocation of glucose transporter 4 (GLUT4) to the plasma membrane in L6 myotubes. We investigated in this present study whether an oral intake of D-pinitol (PI) and myo-inositol (MI) would affect GLUT4 translocation in the skeletal muscle of mice. PI or MI at 1 g/kg BW administered orally to mice 30 min before a post-oral injection of glucose at 2 g/kg BW resulted in both PI and MI increasing GLUT4 translocation in the skeletal muscle and lowering the plasma glucose and insulin levels. PI and MI, therefore, have the potential to prevent diabetes mellitus by reducing the postprandial blood glucose level and stimulating GLUT4 translocation in the skeletal muscle.  相似文献   

9.
The following parameters were determined in the rabbit psoas muscle after perfusion in the presence of either insulin, propranolol, or isoproterenol: Concentrations of cyclic AMP, glucose 1,6-bisphosphate, fructose 2,6-bisphosphate, glucose-1-phosphate, glucose 6-phosphate, and fructose-1,6-bisphosphate. Maximum and "regulatory" activities of the enzymes glycogen phosphorylase, glycogen synthase, phosphofructokinase, and histone-phosphorylating protein kinase.  相似文献   

10.
The lack of transplantable pancreatic islets is a serious problem that affects the treatment of patients with type 1 diabetes mellitus. Beta cells can be induced from various sources of stem or progenitor cells, including induced pluripotent stem cells in the near future; however, the reconstitution of islets from β cells in culture dishes is challenging. The generation of highly functional islets may require three-dimensional spherical cultures that resemble intact islets. This review discusses recent advances in the reconstitution of islets. Several factors affect the reconstitution of pseudoislets with higher functions, such as architectural similarity, cell-to-cell contact, and the production method. The actual transplantation of naked or encapsulated pseudoislets and islet-like cell clusters from various stem cell sources is also discussed. Advancing our understanding of the methods used to reconstitute pseudoislets should expand the range of potential strategies available for developing de novo islets for therapeutic applications.  相似文献   

11.
《Organogenesis》2013,9(2):225-230
The lack of transplantable pancreatic islets is a serious problem that affects the treatment of patients with type 1 diabetes mellitus. Beta cells can be induced from various sources of stem or progenitor cells, including induced pluripotent stem cells in the near future; however, the reconstitution of islets from β cells in culture dishes is challenging. The generation of highly functional islets may require three-dimensional spherical cultures that resemble intact islets. This review discusses recent advances in the reconstitution of islets. Several factors affect the reconstitution of pseudoislets with higher functions, such as architectural similarity, cell-to-cell contact, and the production method. The actual transplantation of naked or encapsulated pseudoislets and islet-like cell clusters from various stem cell sources is also discussed. Advancing our understanding of the methods used to reconstitute pseudoislets should expand the range of potential strategies available for developing de novo islets for therapeutic applications.  相似文献   

12.
In order to understand the mechanisms of exercise intolerance and muscle fatigue, which are commonly observed in congestive heart failure, we studied sarcoplasmic reticulum (SR) Ca(2+)-transport in the hind-leg skeletal muscle of rats subjected to myocardial infarction (MI). Sham-operated animals were used for comparison. On one hand, the maximal velocities (Vmax) for both SR Ca(2+)-uptake and Ca(2+)-stimulated ATPase activities in skeletal muscle of rats at 8 weeks of MI were higher than those of controls. On the other hand, the Vmax values for both SR Ca(2+)-uptake and Ca(2+)-stimulated ATPase activities were decreased significantly at 16 weeks of MI when compared with controls. These alterations in Ca(2+)-transport activities were not associated with any change in the affinity (1/Ka) of the SR Ca(2+)-pump for Ca2+. Furthermore, the stimulation of SR Ca(2+)-stimulated ATPase activity by cyclic AMP-dependent protein kinase was not altered at 8 or 16 weeks of MI when compared with the respective control values. Treatment of 3-week infarcted animals with angiotensin-converting enzyme (ACE) inhibitors such as captopril, imidapril, and enalapril or an angiotensin receptor (AT1R) antagonist, losartan, for a period of 13 weeks not only attenuated changes in left ventricular function but also prevented defects in SR Ca(2+)-pump in skeletal muscle. These results indicate that the skeletal muscle SR Ca(2+)-transport is altered in a biphasic manner in heart failure due to MI. It is suggested that the initial increase in SR Ca(2+)-pump activity in skeletal muscle may be compensatory whereas the depression at late stages of MI may play a role in exercise intolerance and muscle fatigue in congestive heart failure. Furthermore, the improvements in the skeletal muscle SR Ca(2+)-transport by ACE inhibitors may be due to the decreased activity of renin-angiotensin system in congestive heart failure.  相似文献   

