首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kuwabara A  Ikegami K  Koshiba T  Nagata T 《Planta》2003,217(6):880-887
In this study, we examined the effects of ethylene and abscisic acid (ABA) upon heterophyllous leaf formation of Ludwigia arcuata Walt. Treatment with ethylene gas resulted in the formation of submerged-type leaves on terrestrial shoots of L. arcuata, while treatments with ABA induced the formation of terrestrial-type leaves on submerged shoots. Measurement of the endogenous ethylene concentration of submerged shoots showed that it was higher than that of terrestrial ones. In contrast, the endogenous ABA concentration of terrestrial shoots was higher than that of submerged ones. To clarify interactions of ethylene and ABA, simultaneous additions of these two plant hormones were examined. When L. arcuata plants were treated with these two plant hormones, the effects of ABA dominated that of ethylene, resulting in the formation of terrestrial-type leaves. This suggests that ABA may be located downstream of ethylene in signal transduction chains for forming heterophyllous changes. Further, ethylene treatment induced the reduction of endogenous levels of ABA in tissues of L. arcuata, resulting in the formation of submerged-type leaves. Thus the effects of ethylene and ABA upon heterophyllous leaf formation are discussed in relationship to the cross-talk between signaling pathways of ethylene and ABA.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - L/W ratio ratio of leaf length to width - LN leaf number - GAs gibberellins  相似文献   

2.
C. M. Willmer  R. Don  W. Parker 《Planta》1978,139(3):281-287
Straight-chain saturated fatty acids (C6-C11) and abscisic acid (ABA) accumulate in the leaves of Phaseolus vulgaris L. and Hordeum vulgare L. under water stress. ABA and certain of the fatty acids, particularly decanoic and undecanoic acid, can inhibit stomatal opening and cause stomatal closure in epidermal strips of Commelina communis L. depending on the incubating medium used. 10-4 M (±)-ABA inhibits opening in media containing either high or relatively low concentrations of KCl but causes closure only in the latter medium. The fatty acids (at 10-4 M) prevent opening in both media while significant closure of open stomata was caused only by undecanoic acid in both media and, additionally, by decanoic acid in the low-KCl medium. 10-4 M formic acid also caused stomatal closure and prevented opening to significant extents in the low-KCl medium (it was not tested in the high-KCl medium). The efficacy of undecanoic acid in causing 50% inhibition of opening is about three orders of magnitude lower than that of ABA. At a concentration of 10-3 M, nonanoic, decanoic and particularly undecanoic acid and all-trans-farnesol cause increased cell leakage in Beta vulgaris L. root tissue. Undecanoic acid (10-4 M) also causes some loss of guard cell integrity in C. communis within 1.5 h of treatment. ABA (10-4 M) reduces transpiration rates in barley and C. communis leaves when applied via the transpiration stream but decanoic and undecanoic acids did not have this effect. Transpiration was not affected when ABA or the fatty acids were applied to the leaf surfaces.Abbreviations ABA abscisic acid - RWC relative water content - SCFA short-chain fatty acids Deceased May 1977  相似文献   

3.
《Aquatic Botany》1987,28(1):89-96
A two-hormone system regulating leaf development in the heterophyllous amphibious angiosperm Proserpinaca palustris L. is described. Aerial shoots develop expanded, lanceolate, serrate leaves under long-day photoperiods (LD, 16 h light: 8 h dark), whereas growth under short days (SD, 10 h light: 14 h dark) induces dissected leaf formation. The photoperiodic effect on leaf development of aerial shoots involves changes in endogenous gibberellins (GAs) since plants grown under SD in the presence of GA3 develop expanded lanceolate serrate leaves. However, when submerged, shoots develop highly dissectedaquatic leaves regardless of photoperiod or GA3 treatment. In the present study, submerged plants exposed to 1.0 or 5.0 μM abscisic acid (ABA) developed aerial-type leaves typical of the photoperiod under which they were cultured. Both exogenous ABA (5.0 μM) and GA3 (10 μM) treatments were required for laminar expansion to occur on submerged shoots under SD. It is suggested that (1) leaf development in Proserpinaca is regulated by both endogenous GAs and ABA, and (2) the endogenous status of these phytohormones is modulated by different environmental stimuli of photoperiod and water stress, respectively. The adaptive significance of this mechanism is discussed.  相似文献   

