首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants of two cultivars of Callistephus chinensis (Queen ofthe Market and Johannistag) were grown in 8 h of daylight perday with one of the following treatments given during the 16h dark period: (a) darkness—‘uninterrupted night’,(b) I h of light in the middle of the dark period—a ‘nightbreak’, (c) I min of light in every hour of the dark period—‘cycliclighting’, (d) light throughout—‘continuouslight’. The plants receiving uninterrupted dark periods remained compactand rosetted in habit with small leaves, while leaf expansion,stem extension, and flower initiation were promoted in all threeillumination treatments (b, c, d). Although these three treatmentsproduced similar increases in leaf area, continuous light wasthe most effective for the promotion of both stem growth andflower initiation while cyclic lighting was generally more effectivethan a I-h night break. Continuous light also caused more dry matter to be divertedto stems at any given vegetative dry weight and it was shownthat the stem weight ratio of both varieties was correlatedwith stem length.  相似文献   

2.
This review compares new developmental models on flowering andother vascular plants with evolutionary hypotheses formulatedby Agnes Arber (1879–1960) and like-minded botanists.Special emphasis is laid on philosophical basics such as perspectivism,pluralism about evolutionary modelling, continuum way of thinking,and fuzzy logic. Arber's perspective is best labelled as F uzzyA rberian M orphology (FAM Approach). Its proponents (‘FAMmers’)treat structural categories (e.g. ‘roots’, ‘shoots’,‘stems’, ‘leaves’, ‘stipules’)in vascular plants as concepts with fuzzy borderlines allowingintermediates (including transitional forms, developmental mosaics).The FAM Approach complements Cla ssical Plant M orphology (ClaMApproach), which is the traditional approach in botany. ClaMproponents (‘ClaMmers’) postulate that the structuralcategories of vascular plants are regarded as concepts withclear-cut borderlines and without intermediates. However, duringthe evolution of vascular plants, the root-shoot distinctionand the stem-leaf distinction have become blurred several timesdue to developmental changes, resulting in organs with uniquecombinations of features. This happened, for example, in thebladderworts (Utricularia, Lentibulariaceae). When focusingon the ‘leaf’, the FAM Approach is identical toArber's ‘partial-shoot theory of the leaf’ and Sinha's‘leaf shoot continuum model’. A compound leaf canrepeat the developmental pathway of the whole shoot, at leastto some degree. For example, compound leaves of Chisocheton(Meliaceae)with indeterminate apical growth and three-dimensional branchingmay be seen as developmental mosaics sharing some growth processeswith whole shoots! We focus here on the FAM Approach becausethis perspective is especially promising for developmental geneticistsstudying flowering and other vascular plants. Copyright 2001Annals of Botany Company Review, body plan, developmental mosaics, leaf development, history of botany, homeosis, homeotic genes, Lentibulariaceae, morphological evolution, process morphology, stipules, Utricularia, flowering plants  相似文献   

3.
The flowering requirements of six European varieties of Loliumperenne L. were studied in controlled environments. In experimentson primary induction, flowering was recorded after transferto long days (LD) in a greenhouse at 12–24°C. In experimentson secondary induction, primary induction was first accomplishedat 6°C/10 h daylength for 12 weeks. When evaluated by the50% heading criterion, the requirement for duration of primaryinduction at 6°C/8 h daylength was <3 weeks in Mediterranean,5–6 weeks in Central European and 7–8 weeks in Scandinavianvarieties. While ‘Veyo’ (Italy) flowered profuselyregardless of temperature or daylength during primary induction,critical temperatures for primary induction in SD and LD were15 and 11°C in ‘Baca’ (Czech Republic) and 11and 7°C in ‘Falster’ (Denmark). The criticalphotoperiod for secondary induction at 15°C ranged from12 h in ‘Veyo’ and 14 h in ‘Baca’ to16.5 h in ‘Falster’ and 17.5 in ‘Kleppe’(Norway). The critical number of LD cycles varied correspondingly.While the Central and North European varieties required fewerLD cycles for 50% heading at 18 than at 12°C, ‘Veyo’showed the opposite response. It is concluded that the requirementsfor both primary and secondary induction of Lolium perenne increasewith increasing latitude of origin of the germplasm. In oneexperiment, 39–87% of the inflorescences came from tillersthat were not visible on transfer from primary to secondaryinduction, thus it is also concluded that there is no juvenilestage in tillers of Lolium perenne. Copyright 2000 Annals ofBotany Company Daylength, flowering, juvenility, perennial ryegrass (Lolium perenne L.), primary induction, secondary induction, temperature, varieties, vernalization  相似文献   

