首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
何茂  黄建辉 《植物学报》2010,45(1):59-65
锡林河流域草地灌木化表现为小叶锦鸡儿(Caragana microphylla)种群的扩张。为了研究放牧与小叶锦鸡儿种群扩张的关系, 从小叶锦鸡儿的种子产量和萌发入手, 分析放牧对小叶锦鸡儿生殖的直接影响(即放牧的直接影响)以及不同放牧处理下昆虫种群对小叶锦鸡儿生殖造成的影响(即放牧的间接影响)。通过比较不同处理下小叶锦鸡儿果荚的数量、种子产量以及昆虫对种子的取食, 发现放牧产生的直接影响和间接影响性质不同, 放牧的直接影响是不利于小叶锦鸡儿的繁殖,而其间接影响却对小叶锦鸡儿的繁殖有利, 且这两种影响在很大程度上会互相抵消。根据所得的研究结果可知在停止放牧之后的一段时间内, 小叶锦鸡儿种群扩张的可能性会增加, 因此在草地生态系统管理中应该注意这个问题。  相似文献   

2.
草地植物种群繁殖对策研究   总被引:10,自引:2,他引:8  
植物的繁殖包括有性繁殖和无性繁殖两大类型,克隆繁殖是一种较为特殊的营养繁殖方式。本文综述了草地种子植物的生殖分配及生殖投资,克隆生长以及放牧对草地植物种群繁殖的影响。植物种群生物量、能量和养分生殖分配是植物种群生殖分配的重要内容,不同植物在结实期营养元素及能量的配置上有着显著的区别,这可能是植物在长期进化过程中形成的生殖对策,是适应环境的结果。在种群水平上,中等强度以上的放牧干扰有利于植物的克隆生长,但有性生殖减弱。草原植物发达的营养繁殖或克隆生长方式是对放牧的适应性对策。  相似文献   

3.
不同放牧强度对人工草地牧草生殖分配及种子重量的影响   总被引:10,自引:0,他引:10  
包国章  康春莉  李向林 《生态学报》2002,22(8):1362-1366
不同放牧强度对白三叶,红三叶,鸭茅的生殖分配及种子千粒重影响极显著,一定强度的放牧干扰有利于提高休牧后三叶草的花序密度,但鸭茅花序密度却随放牧强度却随放牧强度的提高而出现明显下降,放牧草地三种牧草种群的生殖分配均低于对照草地,在放牧草地,随放牧强度的提高,白三叶生殖分配逐渐增加,红三叶及鸭茅生殖分配逐渐减少,提高放牧强度后,三叶草千粒重出现递减趋势,而鸭茅却出现递增趋势,在无放牧干扰草地,三叶草种群趋于生产数量较少的大粒种子,在放牧干扰下,趋于生产数量较多的小粒种子;鸭茅种群则出现相反的变化。  相似文献   

4.
《植物生态学报》2014,38(8):878
放牧是内蒙古草原最主要的利用方式, 而草原植物在不同放牧压力下的生长和繁殖策略是它们与有蹄类动物长期协同进化的结果。为了了解瓣蕊唐松草(Thalictrum petaloideum)的生长和繁殖策略如何响应载畜率的变化, 作者依托中国科学院内蒙古草原站的大型放牧实验平台, 从种群、个体和器官三个组织水平上研究了该物种对放牧强度的响应。结果表明: 1)在种群水平上, 随着载畜率的增加, 瓣蕊唐松草减少了生殖株丛数或不进行有性生殖生长。该实验条件下, 载畜率每hm 2 7.5只羊(夏季)是瓣蕊唐松草不再进行生殖生长的阈值; 2)在个体水平上, 随着载畜率的增加, 瓣蕊唐松草降低了株高和个体生物量, 减少了生殖枝、花朵和种子等生殖器官的数量。随着载畜率的增加, 瓣蕊唐松草生殖分配的调节从依赖于植株个体大小向不依赖于植株个体大小转变。3)在器官水平上, 随着载畜率的增加, 瓣蕊唐松草减少了生殖枝的花朵负荷, 提高了单粒质量。籽粒数量和籽粒质量之间的权衡是瓣蕊唐松草应对放牧干扰的重要机制。  相似文献   