4.
The conversion of 1-aminocyclopropane 1-carboxylic acid (ACC) to ethylene by hypocotyl segments of sunflower (Helianthus annuus L.) seedlings was inhibited by abscisic acid (ABA) and methyl jasmonate (Me-Ja), and this inhibitory effect increased with increasing concentration of both growth regulators. On the contrary, CaCl, enhanced ACC conversion to ethylene at the concentrations of 10-4 M and 5 x 10-4 M, however lower and higher concentrations had no significant action. CaCl, (5 x 10-4M) seemed to magnify the inhibition of the reaction induced by ABA, whereas it reduced (5 x 10-4M) and even abolished (10-3M) the inhibitory action of Me-Ja. The results obtained with a Ca2+ chelator (EGTA), a Ca2+ channel blocker (nifedipine) and calmodulin antagonists (W7 and TFP), given in association with ABA or Me-Ja, suggested that calcium was involved in the inhibition of ACC conversion to ethylene by ABA and Me-Ja through an interaction with calmodulin. However, the mechanism of action of the two growth regulators seemed to be different, since all treatments which resulted in a decrease in cytosolic Ca2+ concentration or in calmodulin action induced a decrease in the effect of ABA and an increase in the effect of Me-Ja.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane 1-carboxylic acid - EFE ethylene for enzyme - EGTA ethylene glycol-bis-2-aminoethyl tetraacetic acid - Me-Ja methyl jasmonate - NIF nifedipine - TFP trifluoperazine dihydrochloride - W7 N-(6-aminohexyl)5-chloro-l-naphthalenesulfonamide hydrochloride  相似文献   

5.
Abstract. Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40ng (g fr wt)−1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40ng (g fr wt)−1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of delectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.  相似文献   

6.
We have shown the presence of abscisic acid (ABA) in abaxial epidermal strips taken from Tulipa gesneriana and Commelina communis and that the ABA level rises in the epidermis when leaves are water stressed. ABA levels had risen 50% in the abaxial epidermis of C. communis 30 min after the leaves lost 10% of their fresh weight. Epidermis from both T. gesneriana and C. communis metabolize [14C]ABA to several products probably including phaseic acid (PA) and dihydrophaseic acid (DPA).Abbreviations ABA abscisic acid - RIA radioimmunoassay - PA phaseic acid - DPA dihydrophaseic acid - TLC thin-layer chromatography - GC gas chromatography  相似文献   

7.
In natural habitats Marsilea quadrifolia L. produces different types of leaves above and below the water level. In aseptic cultures growth conditions can be manipulated so that leaves of the submerged type are produced continuously. Under such conditions the application of either blue light or an optimal concentration of abscisic acid (ABA) induced the development of aerial-type leaves. When fluridone, an inhibitor of ABA biosynthesis, was added to the culture medium it did not prevent blue light induction of aerial leaf development. During blue light treatment the endogenous ABA level in M. quadrifolia leaves remained unchanged. However, after the plants were transferred to an enriched medium, the ABA level gradually increased, corresponding to a transition in development from the submerged type of leaves to aerial leaves. These results indicate that the blue light signal is not mediated by ABA. Therefore, in the regulation of heterophyllous determination, discrete pathways exist in response to environmental signals.  相似文献   