4.
Two lines of perennial ryegrass (Lolium perenne) that had previouslybeen selected for ‘fast’ and ‘slow’rates of leaf dark respiration were examined to determine whetherselection had differentiated allelic or genotypic frequenciesof five polymorphic enzyme loci, and determine whether respirationrates differed among genotypes. The lines were differentiatedfor genes coding for phosphoglucose isomerase (PGI) and UDP-glucosepyrophosphorylase (UDP). Respiration rates were heterogeneousamong UDP and 6-phosphogluconate dehydrogenase (6PGD) genotypes.Founder effects may have produced the genetic differentiationof lines at the PGI locus as we detected no differences amonggenotypes for respiration rates. The genetic differentiationamong lines for UDP was consistent with differences in darkrespiration among genotypes. Although we detected large differences(75%) in dark respiration rate among 6PGD genotypes in the fastrespiring line, selection did not differentiate the lines atthis locus. Lolium perenne L., perennial ryegrass, enzyme polymorphisms, dark respiration rate  相似文献   

5.
The success of Triticum aestivumxZea mays crosses, used to producewheat doubled haploids, is influenced by light intensity. Toexamine the basis for this response, pollen tube growth, embryosurvival and indicators of photosynthetic rate were measuredin two wheat cultivars (‘Karamu’ and ‘Kotuku’)crossed with maize at two irradiance levels (250 or 750 µmolm-2s-1, PAR). Pollen tube growth was significantly affectedby light intensity in ‘Karamu’ plants but not in‘Kotuku’ plants, despite both cultivars being pollinatedby the same maize source. The percentage of pollen tubes reachingthe cavity between the ovarian wall and integuments, or in themicropyle of ‘Karamu’ plants at high light intensity(65%) was nearly three-times greater than that at low lightintensity (22%). Thus, either low light intensity can affectthe maternal wheat plant in a way that inhibits pollen tubegrowth and/or high light intensity may promote pollen tube growthin ‘Karamu’ plants. Significant differences in ratesof electron transport in plants grown at the two light intensitiesindicated that the rate of photosynthesis may also have an effecton pollen tube growth. These results have importance for improvingthe efficiency of wheat x maize crosses and other wide cerealcrosses. Copyright 2001 Annals of Botany Company Intergeneric hybridization, light intensity, pollen tube growth, embryo survival, Triticum aestivum, wheat,Zea mays , maize  相似文献   

6.
Complete submergence of rice plants (Oryza sativa L. cv. ‘IR42’)in dilute nutrient solution for 3–6 d almost stopped theaccumulation of dry matter, depressed soluble carbohydrate concentrationby over 75% and promoted chlorosis in fully expanded leaves.Increase in fresh weight by the shoots was not impaired. Extensionby the youngest visible leaf was stimulated. Extension by thenext leaf to appear was retarded by submergence. These growthresponses to submergence were associated with a 1-5-fold increasein the partial pressure of endogenous ethylene (ethene). Applying ethylene (0.3–0.35 Pa) in the gas-phase to non-submergedplants reproduced some, but not all, of these effects of submergence.Thus, greater leaf extension and chlorosis of submerged plantscould be attributable to accumulated ethylene but neither theslow relative growth rate nor the decreased extension of leavesemerging after the start of submergence could be so attributed. Two cultivars (‘FR13A’ and ‘Kurkaruppan’)already known to tolerate submergence, differed little fromsubmergence-intolerant ‘IR42’ in their relativegrowth rate and soluble carbohydrate concentration during submergence.However, their underwater leaf extension was less than in ‘IR42’and chlorosis was much less prevalent, especially in ‘FR13A’.Similarly, ethylene supplied to non-submerged plants was a lesseffective promotor of leaf extension and chlorosis in the twosubmergence tolerant cultivars. Application of 1.0 kPa carbondioxide in the gas-phase prevented the chlorosis response toethylene. The results indicate that accumulated ethylene is a likely causeof fast leaf extension and chlorosis in submergence intolerantforms of rice, particularly when amounts of dissolved carbondioxide are minimal. Key words: Oryza sativa L., aeration, ethylene (ethene), stress-tolerance  相似文献   