13.
Spontaneous diabetes mellitus in the BB/W rat is preceded by lymphocytic insulitis that destroys pancreatic beta cells. Cultured pancreatic islets and adrenal cortex from inbred rats of variable MHC were transplanted to RT1/u BB/W rats without allograft rejection. Islet grafts from RT1/u and non-RT1/u rats evidenced lymphocytic insulitis in BB/W recipients that became diabetic or evidenced lymphocytic insulitis within endogenous islets. These findings suggest that BB immune insulitis is not MHC restricted and may be directed against islet transplants from non-RT1/u animals.  相似文献   

14.
Metformin, a drug widely used in the treatment of type 2 diabetes, has recently been shown to act on skeletal muscle and liver in part through the activation of AMP-activated protein kinase (AMPK). Whether metformin or the satiety factor leptin, which also stimulates AMPK in muscle, regulates this enzyme in pancreatic islets is unknown. We have recently shown that forced increases in AMPK activity inhibit insulin secretion from MIN6 cells (da Silva Xavier G, Leclerc I, Varadi A, Tsuboi T, Moule SK, and Rutter GA. Biochem J 371: 761-774, 2003). Here, we explore whether 1) glucose, metformin, or leptin regulates AMPK activity in isolated islets from rodent and human and 2) whether changes in AMPK activity modulate insulin secretion from human islets. Increases in glucose concentration from 0 to 3 and from 3 to 17 mM inhibited AMPK activity in primary islets from mouse, rat, and human, confirming previous findings in insulinoma cells. Incubation with metformin (0.2-1 mM) activated AMPK in both human islets and MIN6 beta-cells in parallel with an inhibition of insulin secretion, whereas leptin (10-100 nM) was without effect in MIN6 cells. These studies demonstrate that AMPK activity is subject to regulation by both glucose and metformin in pancreatic islets and clonal beta-cells. The inhibitory effects of metformin on insulin secretion may therefore need to be considered with respect to the use of this drug for the treatment of type 2 diabetes.  相似文献   

15.
Nonobese diabetic mice are a well-known model for human insulin-dependent diabetes mellitus. These mice develop autoimmune-mediated inflammation of the pancreatic islets, followed by destruction of the insulin-producing beta cells and development of diabetes. Nonobese diabetic mice also have salivary gland inflammation, and serve as a model for human Sjogren's syndrome. T cells are a prominent component of the inflammatory infiltrate in these sites, and T cell recruitment from the blood is thought to be essential for the initiation and maintenance of pathologic tissue damage. A unique mAb to murine CD43, L11, has recently been shown to block the migration of T cells from blood into organized lymphoid tissues. Here we demonstrate that L11 significantly inhibits T cell migration from blood into inflamed islets and salivary glands. Treatment of nonobese diabetic mice with L11 from 1 to 4 or 8 to 12 wk of age led to significant protection against the development of diabetes. Moreover, protection was long-lived, with decreased incidence of diabetes even months after cessation of Ab administration. When treatment was started at 1 wk of age, L11 inhibited the development of inflammation in pancreatic islets and salivary glands. L11 treatment had no long-term effect on numbers or phenotypes of peripheral lymphocytes. These data indicate that anti-CD43 Abs that block T cell migration may be useful agents for the prevention or treatment of autoimmune diseases including insulin-dependent diabetes mellitus and Sjogren's syndrome.  相似文献   

16.
The most important causes of hyperglycaemia in the course of diabetes mellitus type 2 are discussed. Those include: insulin secretion disorders, resistance to the insulin and overproduction of glucose in the liver. Affected secretory function of B cells in the pancreatic islets results, first of all, from the primary genetic error and secondary regulatory disorders, chiefly hyperglycaemia. Resistance to the insulin caused by decreased insulin activity in the muscle tissue and adipose tissue includes so-called receptor and postreceptor defects. Mechanism of these disorders is partially explained. Overproduction of glucose in the liver is probably secondary to the above metabolic disturbances and decides on the basic hyperglycaemia. Pathogenetic aspects of the insulin independent diabetes mellitus therapy with particular reference to the role of sulfonylurea derivatives are also discussed.  相似文献   

17.
Many obstacles hinder the clinical application of pancreatic islet transplantation as a cure for diabetes mellitus. One of them is the suitable isolation method of sufficient number of healthy islets for transplantation. In this context, liberase enzyme was developed as a purified form of the traditional collagenase. It was the aim of this study to investigate the effect of liberase-digestion on the yield, function and viability of neonatal rat islets, and to compare the new enzyme with the collagenase. Glucose-stimulated insulin secretion was measured as indication of the function, insulin content as indication for the synthetic activity of islet cells and DNA as an indication of cell viability. The results showed no difference between islets isolated either with collagenase or liberase. Glucose stimulated similarly the insulin secretion in both. Stimulation index tended, without significance, to be higher (55%) in liberase-isolated islets compared with the collagenase islets (49%). The viability of both was similar. The insulin synthesis (content) tended also to be better in liberase-isolated islets. It could be concluded that liberase could be non-significantly preferred in the isolation of neonatal rat islets in comparison with collagenase.  相似文献   