8.
Desiccation tolerance of broccoli microspore-derived embryos was induced by exogenous application of abscisic acid (ABA). Embryos, which were desiccated to about 10% water content, were estimated for viability after rehydration. Survival was dependent on the ABA concentration and the development stage of embryo, but not on the length of exposure period to ABA or genotype. Cotyledonary stage embryos acquired the highest desiccation tolerance when treated with 1×10-4M ABA. Under this condition, on average 27–48% of the desiccated embryos could convert into plants. Embryos treated with 1×10-6M ABA or no ABA or earlier development-staged embryos, such as globular and heart stages, lost viability after desiccation. A one day exposure to ABA had the similar effect on the induction of desiccation tolerance as a 7-day treatment. The dried embryos maintained their ability of plant conversion after three months of storage under room conditions. The plants derived from the desiccated embryos were not different in the morphology or ploidy level from those from non-desiccated ones.Abbreviations ABA abscisic acid - RH relative humidity  相似文献   

9.
This report investigates the physiological basis for the production of dimorphic leaves on the aquatic angiosperm Callitriche heterophylla. In nature, the leaf morphology of this plant depends on whether the shoot apex is submerged in or emergent from water. The water-form leaves that develop on submerged apices assume a long, linear shape in contrast to the short, obovate appearance of land forms on emergent apices. The parameters of length/width ratio and stomatal density were used as developmental indices to characterize how natural conditions, fluctuating water levels and other experimental treatments affect leaf shape. Transferring submerged and emergent shoots to the alternative culture conditions caused immature leaves to assume the characteristics appropriate to their new environment. Moreover, the treatments of 0.24 mol mannitol, high temperature (30 C) and 10−-5 m abscisic acid induced submerged shoots to produce land-form leaves whereas 10−-5 m gibberellic acid mediated the development of water-form leaves on emergent shoots. Water, osmotic and pressure potentials of immature leaves in the control and experimental treatments were determined by thermocouple psychrometry. Under natural conditions, growing water forms exhibited high turgors (3–5 bars) while developing land forms showed much lower turgors (0–1 bar). Similar correlations between turgor pressure and leaf morphology were observed in the case of the gibberellic acid and mannitol treatments. However, abscisic acid and high temperature caused the developing land-form leaves to exhibit high turgors without a concomitant change to the water-form morphology. Microscopic measurements of epidermal cells established that irrespective of the experimental conditions, water-form leaves had longer and narrower epidermal cells with less convoluted anticlinal walls than land forms. Cell counts indicated that the numbers of epidermal cells did not account for the observed differences in leaf morphology. The results are interpreted in terms of how cell expansion might regulate leaf morphology in aquatic angiosperms.  相似文献   

10.
S. T. C. Wright 《Planta》1980,148(4):381-388
Abscisic acid (ABA) inhibits the production of ethylene induced by water stress in excised wheat leaves and counteracts the stimulatory effect of 6-benzyladenine (BA) on this process. The stimulatory effect of BA and the inhibitory effect of ABA were equally pronounced whether external or endogenous ethylene levels were determined. When leaves were sprayed or floated on solutions of BA, indole-3-acetic acid (IAA), gibberellic acid (GA3), or ABA, the relative activities of these growth regulators on stress-induced ethylene at 10-4 mol l-1 were BA>IAA >GA3>controls>ABA. In non-stressed leaves, however, where the levels of ethylene produced were 2–20 times smaller, the relative activities were IAA >BA>GA3>controls>ABA. The effects of BA and ABA spray treatment on water stress induced ethylene were closely similar whether the solutions were applied 2 or 18 h prior to the initiation of water stress. The relationships between the levels of endogenous growth regulators in the plant and ethylene release induced by water stress are discussed.Abbreviations BA 6-benzyladenine - IAA indole-3-acetic acid - GA3 gibberellic acid - ABA abscisic acid - GLC gas-liquid chromatography - leaf leaf water potential  相似文献   