7.
ROBSON  M.J. 《Annals of botany》1982,49(3):331-339
Young plants of two selection lines of Lolium perenne cv. S23with ‘fast’ and ‘slow’ rates of ‘maturetissue’ respiration were individually grown from seed,together with plants of S23, their common parent, in 9.2 cmpots in a controlled environment at 20/15 °C day/night temperatures. No significant differences were found between the genotypesin leaf extension and tiller production during this early stageof their growth. They did differ however, by an average of 26%,in the rate of dark respiration of fully expanded leaf laminae.The use of a simple model demonstrated that such a differencein respiration could alone account for the different rates ofdry matter production shown by the selection lines when grownas young crops from seed. Possible penalties of ‘slow’respiration are also considered. Lolium perenne L., ryegrass, respiration, maintenance respiration, stimulated swards, leaf growth, tiller production, carbon economy  相似文献   

8.
Five Gladiolus cultivars, namely ‘Aldebaran’, ‘BrightEye’, ‘Illusion’, ‘Manisha’ and‘Manmohan’, were exposed to 1 and 2 µg l–1sulphur dioxide to test their relative-sensitivity toleranceto the pollutant Plants were fumigated experimentally for 2h daily Foliar injury symptoms were observed first in ‘Manisha’followed by ‘Aldebaran’ and ‘Illusion’at the higher dose Photosynthetic pigments and leaf extractpH were significantly decreased, particularly in ‘Manisha’and ‘Illusion’ Overall disturbances in the plantmetabolism due to SO2 treatment led to retarded growth of plants,as evident from decreased shoot length and phytomass valuesThe order of sensitivity of the five Gladiolus cultivars toSO2 was as follows, with the greatest first Manisha, Illusion,Aldebaran, Bright Eye, Manmohan Cultivars, Gladiolus, sensitivity, sulphur dioxide, tolerance  相似文献   

9.
Patterns of distribution of 14C were determined in 47-day-oldtomato plants (Lycopersicon esculentum Mill.) 24 h after theapplication of [14C]sucrose to individual source leaves fromleaves 1–10 (leaf 1 being the first leaf produced abovethe cotyledons). The first inflorescence of these plants wasbetween the ‘buds visible’ and the ‘firstanthesis’ stages of development. The predominant sink organs in these plants were the root system,the stem, the developing first inflorescence and the shoot ‘apex’(all tissues above node 10). The contribution made by individualsource leaves to the assimilate reaching these organs dependedupon the vertical position of the leaf on the main-stem axisand upon its position with respect to the phyllotactic arrangementof the leaves about this axis. The root system received assimilateprincipally from leaf 5 and higher leaves, and the stem apexfrom the four lowest leaves. The developing first inflorescencereceived assimilates mainly from leaves in the two orthostichiesadjacent to the radial position of the inflorescence on thevertical axis of the plant; these included leaves which weremajor contributors of 14C to the root system (leaves 6 and 8)and to the shoot apex (leaves 1 and 3). This pattern of distributionof assimilate may explain why root-restriction treatments andremoval of young leaves at the shoot apex can reduce the extentof flower bud abortion in the first inflorescence under conditionsof reduced photoassimilate availability. Lycopersicon esculentum Mill, tomato, assimilate distribution, source-sink relationships  相似文献   

10.
Differences in premature leaf abscission and in visible steminjury in genetic lines of poplar followed continuous fumigationswith air pollutant levels of SO2 (90–100 nl l–1)and O3 (70–80 nl l–1) either separately or together.The clones used were: Populus deltoides var. missiouriensisMarsh., P. nigra cv. ‘italicd’ L., and the hybridsP. nigra cv. ‘italica’ xP. deltoides (He-X/3) andP. nigra cv.‘italica’ x P. nigra cv. ‘Serres’(He-K/7). While most leaf abscission occurred within 20 d fromthe start of fumigation, stem lesions (intumescences), appearedonly after 72 d. Their anatomical characteristics include theformation of lysigenous aerenchyma in the lower parts of theintumescence, the sloughing of superficial cells from the injuredarea, and the development of crystalline formations on the surfaceof the lesions. P. deltoides exhibited the least morphologicalresponse to the gases. Ethylene released from fumigated leaves was determined at thesame gas concentration of SO2 (100 nl l–1), O3 (75 nll–1) and their mixture. Leaves of P. deltoides consistentlyshowed the lowest ethylene production after the gas treatments.P. ‘italica’ production was higher but was littlealtered by the treatments. The two hybrids He-X/3 and He-K/7showed the greatest increases in ethylene evolution with time.With He-K/7 exposed to the gas mixture the production of ethylenedecreased after the initial sharp rise during days 1–2,and reflected the considerable leaf damage observed after day3. The results suggest that sensitivity to air pollution, (as shownby leaf abscission and the formation of stem intumescences)can be correlated with the level of pollutant-induced ethyleneevolution from leaves. Initially high levels could induce abscission,whilst prolonged production could be responsible for intumescenceinitiation. The discussion proposes a series of events fromSO2 and/or O3 entry into the leaf and the physiological reasonsfor the clonal differences. Key words: Sulphur dioxide, ozone, ethylene, poplar, leaf abscission, stem lesions  相似文献   

