首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AX2 is a 46-amino-acid cysteine-rich peptide isolated from sugar beet leaves infected with the fungus Cercospora beticola (Sacc.). AX2 strongly inhibits the growth of C. beticola and other filamentous fungi, but has little or no effect against bacteria. AX2 is produced in very low amounts in sugar beet leaves, and to study the protein in greater detail with respect to biological function and protein structural analysis, the methylotrophic yeast Pichia pastoris was used for large-scale production. The amino acid sequence, processing of the signal peptide, disulfide bridges, and biological activity of the recombinant protein were determined and compared with that of the authentic AX2. In P. pastoris, the protein was expressed with an additional N-terminal arginine. The disulfide bonding was found to be identical to that of the authentic AX2. However, when tested in in vitro bioassay, the biological activity of the recombinant protein was slightly lower than that measured for the authentic protein. Furthermore, the recombinant protein was significantly more sensitive to Ca(2+) than the authentic protein. This is most probably due to the extra arginine, since no other differences between the two proteins have been found.  相似文献   

2.
Summary Thirteen enzymes (MDH, SDH, LAP, PGM, PX, IDH, GPI, 6PGD, APH, GOT, GDH, ME and SOD) of 3 cultivated beet (B. vulgaris L.) gene pools, comprising 12 accessions of fodder beet, 11 of old multigerm sugar beet and 10 of modern monogerm sugar beet, were investigated using horizontal starch gel electrophoresis. Eleven accessions of primitive or wild B. vulgaris were also included for the comparison of isozymes. Variation in isozyme phenotypes was investigated to detect diversity in the three cultivated forms of beet. Phenotypic variation was observed in all except ME and SOD, which were monomorphic. A high degree of phenotypic polymorphism (Pj) was found in GDH, PGM, IDH, APH and MDH. Differences in phenotypic polymorphism in MDH, GPI and PX were recognized between fodder beet and both sugar beet groups. Average polymorphism for 13 enzymes in both sugar beets was significantly higher than that in fodder beet. For 13 enzymes, the existence of high isozyme diversity in both sugar beet gene pools was revealed. Allele frequencies in 13 alleles of five enzyme-coding loci, Lap, Px-1, Aph-1, Got-2 and Gdh-2, were investigated. New alleles, Px-1 1 and Got-2 1, were found in fodder beet accessions. No significant differences of average allele frequencies of five loci between fodder beet and both sugar beets were recognized. Several unique alleles and different isozyme phenotypes were observed in the accessions of B. vulgaris ssp. macrocarpa and ssp. adanensis. Future utilization of cultivated beet gene pools for sugar beet breeding is discussed from the viewpoint of genetic resources.  相似文献   

3.
A purification procedure, which yielded up to 15–30 mg of beet yellows virus (BYV) per 100 g of infected Tetragonia expansa leaves, has been developed. The procedure included sap clarification with Triton X-100, and two cycles of ultracentrifugation through sucrose cushion, which contained PEG-6000 and NaCl. A specific antiserum was prepared, and BYV infection was successfully detected by the double-antibody sandwich (DAS) ELISA in infected sugar beet leaves and roots diluted up to 1 × 105 and 1 × 104, respectively. The virus concentration was demonstrated to decrease in infected sugar beet roots slowly during 7 months, thus allowing successful diagnosis of planting material in winter storage. BYV presence in Myzus persicae aphids was also reliably detectable using the DAS-ELISA. In a competitive DAS-ELISA test, the Ukraine and the British BYV isolates were found serologically indistinguishable.  相似文献   

4.
Sugar beet (Beta vulgaris L.) is highly susceptible to the beet cyst nematode (Heterodera schachtii Schm.). Three resistance genes originating from the wild beets B. procumbens (Hs1 pro-1) and B. webbiana (Hs1 web-1, Hs2 web-7) have been transferred to sugar beet via species hybridization. We describe the genetic localization of the nematode resistance genes in four different sugar beet lines using segregating F2 populations and RFLP markers from our current sugar beet linkage map. The mapping studies yielded a surprising result. Although the four parental lines carrying the wild beet translocations were not related to each other, the four genes mapped to the same locus in sugar beet independent of the original translocation event. Close linkage (0–4.6 cM) was found with marker loci at one end of linkage group IV. In two populations, RFLP loci showed segregation distortion due to gametic selection. For the first time, the non-randomness of the translocation process promoting gene transfer from the wild beet to the sugar beet is demonstrated. The data suggest that the resistance genes were incorporated into the sugar beet chromosomes by non-allelic homologous recombination. The finding that the different resistance genes are allelic will have major implications on future attempts to breed sugar beet combining the different resistance genes.  相似文献   