5.
小叶锦鸡儿(Caragana microphylla)是我国内蒙古草原广泛分布的优势灌木,目前国内外有关小叶锦鸡儿水分利用来源的定量研究较少。该文运用氢稳定同位素法,分析了内蒙古小叶锦鸡儿木质部水和潜在水源(夏季降雨、冬季降雪和土壤水)的氢稳定同位素比率(δD)的季节变化,发现小叶锦鸡儿在遮雨处理和自然状态下δD季节变化差异不明显,分别为–101.36‰±13.02‰和–101.18‰±12.71‰。在遮雨处理条件下,小叶锦鸡儿主要利用0–20 cm土壤层水分,占其所利用水分的73.30%±16.14%;自然状态下,小叶锦鸡儿对0–20、20–60和60–100 cm不同土壤层土壤的水分利用较为均衡,分别为34.66%±7.83%、32.44%±7.42%和32.90%±4.14%。该结果表明不同生境下灌木与草本的水分竞争可能是小叶锦鸡儿对不同土层水分利用差异的原因。结合两源模型分析了降雨对各土壤层的贡献率,并用Iso Source多源混合模型分析了各土壤层对小叶锦鸡儿用水的贡献率,发现降雨对小叶锦鸡儿的贡献率为42.65%–63.92%。该结果反映了小叶锦鸡儿对夏季降雨和冬季融雪的利用情况。  相似文献   

6.
董轲  丁新峰  郝广  王金龙  赵念席  高玉葆 《生态学报》2021,41(14):5775-5781
由于全球气候变化及过度放牧等不合理利用,灌木入侵草地已经成为干旱半干旱草原区的一种普遍现象。本研究在内蒙古锡林郭勒草原区选择3处不同围封恢复年限(围封时间分别为1979,1983和2003年)的小叶锦鸡儿(Caragana microphylla)灌丛化草地,分析了围封年限对灌丛化草地关键种小叶锦鸡儿种群大小格局及灌丛间主要物种种间关联的影响,并从群落内物种生态位配置情况方面进行了相关机制的探讨。结果显示:(1)小叶锦鸡儿的冠幅大小分布结构的偏态系数在8/9的样区内大于0,表现为正偏态;随着围封年限的延长,在低、中灌丛化样区内,小叶锦鸡儿的冠幅有增大的趋势,这主要是由小于0.5 m冠幅的小叶锦鸡儿的减少或者消失导致的;(2)随着围封年限的延长,灌丛间多年生禾草生态位宽度(B)逐渐增大,表现为B1979围封 > B1983围封 > B2003围封;灌丛间主要物种种间关系由负关联作用(竞争作用)向正关联作用(促进作用)转变。本研究结果不仅揭示了围封条件下小叶锦鸡儿灌丛化草地群落结构的变化及发展趋势,同时也从关键种小叶锦鸡儿种群大小格局及灌丛间主要物种种间关联的角度对相关机制进行了解释,为该区域的合理利用及恢复政策的制定提供了数据支持及理论指导。  相似文献   

7.
种子大小和种子数量变异是植物适合度研究的核心问题, 探究不同大型草食动物对嵩草(Kobresia spp.)草地优势种种子大小与数量的影响, 有助于了解其繁殖策略和种群更新机制。该研究依托青藏高原高寒草地-家畜系统适应性管理技术平台, 对不放牧(对照)、牦牛单牧、藏羊单牧、牦牛藏羊1:2混牧、牦牛藏羊1:4混牧、牦牛藏羊1:6混牧6个放牧处理下矮生嵩草(K. humilis)的种子大小和数量特征, 种子大小和数量与生殖性状的关系, 种子大小和数量的权衡关系进行研究。结果显示: 1)放牧处理增加矮生嵩草种子大小15%以上, 增加种子数量30%以上; 除了牦牛藏羊1:2混牧处理, 其他放牧处理与对照相比种子大小变异系数降低15%以上, 种子数量变异系数降低25%以上。2) Pearson相关分析结果显示, 放牧处理下矮生嵩草种子数量、种子大小与生殖相关性状均呈正相关关系。3)放牧处理增加了矮生嵩草种子大小与数量的权衡, 单条生殖枝质量是影响种子大小与数量权衡的重要性状。研究表明, 即使是中度放牧, 家畜依旧是矮生嵩草资源获取的限制性因子; 长期的放牧改变了矮生嵩草性状间的潜在联系和权衡关系, 稳定了种子大小和种子数量特征, 并通过提高种子大小和种子数量的方式优化繁殖策略, 提高了子代的竞争力和适合度。  相似文献   