11.
A comparison was made of effects of ‘low’ and ‘high’soil temperature (LST and HST, about 9 and 21·5 °Crespectively) on shoot growth of Norwegian and Portuguese populationsof Dactylis glomerata. In experiments lasting 8 short days (SD,8 h photoperiods) LST decreased leaf extension more markedlyin the Portuguese population. No differential effect of LSTon leaf growth was recorded in experiments lasting 20 or 21SD or in experiments of 8 d duration in long days (LD, 16 hphotoperiods). Since the meristem and region of cell extensionis close to the soil surface LST could directly influence bothroot and shoot growth. The application of gibberellic acid enhanced leaf extension,particularly in plants grown at HST. 6-Benzylaminopurine tendedto decrease leaf length. Extractable gibberellin levels wererelatively low after 8 SD in shoots of both races grown at LST.Cytokinin levels increased at LST, more so in shoots of Portugueseplants which sustained the greater reduction in leaf extension. The data suggest that LST may reduce the production of endogenousgibberellins important for leaf growth in Dactylis glomerata.Cytokinins are probably necessary for growth processes but theirlevel may reflect, rather than direct, the rate of leaf growth.  相似文献   

12.
ROBSON  M. J. 《Annals of botany》1982,49(3):321-329
Simulated swards of each of two selection lines of Lolium perennecv. S23 with ‘fast’ and ‘slow’ ratesof ‘mature tissue’ respiration were establishedin growth rooms at 20/15 °C day/night temperatures and studiedover four successive regrowth periods of 46, 30, 26 and 53 daysduration. The ‘slow’ line outyielded the ‘fast’,both in harvestable shoot (above a 5 cm cut) and in root andstubble. Its advantage increased over successive regrowth periodsto 23 per cent (total biomass). Gas analysis measurements onthe entire communities (including roots), during the final regrowthperiod, showed that the ‘slow’ line had a 22–34per cent lower rate of dark respiration per unit dry weight.This enabled it to maintain its greater mass of tissue for thesame cost in terms of CO2 efflux per unit ground area. Halfthe extra dry weight produced by the ‘slow’ line,relative to the ‘fast’, could be attributed to itsmore economic use of carbon. The rest could be traced to a 25per cent greater tiller number which enabled the ‘slow’line to expand leaf area faster (though not at a greater rateper tiller), intercept more light and fix more carbon, earlyin the regrowth period. Lolium perenne L., ryegrass, respiration, maintenance respiration, tiller production, simulated swards, canopy photosynthesis, carbon economy  相似文献   

13.
Gossypium hirsutum L. (upland cotton) and G. barbadense L. (Pimacotton) are two of the most important fibre producing cottonspecies in cultivation. When grown side-by-side in the field,G.hirsutum has higher photosynthetic and transpiration rates (Luet al., 1997. Australian Journal of Plant Physiology24: 693–700).The present study was undertaken to determine if the differencesin physiology can be explained by leaf and canopy morphologyand anatomy. Scanning electron microscopy was used to comparethe leaf anatomy of field-grown upland (‘Delta’and ‘Pine Land 50’) and Pima (‘S6’)cotton. Compared to G. hirsutum, mature leaves of G. barbadenseare larger and thinner, with a thinner palisade layer. G. barbadenseleaves show significant cupping or curling which allows fora more even absorption of insolation over the course of theday and much more light penetration into the canopy. AlthoughG. barbadense leaves have a 70–78% higher stomatal densityon both the abaxial and the adaxial surfaces, its stomates areonly one third the size of those of G. hirsutum. This resultsin G. barbadense having only about 60% of the stomatal surfacearea per leaf surface area compared to G. hirsutum. These resultsare indicative of the anatomical and physiological differencesthat may limit the yield potential of G. barbadense in certaingrowing environments. Copyright 2000 Annals of Botany Company Cotton, leaf anatomy, leaf development, photosynthesis, Gossypium hirsutum, Gossypium barbadense, stomatal density  相似文献   