5.
The short-term stimulation of the net rate of carbon dioxide exchange of leaves by elevated concentrations of CO2 usually observed in C3 plants sometimes does not persist. Experiments were conducted to test whether the patterns of response to the environment during growth were consistent with the hypotheses that photosynthetic adjustment to elevated CO2 concentration is due to (1) feedback inhibition or (2) nutrient stress. Soybean [Glycine max (L.) Merr. cv. Williams] and sugar beet (Best vulgaris L. cv. Mono Hye-4) were grown from seed at 350 and 700 μl? CO2, at 20 and 25°C, at a photon flux density of 0.5 and 1.0 mmol m?2 S?1 and with three nutrient regimes until the third trifoliolate leaf of soybean or the sixth leaf of sugar beet had finished expanding. Net rates of CO2 exchange of the most recently expanded leaves were then measured at both 350 and 700 μl 1?1 CO2. Plants grown at the elevated CO2 concentration had net rates of leaf CO2 exchange which were reduced by 33% in sugar beet and 23% in soybean when measured at 350 μl 1?1 CO2 and when averaged over all treatments. Negative photosynthetic adjustment to elevated CO2 concentration was not greater at 20 than at 25°C, was not greater at a photon flux density of 1.0 than at 0.5 mmol m?2 S?1 and was not greater with limiting nutrients. Furthermore, in soybean, negative photosynthetic adjustment could be induced by a single night at elevated CO2 concentration, with net rates of CO2 exchange the next day equal to those of leaves of plants grown from seed at the elevated concentration of CO2. These patterns do not support either the feedback-inhibition or the nutrient-stress hypothesis of photosynthetic adjustment to elevated concentrations of CO2.  相似文献   

6.
  • Sugar beet (Beta vulgaris L.) is one of the most important sugar‐producing plants worldwide and provides about one third of the sugar consumed by humans. Here we report on molecular characterisation of the BvSUT1 gene and on the functional characterisation of the encoded transporter.
  • In contrast to the recently identified tonoplast‐localised sucrose transporter BvTST2.1 from sugar beet taproots, which evolved within the monosaccharide transporter (MST) superfamily, BvSUT1 represents a classical sucrose transporter and is a typical member of the disaccharide transporter (DST) superfamily.
  • Transgenic Arabidopsis plants expressing the β‐GLUCURONIDASE (GUS) reporter gene under control of the BvSUT1‐promoter showed GUS histochemical staining of their phloem; an anti‐BvSUT1‐antiserum identified the BvSUT1 transporter specifically in phloem companion cells. After expression of BvSUT1 cDNA in bakers’ yeasts (Saccharomyces cerevisiae) uptake characteristics of the BvSUT1 protein were studied. Moreover, the sugar beet transporter was characterised as a proton‐coupled sucrose symporter in Xenopus laevis oocytes.
  • Our findings indicate that BvSUT1 is the sucrose transporter that is responsible for loading of sucrose into the phloem of sugar beet source leaves delivering sucrose to the storage tissue in sugar beet taproot sinks.
  相似文献   