8.
植物的生态适应策略一直备受生态学者的关注,然而很少有研究能够整体地、系统地揭示植物适应草食动物的生态过程。本研究以内蒙古荒漠草原建群种短花针茅为研究对象,分析了重度放牧和不放牧处理下短花针茅的繁殖个体性状、种子性状以及土壤种子库和种群空间格局。研究结果表明,生殖个体性状方面,生殖枝数量对营养枝数量有正向影响;土壤种子库方面,短花针茅生殖个体基部的土壤种子库中短花针茅密度显著高于旁边裸地土壤种子库中短花针茅的密度,且与种子性状和裸地土壤种子库显著负相关;在种群空间格局方面,重度放牧下短花针茅种群空间聚集分布。我们的结果认为在重度放牧处理下,生殖活动在短花针茅的资源分配中处于主导地位;短花针茅植物种群通过调控种子形态特征,采用就近扩散的生态策略,促进了幼年种群与成年种群在较小的尺度上空间正关联,从而形成“安全岛”。  相似文献   

9.
赵婷婷  赵念席  高玉葆 《生态学报》2014,34(15):4280-4287
典型草原向灌丛化草原的转变是过度放牧引起的重要结果之一。为研究内蒙古地区小叶锦鸡儿灌丛化草原对围封禁牧的响应,在内蒙古锡林郭勒典型草原退化区选取小叶锦鸡儿成片分布的典型地段,自2003年,分别设置禁牧样区和放牧样区。于2008—2011年连续四年调查禁牧样区小叶锦鸡儿种群生长和生理生化指标及灌丛间群落基本特征,并将2011年禁牧样区与放牧样区小叶锦鸡儿种群与灌丛间群落进行比较。结果显示:(1)围封后小叶锦鸡儿种群开始衰退,主要体现在种群盖度的降低和叶片氮磷含量(特别是磷含量)有所降低,而个体构件生长状况无显著差异;(2)灌丛间群落的物种组成随围封年限增加发生显著变化:禁牧后1年生植物逐渐退出群落,多年生丛生禾草重要值随围封年限增加而显著增加,即围封禁牧对小叶锦鸡儿灌丛化草原的群落恢复有积极作用;(3)小叶锦鸡儿种群盖度与多年生丛生禾草的重要值显著负相关,说明两者之间存在竞争关系,推测多年生丛生禾草的竞争是禁牧后小叶锦鸡儿衰退的重要原因。  相似文献   

10.
朱慧  王德利  任炳忠 《生态学报》2017,37(21):7368-7374
在草地生态系统中,大型草食动物放牧是重要的管理方式之一,对草地生物多样性起着关键的驱动作用。昆虫是草地生态系统中生物多样性的重要组成成分,对生态系统的食物网结构以及其功能与稳定性起着关键作用。已有研究结果表明,大型草食动物与昆虫存在密切联系,放牧对草地昆虫多样性或有正向、或负向、或无明显作用,这依赖于放牧管理方式、昆虫类群以及草地类型。放牧必然通过直接(采食、践踏或粪尿)或间接(植物群落组成或植被结构)作用对昆虫多样性产生显著的影响。当前,关于大型草食动物放牧对草地昆虫多样性影响研究较多,但是,从研究系统性、深入性和延续性来说还存在一定问题。本文在综述国内外对放牧对草地昆虫多样性的影响研究基础上,提出了今后的研究方向,对于理解放牧管理的草地昆虫多样性变化规律,以及为积极探索维持草地昆虫多样性的长期有效的科学管理措施提供理论指导。  相似文献   