14.
HUME  D.E. 《Annals of botany》1991,67(2):111-121
A detailed morphological study of three prairie grass cultivars(Bromus willdenowii Kunth) was conducted under ‘vegetative’and ‘reproductive’ growth conditions (short andlong photoperiods) and at different temperatures. Perennialryegrass (Lolium perenne L.) and Westerwolds ryegrass (Loliummuhiflorum Lam.) were compared during vegetative growth. Prairie grass had higher leaf appearance rates (leaves per tillerper day) and lower site filling (tillers per tiller per leafappearance interval) than the ryegrass species. Tillering rates(tillers per tiller per day) were also lower, except under vegetativeconditions at 4C. Low tiller number in prairie grass was notdue to lack of tiller sites but a result of poor filling ofthese sites. Lower site filling occurred because of increaseddelays in appearance of the youngest axillary tiller and lackof axillary tillers emerging from basal tiller buds. In prairiegrass, no tillers came from coleoptile buds while only occasionallydid prophyll buds develop tillers. Low tiller number in prairiegrass was compensated for by greater tiller weight. Prairiegrass had more live leaves per tiller, greater area per leafand a high leaf area per plant. Considerable variation between cultivars was found in prairiegrass. The cultivar ‘Bellegarde’ had high leaf appearance,large leaves and rapid reproductive development, but had lowlevels of site filling, tillering rate, final tiller numberand herbage quality during reproductive growth. ‘Primabel’tended to have the opposite levels for these parameters, while‘Grasslands Matua’ was intermediate and possiblyprovided the best balance of all plant parameters. prairie grass, Bromus willdenowii Kunth, perennial ryegrass, Lolium perenne L., Westerwolds ryegrass, Lolium multiflorum Lam., temperature, photoperiod, leaf appearance, leaf area, tillering, site filling, tillering sites, yield  相似文献   

15.
We wished to determine the nature of differences in epidermalcell numbers and dimensions between leaves of different lengthin mutants of barley (Hordeum vulgare L. ‘Himalaya’).Three comparisons were made: leaf one (L1)vs. leaf four (L4);wild typevs. nine dwarf mutants and wild typevs. a slender mutant.L1 was shorter than L4, and for most lines this was associatedwith a change in epidermal cell number for the blade, and inboth cell number and length for the sheath. Compared to wildtype, the smaller leaves of dwarf plants generally had shorterand fewer cells in both blade and sheath. The blade of slenderplants was the same length (L1) or longer (L4) than wild type,while the sheath was longer than that of wild type for bothL1 and L4. Slender plants had longer but fewer cells than thewild type along the blade of L1, and shorter but more cellsfor the blade of L4. In the sheath, slender plants had longerand more (L1) or fewer (L4) cells than did the wild type. ForL1, variation in blade width amongst the barley lines was associatedwith a change in file width and file number. For L4, blade widthvaried only with file number, except for slender plants wherenarrow blades were associated with reduced file width. Hencethere was no consistent correlation between changes in cellsize or cell (or file) number with changes in leaf length orwidth. Differences depended on the leaf (L1vs. L4), leaf part(bladevs. sheath), and the nature of the mutation (dwarfvs.slender). Barley (Hordeum vulgare L. ‘Himalaya’); leaf epidermis; dwarf mutant; slender mutant  相似文献   

16.
WARDLAW  C. W. 《Annals of botany》1957,21(3):436-437
In an attempt to shed new light on the nature of microphyllsand macrophylls, a study has been made of leaf inception inselected materials, including Psilotum, Tmesipteris and otherpteridophytes, and flowering plants such as Cuscuta with greatly‘reduced’ leaves. It is shown that the incipientprimordia of the small scale-like leaves of Psilotum and ofthe quite substantial, though microphyllous, laminate leavesof Tmesipteris are closely comparable and that there are noessential differences in the histological organization of incipientmicrophylls and incipient macrophylls. In parasitic speciessuch as Cuscuta, with small scale-like leaves, the organizationof the apical meristem and the inception of primordia are asin normal autotrophic species. The so-called ‘reduced’leaves and the microphyllous condition of some pteridophytesare attributable to a physiological-genetical limitation ofgrowth of primordia in the subapical regions of the shoot. Theconclusions which may be drawn from these observations are discussed.  相似文献   