7.
Moss DN  Rasmussen HP 《Plant physiology》1969,44(7):1063-1065,1067-1068
Leaves of maize (Zea mays L.) and sugar beet (Beta vulgaris L.) were enclosed in an illuminated chamber in air for 30 min after which time 14CO2 was released into the chamber. Two min after the 14CO2 was released, the leaves were removed from the chamber, and small sections were cut from them. The sections were put in small wire baskets and frozen in isopentane cooled by liquid nitrogen. Approximately 1.5 min elapsed from the removal of the leaf from the illuminated chamber until the tissue was frozen. The tissue was freeze-dried, embedded in paraffin and the cellular location of the isotopic activity was determined by radiography of leaf cross sections. Isotopic activity in maize leaves was localized in bundle sheath parenchyma. In contrast, the label in sugar beet leaves was generally distributed in the mesophyll cells. The bundle sheath cells in maize contain specialized chloroplasts which appear to have a unique capacity to incorporate CO2. Translocation from leaves of maize was 3-fold as rapid as from sugar beet leaves in the same environment. Low light intensity did not alter the distribution pattern of fixed CO2.  相似文献   

8.
The probing of Aphis fabae and Myzus persicae in the leaves of sugar beet with inherited resistance or susceptibility to aphids was studied by microscopic examination of samples of whole leaves, prepared after 48 h exposure to adult aphids at approximately three aphids cm-2.The density of saliva stylet-sheaths left by the aphids (cm-2) and the proportion reaching phloem differed between sugar beet stocks and were inversely associated. Differences in resistance between stocks could not, however, be related directly to either. All beet stocks examined were probed freely. Seasonal differences in sugar beet grown in the glasshouse affected the proportion of sheaths reaching the phloem, but the differences between beet stocks were similar at all times.The densities of sheaths left by different clones of M. persicae corresponded with the aphids' response to sugar beet as a host plant. Among aphid clones which readily colonize sugar beet, the densities of stylet sheaths which reached phloem suggested that the adults of both A. fabae and M. persicae gained sufficient access to sieve tubes to satisfy their nutritional needs. The phloem of sugar beet from the glasshouse was always within the estimated maximum depth to which the aphids probe; but, in leaves from the field, it appeared that the phloem might be inaccessible to young M. persicae in the sugar beet crop during late summer.
Zusammenfassung Das Proben von Aphis fabae und Myzus persicae in Blättern von Zuckerrüben mit erblicher Blattlausresistenz bzw.-anfälligkeit wurde untersucht durch mikroskopische Durchmusterung von Speichelscheiden in Proben von ganzen Blatt. Rübenblätter wurden mit genähert drei adulten Läusen cm-2 besetzt und nach 48 Stunden quergeschnittene Streifen der Blätter in Alkohol fixiert, gefärbt und mit der Unterseite nach oben auf Objektträgern eingeschlossen.23890 Speichelscheiden wurden registriert. Die Dichte der Scheiden von M. persicae (cm-2) und der Anteil der das Phloem erreichenden Scheiden (SRP) unterschieden sich signifikant zwischen den Rübenstämmen. Bei A. fabae ergaben sich entsprechende, aber nicht gesicherte Unterschiede. Scheidendichte und Prozentsatz SRP waren gegenläufig, zwei Rübenstämme zeigten eine hohe Scheidendichte, zwei andere hatten weniger Scheiden, aber einen höheren Prozentsatz SRP. Diese Gruppierung der Stämme korrespondierte aber nicht mit ihrer Blattlausresistenz. Aus der Scheidendichte ergab sich, dass M. persicae und A. fabae auf allen geprüften Rübenstämmen, resistenten und anfälligen, unbehindert probten, so dass jede Laus das Phloem durchschnittlich etwa viermal am Tag erreichte. Ein Klon von M. persicae, der sich an Rüben nicht entwickelt, hinterliess weniger Scheiden in den Blättern aller Stämme.Der Anteil von SRP war bei Prüfungen im März grösser als im November. Dieser Unterschied war besonders deutlich bei Scheiden von Larven, die im übrigen zu allen Zeiten das Phloem weniger oft erreichten als ihre Eltern. Messungen des Abstandes von der unteren Blattfläche zum Phloem ergaben, dass das Phloem den Läusen in Gewächshaus-Zuckerrüben immer zugänglich war. M. persicae-Larven konnten jedoch in Blättern von Freilandrüben das Phloem nicht erreichen.
  相似文献   