11.
Plants were regenerated from the in vitro cultured explants of primary leaves of cowpea (Vigna unguiculata L. Walp). Primary leaves, including the intact petiole, were excised from three-day-old seedlings and cultured on Gamborg's B5 basal medium containing 8×10–7 M 2,4,5-trichlorophenoxyacetic acid, 1×10–2 M L-glutamine and 1×10–4 M adenine sulfate. Callus formed at the petiole end. Prolific shoot regeneration occurred when this callus was transferred to B5 basal medium containing 5×10–6 M 6-benzyl-aminopurine (BAP). Regenerated shoots rooted in growth-regulator-free B5 basal medium and were established in soil.Abbreviations BAP 6-benzylaminopurine - IAA indole-3-acetic acid - NAA 1-napthalene acetic acid - 2,4,5-T 2,4,5-trichloro-phenoxyacetic acid  相似文献   

12.
S. T. C. Wright 《Planta》1981,153(2):172-180
Light was found to inhibit substantially (i.e. up to 88%) the production of ethylene induced by water stress in excised wheat leaves and from the shoots of intact plants. The relatively small amounts of ethylene emanating fron non-stressed leaves were also inhibited by light but to a smaller degree (i.e. up to 61%). In water-stressed leaves the degree of light inhibition of ethylene production was shown to be related to the age of the leaves; the amounts of ethylene diffusing from young leaves (i.e. 6-days old) was inhibited 52% by light whereas in older leaves (i.e. 9-days old) it was inhibited by 85%. Previous studies [Wright (1979) Planta 144, 179–188 and (1980) Planta 148, 381–388] had shown that application of 6-benzyladenine (BA) to leaves a day before wilting, greatly increases the amount of ethylene diffusing from the leaves following wilting (e.g. 8-fold), and to smaller degrees do applications of indole-3-acetic acid (IAA) and gibberellic acid (GA3). On the other hand abscisic acid (ABA) treatment reduces the amount of ethylene produced. In these earlier experiments the ethylene was collected from leaves held under dark or near-dark conditions, so in the present study the activities of these growth regulators (10-4 mol l-1 solutions) under dark and light conditions were compared. It was found that they maintained the same relative activities on ethylene emanation (i.e. BA>IAA>GA3>water controls>ABA) under both light and dark conditions. However, because of the inhibitory effect of light, the absolute amounts of ethylene produced from all treatments were always much higher in the dark than in the light (usually about a 6-fold difference). An interesting effect of light treatment on ethylene biosynthesis was found when water-stressed leaves were kept in dark chambers for 41/2 h and then transferred to light. Quite unexpectedly, instead of the rate of ethylene production falling immediately, it continued to be produced at the dark rate (i.e. no light inhibition!) for over 2 h before the rate began to decline, and for a much longer period (i.e. in excess of 41/2 h) if the leaves had previously been sprayed with BA. Predictably, leaves placed in the light (i.e. in leaf chambers) and then transferred to darkness, immediately or very soon produced ethylene at the dark rate. One explanation of these results, which is discussed, would be that the biosynthesis of an ethylene precursor requires an obligatory dark stage. The possible implications of these studies to a survival role of ethylene in plants during periods of water stress is discussed.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA 6-benzyladenine - GA3 gibberellic acid - GLC gas-liquid chromatography - IAA indole-3-acetic acid - TLC thin-layer chromatography - leaf leaf water potential  相似文献   

13.
Hayat  S.  Ahmad  A.  Mobin  M.  Fariduddin  Q.  Azam  Z.M. 《Photosynthetica》2001,39(1):111-114
The leaves of 30-d-old plants of Brassica juncea Czern & Coss cv. Varuna were sprayed with 10–6 M aqueous solutions of indole-3-yl-acetic acid (IAA), gibberellic acid (GA3), kinetin (KIN), and abscisic acid (ABA) or 10–8 M of 28-homobrassinolide (HBR). All the phytohormones, except ABA, improved the vegetative growth and seed yield at harvest, compared with those sprayed with deionised water (control). HBR was most prominent in its effect, generating 32, 30, 36, 70, 25, and 29 % higher values for dry mass, chlorophyll content, carbonic anhydrase (E.C. 4.2.1.1) activity, and net photosynthetic rate in 60-d-old plants, pods per plant, and seed yield at harvest, over the control, respectively. The order of response to various hormones was HBR > GA3 > IAA > KIN > control > ABA.  相似文献   