11.
In order to find out how small scale topographical factors affect growth and physiological characters of Caragana microphylla, which is a widely distributed shrub species and has an important role in restoring degraded grassland in natural ecosystem, a natural population of C. microphylla was chosen in a typical steppe community in June, 2009. The population was 34 km to the southeast of Xilinhot City, China, and a total of 54 shrubs were selected from different slope aspects and positions. We investigated the photosynthetic and morphological characters of these shrubs and analyzed the relationship between plant traits of C. microphylla and soil nitrogen and phosphorus availability. Moreover, the relationship between plant traits of C. microphylla and herbaceous aboveground biomass was studied. (1) The maximum net photosynthetic rate (Pnmax) was significantly lower on shady slopes than that on sunny slopes and higher on upper slopes than that on lower slopes. Stomatal conductance (Gs), net photosynthetic rate/intercellular CO2 concentration (Pn/Ci) and intercellular CO2 concentration (Ci) under saturated irradiance showed similar trends with slope aspect and position. Likewise, the maximum photochemical efficiency of PSII (Fv/Fm), PSII potential activity (Fv/Fo) and the first-year shoot morphological characters of C. microphylla were also correlated with slope aspect and position. (2) Soil nitrogen availability showed no significant effect on photosynthetic or morphological traits of C. microphylla, however, there were several significant relationships between soil phosphorus availability and plant traits. Dry weight, shoot length, compound leaf size, and leaflet length of first-year shoots of C. microphylla were significantly negatively correlated with soil C:P ratio. Though not significant, photosynthetic parameters under saturated light and other morphological characters of first-year shoots were negatively correlated with soil C:P ratio, i.e., these traits increased with increasing soil phosphorus availability. These suggested that the difference of soil phosphorus availability played an important role in making C. microphylla having different photosynthetic and morphological characters on different slope aspects and positions. The individuals grown in relatively P-rich site had longer shoots and larger leaves and grew better. Low phosphorus content was thought to limit photosynthetic activity through several different mechanisms, including both stomatal and non-stomatal limitations, the latter being more likely in the present study. (3) Photosynthetic and morphological characters of C. microphylla were all negatively correlated with herbaceous aboveground biomass, though only Pn/Ci and length of first-year shoot were significantly correlated with it. This indicated that the difference in plant community was a factor making C. microphylla have different growth and physiological characters on different aspects and positions of slope. A number of studies showed that grazing of the herbaceous layer promoted the establishment and proliferation of woody species, and then led to grassland deterioration; but in arid and semi-arid ecosystems, some widely distributed shrub species like C. microphylla created resource islands and provide favorable microhabitat for grass species. In the present study, we found negative correlations between traits of C. microphylla and herbaceous aboveground biomass. We suggested that the removal of livestock grazing result in the decrease of the distribution C. microphylla and increase of grass coverage, and lead to the restoration of the typical steppe.  相似文献   

12.
In order to find out how small scale topographical factors affect growth and physiological characters of Caragana microphylla, which is a widely distributed shrub species and has an important role in restoring degraded grassland in natural ecosystem, a natural population of C. microphylla was chosen in a typical steppe community in June, 2009. The population was 34 km to the southeast of Xilinhot City, China, and a total of 54 shrubs were selected from different slope aspects and positions. We investigated the photosynthetic and morphological characters of these shrubs and analyzed the relationship between plant traits of C. microphylla and soil nitrogen and phosphorus availability. Moreover, the relationship between plant traits of C. microphylla and herbaceous aboveground biomass was studied. (1) The maximum net photosynthetic rate (Pnmax) was significantly lower on shady slopes than that on sunny slopes and higher on upper slopes than that on lower slopes. Stomatal conductance (Gs), net photosynthetic rate/intercellular CO2 concentration (Pn/Ci) and intercellular CO2 concentration (Ci) under saturated irradiance showed similar trends with slope aspect and position. Likewise, the maximum photochemical efficiency of PSII (Fv/Fm), PSII potential activity (Fv/Fo) and the first-year shoot morphological characters of C. microphylla were also correlated with slope aspect and position. (2) Soil nitrogen availability showed no significant effect on photosynthetic or morphological traits of C. microphylla, however, there were several significant relationships between soil phosphorus availability and plant traits. Dry weight, shoot length, compound leaf size, and leaflet length of first-year shoots of C. microphylla were significantly negatively correlated with soil C:P ratio. Though not significant, photosynthetic parameters under saturated light and other morphological characters of first-year shoots were negatively correlated with soil C:P ratio, i.e., these traits increased with increasing soil phosphorus availability. These suggested that the difference of soil phosphorus availability played an important role in making C. microphylla having different photosynthetic and morphological characters on different slope aspects and positions. The individuals grown in relatively P-rich site had longer shoots and larger leaves and grew better. Low phosphorus content was thought to limit photosynthetic activity through several different mechanisms, including both stomatal and non-stomatal limitations, the latter being more likely in the present study. (3) Photosynthetic and morphological characters of C. microphylla were all negatively correlated with herbaceous aboveground biomass, though only Pn/Ci and length of first-year shoot were significantly correlated with it. This indicated that the difference in plant community was a factor making C. microphylla have different growth and physiological characters on different aspects and positions of slope. A number of studies showed that grazing of the herbaceous layer promoted the establishment and proliferation of woody species, and then led to grassland deterioration; but in arid and semi-arid ecosystems, some widely distributed shrub species like C. microphylla created resource islands and provide favorable microhabitat for grass species. In the present study, we found negative correlations between traits of C. microphylla and herbaceous aboveground biomass. We suggested that the removal of livestock grazing result in the decrease of the distribution C. microphylla and increase of grass coverage, and lead to the restoration of the typical steppe.  相似文献   