9.
Summary Improved in vitro tissue culture systems are needed to facilitate the application of recombinant DNA technology to the improvement of sugar beet germplasm. The effects of N 6-benzyladenine (BA) and thidiazuron (TDZ) pretreatment on adventitious shoot and somatic embryogenesis regeneration were evaluated in a range of sugar beet breeding lines and commercial varieties. Petiole explants showed higher frequencies of direct adventitious shoot formation and produced more shoots per explant than leaf lamina explants. TDZ was more effective than BA for the promotion of shoot formation. The optimal TDZ concentrations were 2.3–4.6 μM for the induction of adventitious shoot regeneration. Direct somatic embryogenesis from intact seedlings could be induced by either BA or TDZ. TDZ-induced somatic embryogenesis occurred on the lower surface of cotyledons at concentrations of 0.5–2μM and was less genotype-dependent than with Ba. A high frequency of callus induction could be obtained from seedlings and leaf explants, but only a few of the calluses derived from leaf explants could regenerate to plants via indirect somatic embryogenesis. These results demonstrated that TDZ could prove to be a more effective cytokinin for in vitro culture of sugar beet than BA. Rapid and efficient regeneration of plants using TDZ may provide a route for the production of transgenic sugar beet following Agrobacterium-mediated transformation.  相似文献   

10.
Beet armyworm (Spodoptera exigua Hb.) (Lepidoptera: Noctuidae) is the major pest of sugar beet (Beta vulgaris). Pesticide applications are the main method of the insect control. So, alternative method/s is/are needed to control this insect species. So, in the current study, the effect of Galanthus nivalis agglutinin (GNA) (snowdrop lectin) on beet armyworm α-amylase was studied. Measurement of the amylase activity of the larval midgut fed on artificial diet and sugar beet leaves showed that the enzyme activity was higher when the larvae fed on artificial diet. However, in both cases, the fourth instar larvae had the greatest amylase activity. Thus, fourth instar larvae were offered artificial diet containing 1 and 2% GNA. Both treatments of the lectin significantly reduced the α-amylase activity of the insect. For example, amylase activity of the fourth instar larvae in the control (fed only on artificial diet) was 2.62 Uml?1 whilst the activity of the enzyme in the two treatments including diet containing 2 and 1% lectin was 1.45 and 1.75 Uml?1, respectively. The achieved data showed that lectin, in addition to have toxic effect on the larval growth and development, affects the α-amylase activity of the insect gut.  相似文献   

11.
Beet armyworm (Spodoptera exigua (Hübner)) (Lepidoptera: Noctuidae) is the most economically important sugar beet (Beta vulgaris) pest worldwide. In this study, a comparison was made between two different diets: one was based on Merkx diet (Holidic diet) and the other was based on sugar beet leaf (Oligidic diet). Results showed that the whole development time from larvae to adult between two diets (Merkx and leaf) was not significantly different. For example, developmental time from first instar larvae to adult in Merkx diet was 11.33?days, whilst developmental time of larvae to adult when larvae fed with sugar beet leaf was 10.33?days. However, analysis of variance showed that in some cases like development time of the first instar, third instar and fifth instar larvae and pupae was significantly different between two treatments (p?<?0.05). Larval weight showed differences when larvae fed on Merkx diet and sugar beet leaves. For example, significant differences were shown between first, third and fourth instar larvae weight when larvae fed on Merkx diet and sugar beet leaves (p?<?0.05). However, significant differences were not observed between weight of second and fifth instar as well as pupae weight when larvae fed on Merkx diet and sugar beet leaves (p?>?0.05).  相似文献   

12.
Summary Using recombinant DNA techniques, we introduced a previously cloned streptokinase gene from Streptococcus equisimilis into the Challis strain of S. sanguis (group H). The gene was expressed in the new host under the control of its own promoter and the gene product had biological properties identical to authentic streptokinase. However, the molecular weight of cloned streptokinase (42 K) as expressed by S. sanguis was substantially lower than that of authentic streptokinase (47 K). Since the cloned streptokinase gene encoded a 47 K mature protein, the lowered molecular weight of S. sanguis streptokinase may reflect posttranslational proteolytic cleavage, which leaves the biological activity of the gene product and its serological reactivity unimpaired.  相似文献   