14.
George J. P. Murphy 《Planta》1984,160(3):250-255
Metabolism of R,S-[2-14C]abscisic acid (ABA) was studied in detached leaves of six wheat (Triticum aestivum) cultivars, using non-stressed leaves or leaves water stressed by desiccation to 90% of their original fresh weight. The rate constant of ABA metabolism was similar in nonstressed leaves of all cultivars. Water stress resulted in significantly lower rate constants in two cultivars which accumulated high levels of ABA when stressed, the constants decreasing by a factor of about 1.5. Rate constants for the remainder of the cultivars were not significantly different from those for the non-stressed controls. It was calculated that if decreased metabolism was the mechanism for the accumulation of ABA following water stress the rate constants of metabolism would have to be reduced by a factor of between 25 and 70. The results therefore support the hypothesis that enhanced synthesis rather than reduced degradation is the main process by which ABA levels are elevated following experimentally induced water stress. There were differences between the six cultivars in the products of ABA metabolism. Over the time period studied, oxidation to phaseic acid and dihydrophaseic acid as well as to other unidentified metabolites appeared to be the predominant pathway of ABA metabolism, rather than conjugation to ABA glucose ester and other more polar compounds.Abbreviations ABA abscisic acid - ABAGE abscisic-acid glucose ester - DPA dihydrophaseic acid - PA phaseic acid  相似文献   

15.
High frequency shoot regeneration from leaf explants of muskmelon   总被引:2,自引:0,他引:2  
Efficient in vitro plant regeneration systems are critical for many purposes including plant transformation. Current regeneration systems for melon (Cucumis melo L.) plants generally utilize cotyledon explants; regeneration from melon leaves has received limited attention. We investigated several factors that influence regeneration from melon leaves including: genotype growth conditions and age of the source plant, leaf age, explant orientation, gelling agent, and the addition of silver nitrate and sulfonylurea herbicide to the culture media. Critical factors that influenced regeneration were preculture conditions of the donor plants, leaf size, and the use of silver nitrate and Phytagel in the medium. The best results were obtained with 3–4 cm diam leaves excised from pot grown greenhouse or growth chamber plants cultured on MS medium with 5 M IAA, 5 M BA, 1 M ABA, 30 M silver nitrate and 2.6 g l-1 Phytagel. Low concentratons of sulfonylurea herbicide (0.25 mg l-1 DPX-M 6316) also enhanced regeneration. Under optimized conditions 80–100% of the explants regenerated, with 10–100 shoots per explantAbbreviations ABA abscisic acid - BA benzyladenine - IAA indole-3-acetic acid - MS Murashige and Skoog medium - NAA naphthalene acetic acid  相似文献   

16.
The effects of in-vivo and in-vitro abscisic acid (ABA) treatments on the surface charge density () of barley (Hordeum vulgare L.) thylakoids were compared using 9-aminoacridine fluorescence. The estimated surface charge density of isolated thylakoid membranes from control (non-treated) barley leaves was-0.065 C · m-2. The net negative surface charge density decreased after application of various concentrations of ABA (10-6, 10-5 M) for 7 d in-vivo, the more pronounced effect being observed at 10-5 M ABA. When ABA was added to the suspension of isolated thylakoids the opposite effect was observed. The average charge density increased in in-vitro-treated thylakoids at 10-5 M ABA to -0.081 C · m-2. The results are discussed in terms of a specific ABA-induced influence of the composition and-or stoicheometry of charged protein complexes within the thylakoid membranes.Abbreviations and Symbols ABA abscisic acid - 9AA 9-aminoacridine - C, C K+ and Mg2+ concentrations giving equal relative fluorescence - F 9AA-fluorescence intensity - Fmax maximum 9AA fluorescence - surface charge density The authors are grateful to Professor L.P. Popova (Institute of Plant Physiology, Sofia, Bulgaria) for continuous support. This work was supported in part by the Bulgarian Ministry of Science and High Education under research contract No. 519.  相似文献   