13.
Species composition, number of emerging seedlings, species diversity and functional group of the soil seed banks, and the influence of grazing on the similarity between the soil seed banks and aboveground vegetation, were studied in 2008 and 2009 in a semi‐arid savanna of Ethiopia. We tested whether the availability of persistent seeds in the soil could drive the transition from a degraded system under heavy grazing to healthy vegetation with ample perennial grasses. A total of 77 species emerged from the soil seed bank samples: 21 annual grasses, 12 perennial grasses, 4 herbaceous legumes, 39 forbs, and 1 woody species. Perennial grass species dominated the lightly grazed sites, whereas the heavily grazed sites were dominated by annual forbs. Heavy grazing reduced the number of seeds that can germinate in the seed bank. Species richness in the seed bank was, however, not affected by grazing. With increasing soil depth, the seed density and its species richness declined. There was a higher similarity in species composition between the soil seed bank and aboveground vegetation at the lightly grazed sites compared with the heavily grazed sites. The mean similarity between the seed banks and aboveground vegetation was relatively low, indicating the effect of heavy grazing. Moreover, seeds of perennial grasses were less abundant in the soil seed banks under heavy grazing. We concluded that restoration of grass and woody species from the soil seed banks in the heavily grazed areas could not be successful in semi‐arid savannas of Ethiopia.  相似文献   

14.
The Mediterranean landscape is characterized by a heterogeneous structure: a mosaic of woody plants (trees or shrubs) with scattered patches of herbaceous vegetation. Although the herbaceous and woody patches are adjacent to each other, plant species composition in them is substantially different. This could be attributed to either differences in environmental conditions between patch types (i.e., abiotic filters), or to dispersal limitations caused by the woody plants acting as dispersal filters. In this article, we focus on the relative impact of woody plants, applying these two filter types, in determining plant species composition in Mediterranean woodland. We experimentally manipulated shade and litter cover and examined the effect of each of these factors on plant species composition. We used seed-traps to evaluate seed arrival in the patches, and experimentally removed the shrub canopy to study the effect of the shrub as a physical barrier to seed entry. Results showed that plant species number and composition were not significantly affected by shade and litter manipulation. The number of trapped seeds were significantly higher in the open patches than in the woody patches, and removal of woody plants increased the number of trapped seeds in both open and woody patches, as a result of eliminating the physical obstacle to free seed movement. Our findings show that woody plants affect the herbaceous plant community by influencing seed dispersal, and highlight that they affect other organisms not only by modifying resource availability but also through the creation of a new landscape structure.  相似文献   

15.
Woody encroachment threatens prairie ecosystems globally, and thus understanding the mechanisms that facilitate woody encroachment is of critical importance. Coastal tallgrass prairies along the Gulf Coast of the US are currently threatened by the spread of several species of woody plants. We studied a coastal tallgrass prairie in Texas, USA, to determine if existing woody structure increased the supply of seeds from woody plants via dispersal by birds. Specifically, we determined if (i) more seedlings of an invasive tree (Tridacia sebifera) are present surrounding a native woody plant (Myrica cerifera); (ii) wooden perches increase the quantity of seeds dispersed to a grassland; and (iii) perches alter the composition of the seed rain seasonally in prairie habitats with differing amounts of native and invasive woody vegetation, both underneath and away from artificial wooden perches. More T. sebifera seedlings were found within M. cerifera patches than in graminoid‐dominated areas. Although perches did not affect the total number of seeds, perches changed the composition of seed rain to be less dominated by grasses and forbs. Specifically, 20–30 times as many seeds of two invasive species of woody plants were found underneath perches independent of background vegetation, especially during months when seed rain was highest. These results suggest that existing woody structure in a grassland can promote further woody encroachment by enhancing seed dispersal by birds. This finding argues for management to reduce woody plant abundance before exotic plants set seeds and argues against the use of artificial perches as a restoration technique in grasslands threatened by woody species.  相似文献   