13.
Four experiments tested a range of doses of the growth-retardant glyphosine on sugar-beet crops between 1970 and 1972. The period of time between application and harvest was varied. One experiment (1972) in nutrient mist culture examined its effect on seedling root development. The growth-retardant decreased root, sugar and top yield of sugar beet at all doses in excess of 0·56 kg a.i. ha-1 at all treatment times. It increased the α-amino nitrogen content of beet roots significantly (P < 0·05) with doses in excess of 1·12 kg a.i. ha-1. When applied to the leaves of seedlings with their roots in nutrient mist culture, glyphosine at 500 ppm and 2000 ppm of a.i. in aqueous solution slowed or stopped root elongation.  相似文献   

14.
15.
The germination of conidia of Peronospora farinosa f. sp. betae, collected from sugar beet and suspended in deionized water, was inhibited by dilution with 10% solutions of glycerol, glucose or sucrose and with sap from sugar-beet leaves. Germination was stimulated by diluting with deionized water but not with tap water or biological saline. Substances that diffused from excised buds of sugar-beet plants into deionized water also stimulated germination of conidia but diffusates from leaves did not. This may partly explain why buds are more susceptible to downy mildew than leaves in sugar beet. Germination of conidia was apparently stimulated more by diffusates from buds of seedlings than by those from buds of older plants; this may help to explain why sugar-beet seedlings are more susceptible to downy mildew than older plants. Diffusates from plants of four sugar-beet stocks, that differed from each other in susceptibility to downy mildew, had very similar effects on germination of P. farinosa conidia. Stimulation of spore germination on the surfaces of buds and leaves did not seem, therefore, to be an important factor in determining resistance or susceptibility to downy mildew in these stocks.  相似文献   

16.

Background

During production of sugar beet (Beta vulgaris) seeds in greenhouses, workers frequently develop allergic symptoms. The aim of this study was to identify and characterize possible allergens in sugar beet pollen.

Methods

Sera from individuals at a local sugar beet seed producing company, having positive SPT and specific IgE to sugar beet pollen extract, were used for immunoblotting. Proteins in sugar beet pollen extracts were separated by 1- and 2-dimensional electrophoresis, and IgE-reactive proteins analyzed by liquid chromatography tandem mass spectrometry.

Results

A 14 kDa protein was identified as an allergen, since IgE-binding was inhibited by the well-characterized allergen Che a 2, profilin, from the related species Chenopodium album. The presence of 17 kDa and 14 kDa protein homologues to both the allergens Che a 1 and Che a 2 were detected in an extract from sugar beet pollen, and partial amino acid sequences were determined, using inclusion lists for tandem mass spectrometry based on homologous sequences.

Conclusion

Two occupational allergens were identified in sugar beet pollen showing sequence similarity with Chenopodium allergens. Sequence data were obtained by mass spectrometry (70 and 25%, respectively for Beta v 1 and Beta v 2), and can be used for cloning and recombinant expression of the allergens. As for treatment of Chenopodium pollinosis, immunotherapy with sugar beet pollen extracts may be feasible.  相似文献   

17.

Soil-borne fungus Fusarium oxysporum f. sp. betae (Fob) is the causative agent of Fusarium yellows in sugar beet. Leaf interveinal yellowing and root vascular discoloration significantly reduce root yield as well as sucrose content and juice purity. Fob, like other fungal pathogens, initiates disease development by secreting polygalacturonase (PG) enzymes to break down plant cell walls during early stages of infection. To protect themselves, plants produce polygalacturonase-inhibiting proteins (PGIPs). In our study of sugar beet root defense responses, several PGIP genes (BvPGIPs) were identified. To determine if BvPGIPs inhibit Fob PGs, genes BvPGIP1, BvPGIP2 and Bv(FC607)PGIP1 were fused with the CaMV 35S promoter and each was expressed individually in sugar beet hairy roots. We demonstrate that all three recombinant BvPGIP proteins inhibited Fob and F. oxysporum f. sp. gladioli (Fog) PGs. A comparable level of BvPGIP activity was observed against Fob PGs, while BvPGIP2 showed higher activity against Fog PGs. Similar results were obtained when recombinant PGIPs were used to bioassay effects on Fob and Fog spore germination and hyphal growth. This is a first report that documents F. oxysporum inhibition by overexpressing BvPGIPs that may lead to improved Fusarium yellows resistance in sugar beet.