17.
A. Chanson  P. E. Pilet 《Planta》1982,154(6):556-561
The tips of intact maize (cv. LG 11) roots, maintained vertically, were pretreated with a droplet of buffer solution or a bead of anion exchange resin, both containing [214-C]abscisic acid (ABA). A significant basipetal ABA movement was observed and two metabolites of ABA (possibly phaseic acid and dihydrophaseic acid) were found. ABA pretreatment enhanced the gravireaction of 10 mm apical root segments kept both in the dark and in the light. The possibility that ABA could be one of the endogenous growth inhibitors produced or released by the cap cells is discussed.Abbreviations ABA abscisic acid - 3,3-DGA 3,3-dimethyl-glutaric acid - DPA dihydrophaseic acid - PA phaseic acid - GCMS gas chromatography-mass spectrometry  相似文献   

18.
Fluridone, an inhibitor of abscisic acid (ABA) biosynthesis, strongly stimulated rooting of nodal stem segments of potato (Solanum tuberosum L.) cultivar Arran Banner cultured in darkness on tuberisation medium. Inclusion of 10-6 M ABA in the culture medium prevented this rooting response, indicating that root proliferation in the presence of fluridone could be due to inhibition of ABA synthesis. The rooting response to fluridone (increased total root number and root fresh weight) was obtained only at high sucrose concentrations (0.175 and 0.234 M) and was demonstrated with two potato cultivars and two culture media; one which favoured tuberisation and one which did not. Shoot numbers were also increased, but to a lesser extent than root numbers, and total fresh weight of plant material per culture was greatly increased by inclusion of both fluridone (10-6 or 10-5 M) and 0.234 M sucrose in the culture medium. The role of sucrose was not simply osmotic because when the osmolarity of fluridone medium was increased using mixtures of mannitol and sucrose, no root proliferation occurred unless sucrose predominated in the mixture.  相似文献   

19.
L. D. Incoll  G. C. Whitelam 《Planta》1977,137(3):243-245
Transpiration from excised leaves of Anthephra pubescens Nees was enhanced by 1 and 10 mmol m-3 kinetin. Stomatal opening in isolated epidermal strips of A. pubescens under CO2-free air and in the absence of K+ was enhanced by 10 mmol m-3 kinetin.Abbreviations ABA abscisic acid  相似文献   

20.
Randy Moore  James D. Smith 《Planta》1984,162(4):342-344
Ten-d-old seedlings of Zea mays L. cv. Tx 5855 treated with 1-methyl-3-phenyl-5-(3-[trifluoromethyl]phenyl)-4-(1H)-pyridinone (Fluridone) were analyzed for abscisic acid (ABA) content using high-performance liquid chromatography with an analysis sensitivity of 2.5 ng ABA g-1 fresh weight (FW). Seedlings were divided into three portions: leaves, detipped roots, and root tips (terminal 1.5 mm). Control plants (water treatment only; no Fluridone) were characterized by the following amounts of ABA: leaves, 0.114±0.024 (standard deviation) g ABA g-1 FW; detipped roots, 0.260±0.039±g ABA g-1 FW; root tips, no ABA detected. We did not detect any ABA in tissues of Fluridone-treated plants. Primary roots of treated and untreated seedlings were strongly graviresponsive, with no significant differences between the curvatures or the growth rates of primary roots of Fluridone-treated and control seedlings. These results indicate that 1) Fluridone completely inhibits ABA synthesis, and 2) ABA is not necessary for positive gravitropism by primary roots of Zea mays.Abbreviations ABA abscisic acid - Fluridone 1-methyl-3-phenyl-5-(3-[trifluoromethyl]phenyl)-4-(1H)-pyridinone - FW fresh weight - SD standard deviation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号