17.
Three barley varieties (Atem, Arabic Abiad and Beecher) weregrown on a line source sprinkler to establish a gradient ofwater supply from rain-fed (218 mm) to fully irrigated (330mm). Developing ‘seeds’ were analysed for free grainproline at three stages up to maturity. At the milk stage allthree varieties showed a strong inverse correlation (r>0–95)between free proline and irrigation treatment. A pronouncedinter-varietal difference was evident with the relatively drought-intolerantAtem having 213 nmol seed–1 free proline when rain-fedas compared with Arabic Abiad or Beecher which had about 120nmol seed–1 free proline at this stage. By maturity thiscorrelation was lost in all varieties, with most of the freeproline being incorporated into protein. Prolamin protein production was not impaired by drought in anyof the varieties, when measured on a per seed basis. There wassome indication that it may even rise in concentration in severelydrought-stressed plants. The results are discussed in relation to the decline in finalgrain yield with increased water deficit. Each of the threevarieties tested showed different yield responses along theirrigation gradient. These may reflect the physiological tolerancesto drought of each variety. At the milk stage the measurementof free ‘grain’ proline as a diagnostic for droughtstress tolerance may be of some value. Key words: Drought stress, seed physiology, proline  相似文献   

18.
Four experiments were conducted to determine the effect of tradewinds in Guam, USA, on growth and gas exchange of three papaya(Carica papaya L.) cultivars. ‘Known You 1’, ‘Sunrise’,and ‘Tainung 2’ papaya seedlings at two differentstages of development were exposed to 0, 36 or 100% ambientwind. Wind exposure reduced stem height and leaf or stem dryweight in most cases, but had little influence on root growth.Net CO2assimilation (ACO2) at midday was lower for seedlingsexposed to wind than for those protected from wind. Dark respirationof exposed seedlings increased as much as 120% above that ofthe protected seedlings during the night. Wind exposure decreasedwhole plant evapotranspiration by up to 36% during the photoperiod,but increased evapotranspiration by 58–87% during thenocturnal period. Responses to wind exposure were similar amongcultivars, except that growth of ‘Tainung 2’ seedlingswas less affected by wind than that of the other cultivars.Seedlings that were exposed to the various wind treatments fromgermination onwards were less influenced by wind exposure thanwere seedlings that were grown in a protected nursery beforebeing exposed to the various wind treatments. These data indicatethat: (1) ambient trade winds in Guam are strong enough to decreasethe growth of papaya seedlings; (2) plant age influences theresponse; (3) stem and leaf growth are more influenced thanroot growth; and (4) decreasedACO2 and increased dark respirationmay be partly responsible for growth reduction. Copyright 2001Annals of Botany Company Carica papaya, gas exchange, wind  相似文献   

19.
The uptake of -aminoisobutyric acid (AIB) into protoplasts andinto 1 cm sections of leaves from 7 d old light-grown oats (Avenasativa L. cv. ‘Garry’) was studied. Both protoplastsand leaf sections with cuticle and epidermis removed accumulatedAIB against a concentration gradient although the rate of uptakeinto protoplasts was one-third to one-sixth that into leaf sections.AIB uptake into both protoplasts and leaf cells in situ wasstimulated by ‘aging,’ and low pH, and inhibitedby osmotic shock, respiratory poisons, and KCl concentrationsabove 1 mM. It was concluded that the rate of uptake of AIBand its accumulation ratio could be accounted for by the energyinherent in the proton-motive force, the proton-motive forcebeing the sum of the pH gradient and potential difference acrossthe plasma membrane. The similarities between oat mesophyllprotoplasts and leaf cells in situ suggest that these protoplastsare suitable material for the study of certain membrane-regulatedevents.  相似文献   

20.
Part 1, under the frontispiece portrait of Dr. N. B. Eales,the words ‘President 1948–1951’ should havebeen added. Page 103, line 49, for ‘Newton Collection’ read‘Norman Collection (Canon Norman)’. 185, line 37, for ‘capillaris’ read ‘capillacca’. 188, Table 1, for ‘bemoralis’. read ‘nemoralis’. 188, Table 2, for ‘Cochlicella acuta (Müll)? ventrosa(Fér.)’ read ‘Cochlicella ventrosa (Fér.)’. 191, line 24, for ‘araheo-’ read ‘archeo-’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号