16.
Semiarid woodlands and savannas are globally important biomes that provide ecosystem goods and services such as habitat for biota and sinks for carbon, support millions of people that rely primarily on pastoralism, and supply livelihoods for about a third of the global human population. Savannas, however, are prone to degradation by overgrazing, and encroachment by woody plants, reducing their capacity to produce forage that pastoral enterprises depend on. We examined the impacts of livestock grazing and woody encroachment on soil hydrological processes, hypothesizing that heavy grazing by livestock would reduce hydrological function, whereas woody plants would increase hydrological function, therefore, partially offsetting any negative effects of overgrazing by livestock. Understanding the major drivers of soil hydrology in savanna ecosystems is important because water is a critical, yet limited resource in savannas. We found that livestock grazing reduced the early (sorptivity) and late (steady-state infiltration) stages of infiltration under both ponding and tension, and attributed this to a reduction in porosity caused by livestock trampling. Steady-state infiltration and sorptivity under ponding were greater under the canopies of woody shrubs than in open areas, partly compensating for any negative effect of grazing. Structural equation modeling revealed a direct positive effect of shrub height on hydrological functions, and an indirect effect via increases in litter cover. Our results suggest that woody plants can play important roles in driving hydrological function in savannas, counteracting the suppressive effect of livestock overgrazing on infiltration processes. Management strategies in semiarid savannas should aim to reduce trampling by livestock and retain large woody plants in order to maintain hydrological function.  相似文献   

17.
Although grazing livestock may have direct negative effects on woody species through herbivory and trampling, (heavy-)grazing is often associated with woody plant encroachment. Two main mechanisms can explain the positive effects of grazers on woody cover: (1) Grazers reduce the interspecific competition with trees and may reduce fuel load, and (2) gut passage through livestock increases seedling establishment by scarification (increased germination) and fertilization by dung (higher survival and growth of seedlings). We tested the effects of fire, grass, cattle ingestion (transit) and dung on germination, seedling height and survival as well as on recruitment of Acacia sieberiana in a sub-humid grassland of South Africa. About 8,000 seeds were planted in the field in a randomized block design. The removal of grass by grazing and/or fire had the most important effect on Acacia recruitment in savanna. Our findings highlight the hierarchy of the main factors affecting Acacia recruitment, which provides new insights to the understanding of woody plant encroachment.  相似文献   

18.
木本植物多度在草原和稀树干草原中增加的研究进展   总被引:10,自引:2,他引:8  
熊小刚  韩兴国  陈全胜  潘庆民 《生态学报》2003,23(11):2436-2443
木本植物多度在草原和稀树干草原中增加已经成为全球范围普遍发生的现象。为揭示这一现象发生的原因,从放牧和气候变化与木本植物多度增加的关系、木本植物多度增加过程中的正反馈作用以及木本植物侵入的关键阶段——幼苗的补充和定居,这三个方面综述了目前的研究结果。强调放牧和气候变化之间的相互共同作用,可能引发了木本植物向草原和稀树干草原中的入侵;而生物引起的正反馈作用则进一步促进了木本植物的扩展。从生态系统干扰的角度,讨论了木本植物多度增加机制的复杂性,并指出木本植物幼苗补充和定居的连续性和间断性两种方式,对于草原和稀树干草原木本植物多度增加的贡献。  相似文献   

19.
土壤种子库是森林群落更新的主要来源之一,对森林的演替和恢复等具有重要意义。生境片段化现象正日益严重地影响着森林群落,并可影响森林土壤种子库。研究了千岛湖地区的大陆及岛屿次生马尾松林内土壤种子库的组成及其影响因素(e.g.,岛屿面积,形状指数,隔离度和距岛屿边缘距离等)。根据大陆和岛屿的面积及边缘梯度,采用大数量小样方法,分别在土壤种子库最大化(初冬,2015年12月)和最小化(晚春,2016年4月)时期对马尾松林内土壤进行了机械取样。对土壤样品进行萌发实验,检测了两个时期的土壤种子库上层(0—2 cm)和下层(2—5 cm)种子组成,并通过广义线性混合效应模型等手段分析其影响因素。结果显示:(1)所有316个土壤样本中,萌发出幼苗1422株,隶属于29科、40属、41种。其中,木本植物幼苗占13种1024株,草本占28种398株。(2)Jaccard指数和相关性分析均显示初冬、晚春时期的土壤种子库组成具有很高的相似性;土壤种子库上、下层组成的相似性也很高。(3)广义线性混合效应模型分析显示,在大陆和岛屿上,土壤种子库下层种子含量低于上层;而大陆样地土壤种子库中的木本植物种子数较岛屿样地高。岛屿上,土壤种子库中的种子数随土层的加深而降低;随边缘梯度升高也下降,尤其是草本植物的种子。对于岛屿上的木本植物,不耐阴种的种子数量远大于耐阴种,尤其是土壤下层。表明千岛湖地区马尾松林内土壤种子库组成受到生境片段化的影响,进而可能作用于该类型森林群落的演替。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号