18.
The cells within the intact islet of Langerhans function as a metabolic syncytium, secreting insulin in a coordinated and oscillatory manner in response to external fuel. With increased glucose, the oscillatory amplitude is enhanced, leading to the hypothesis that cells within the islet are secreting with greater synchronization. Consequently, non-insulin-dependent diabetes mellitus (NIDDM; type 2 diabetes)-induced irregularities in insulin secretion oscillations may be attributed to decreased intercellular coordination. The purpose of the present study was to determine whether the degree of metabolic coordination within the intact islet was enhanced by increased glucose and compromised by NIDDM. Experiments were performed with isolated islets from normal and diabetic Psammomys obesus. Using confocal microscopy and the mitochondrial potentiometric dye rhodamine 123, we measured mitochondrial membrane potential oscillations in individual cells within intact islets. When mitochondrial membrane potential was averaged from all the cells in a single islet, the resultant waveform demonstrated clear sinusoidal oscillations. Cells within islets were heterogeneous in terms of cellular synchronicity (similarity in phase and period), sinusoidal regularity, and frequency of oscillation. Cells within normal islets oscillated with greater synchronicity compared with cells within diabetic islets. The range of oscillatory frequencies was unchanged by glucose or diabetes. Cells within diabetic (but not normal) islets increased oscillatory regularity in response to glucose. These data support the hypothesis that glucose enhances metabolic coupling in normal islets and that the dampening of oscillatory insulin secretion in NIDDM may result from disrupted metabolic coupling.  相似文献   

19.
E B Clark  N Hu  J B Dooley 《Teratology》1985,31(1):41-47
The developing cardiovascular system of the chick embryo is susceptible to teratogenic effects of catecholamines. Yet the mechanism for the teratogenetic action is unclear. Since catecholamines affect cardiovascular physiology, we studied the acute effect of the beta-agonist isoproterenol on mean atrial pressure, heart rate, mean dorsal aortic blood flow, mean arterial pressure and vascular resistance in stage 24 chick embryos. Dorsal aortic blood velocity was measured with a 20-MHz pulsed-Doppler velocity meter and intravascular pressure was measured with a servo-null pressure system. Isoproterenol in doses of 2 X 10(-4) micrograms (2.5 micrograms/kg), 8 X 10(-4) micrograms (10 micrograms/kg), and 1.2 X 10(-3) micrograms (15 micrograms/kg) was injected intravenously in 5-microliters aliquots of chick Ringer's solution. Additional groups of embryos were treated with the beta-antagonist propranolol, and isoproterenol plus propranolol. Control embryos received 5 microliters chick Ringer's solution to assess the hemodynamic effects of a volume injection. We found that isoproterenol caused no change in mean atrial pressure, heart rate, or mean arterial pressure. However, isoproterenol caused a dose-related decrease in dorsal aortic blood flow and a 2.5-fold increase in vascular resistance. The effects of isoproterenol were blocked by propranolol, which suggested that the increase in vascular resistance was mediated by beta-receptor stimulation.  相似文献   

20.
Although β‐adrenoceptor (β‐AR) blockade is an important mode of therapy for congestive heart failure (CHF), subcellular mechanisms associated with its beneficial effects are not clear. Three weeks after inducing myocardial infarction (MI), rats were treated daily with or without 20 and 75 mg/kg atenolol, a selective β1‐AR antagonist, or propranolol, a non‐selective β‐AR antagonist, for 5 weeks. Sham operated rats served as controls. All animals were assessed haemodynamically and echocardiographically and the left ventricle (LV) was processed for the determination of myofibrillar ATPase activity, α‐ and β‐myosin heavy chain (MHC) isoforms and gene expression as well as cardiac troponin I (cTnI) phosphorylation. Both atenolol and propranolol at 20 and 75 mg/kg doses attenuated cardiac hypertrophy and lung congestion in addition to increasing LV ejection fraction and LV systolic pressure as well as decreasing heart rate, LV end‐diastolic pressure and LV diameters in the infarcted animals. Treatment of infarcted animals with these agents also attenuated the MI‐induced depression in myofibrillar Ca2+‐stimulated ATPase activity and phosphorylated cTnI protein content. The MI‐induced decrease in α‐MHC and increase in β‐MHC protein content were attenuated by both atenolol and propranolol at low and high doses; however, only high dose of propranolol was effective in mitigating changes in the gene expression for α‐MHC and β‐MHC. Our results suggest that improvement of cardiac function by β‐AR blockade in CHF may be associated with attenuation of myofibrillar remodelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号