  相似文献   

18.
Accumulation of various osmolytes was examined in plants of sugar beet cv. Janus grown under two soil water treatments: control (60% of the field water capacity; FWC) and drought (30–35% FWC). The water shortage started on the 61st day after emergence (DAE), at the stage of the beginning of tap-roots development and was imposed for 35 days. Osmotic potential of sugar beet plant organs, particularly tap-roots, was decreased significantly as a consequence of a long-term drought. Water shortage reduced univalent (K+, Na+) cations concentrations in the petioles and divalent (Ca2+, Mg2+) ions level in the mature and old leaves. Cation concentrations in the tap-roots were not affected by water shortage. The ratio of univalent to divalent cations was significantly increased in young leaves and petioles as a consequence of drought. Long-term water deficit caused a significant reduction of inorganic phosphorus (Pi) concentration in young and old leaves. Under the water stress condition, the concentration of proline was increased in all individual plant organs, except proline concentration in the youngest leaves. Drought treatment caused a significant increase of glycine betaine content in shoot without any change in tap-roots. Glucose concentrations were significantly increased only in tap-roots as the effect of drought. In response to water shortage the accumulation of sucrose was observed in all the examined leaves and tap-roots. Overall, a long-term drought activated an effective mechanism for osmotic adjustment both in the shoot and in the root tissues which may be critical to survival rather than to maintain plant growth but sugar beet organs accumulate different solutes as a response to water cessation.  相似文献   

19.
Heteroblasty of sugar beet cultivar Rizor was studied under field conditions for three growing seasons (2003, 2005, 2006) in a Randomized Complete Block (RCB) design experiment. Eleven leaf samplings, from early June till the end of October, were conducted each year and leaf shape parameters [leaf area (LA), centroid X or Y (CX or CY), length (L), width (W), average radial (AR), elongation (EL), shape factor (SF)] were determined by an image analysis system. During samplings, Leaf Area Index (LAI) was measured non-destructively. Significant year and sampling effects were found for all traits determined. With the progress of the growing season, leaves became smaller (LA, L, W, and AR were decreased) and rounded. The largest leaves were sampled in 2006 when LAI was highest. LA was strongly correlated with L and W with simple functions (y = 0.1933 x2.2238, r 2 = 0.96, p<0.001, and y = 28.693 x − 192.33, r 2 = 0.97, p< 0.001, respectively), which could be used for non-destructive LA determination. Also, LAI was significantly related with LA and leaf dimensions (L, W) suggesting that an easy, non-destructive determination of LAI under field conditions is feasible for sugar beet cv. Rizor. An erratum to this article is available at .  相似文献   

20.
Very little is known about the physiological interactions between plants and endophytic bacteria. We investigated the impact of three endophytic bacteria, Bacillus pumilus 2-1, Chryseobacterium indologene 2-2, and Acinetobacter johnsonii 3-1, on the photosynthetic capacity and growth of sugar beet. Endophyte-free plants were obtained first and infected with the bacteria. Measurements of total chlorophyll content revealed very significant differences between endophyte-free beet plants and some infected by endophytic bacteria. The maximum photochemical yield (Fv/Fm) was used to determine any photosynthetic effect on plants caused by biotic or abiotic factors. After 30 days of growth, there was significantly higher Fv/Fm for endophyte-infected than endophyte-free plants. The light response curves of beet showed that photosynthetic capacity was significantly increased in endophyte-infected plants. Photosynthesis of endophyte-free plants was saturated at 1,300 μmol m−2 s−1, whereas endophyte-infected plants were not saturated at the irradiance used. The effect seemed to be due to promotion of electron transport in the thylakoid membranes. Promotion of photosynthetic capacity in sugar beet was due to increased chlorophyll content, leading to a consequent increased carbohydrate synthesis. It is possible that the increased maximum yield of photosynthesis in sugar beet was promoted by phytohormones and produced by the bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号