首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Cytochrome oxidases are perfect model substrates for analyzing the assembly of multisubunit complexes because the need for cofactor incorporation adds an additional level of complexity to their assembly. cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) consist of the catalytic subunit CcoN, the membrane-bound c-type cytochrome subunits CcoO and CcoP, and the CcoQ subunit, which is required for cbb(3)-Cox stability. Biogenesis of cbb(3)-Cox proceeds via CcoQP and CcoNO subcomplexes, which assemble into the active cbb(3)-Cox. Most bacteria expressing cbb(3)-Cox also contain the ccoGHIS genes, which encode putative cbb(3)-Cox assembly factors. Their exact function, however, has remained unknown. Here we analyzed the role of CcoH in cbb(3)-Cox assembly and showed that CcoH is a single spanning-membrane protein with an N-terminus-out-C-terminus-in (N(out)-C(in)) topology. In its absence, neither the fully assembled cbb(3)-Cox nor the CcoQP or CcoNO subcomplex was detectable. By chemical cross-linking, we demonstrated that CcoH binds primarily via its transmembrane domain to the CcoP subunit of cbb(3)-Cox. A second hydrophobic stretch, which is located at the C terminus of CcoH, appears not to be required for contacting CcoP, but deleting it prevents the formation of the active cbb(3)-Cox. This suggests that the second hydrophobic domain is required for merging the CcoNO and CcoPQ subcomplexes into the active cbb(3)-Cox. Surprisingly, CcoH does not seem to interact only transiently with the cbb(3)-Cox but appears to stay tightly associated with the active, fully assembled complex. Thus, CcoH behaves more like a bona fide subunit of the cbb(3)-Cox than an assembly factor per se.  相似文献   

2.
Multi-step assembly pathway of the cbb3-type cytochrome c oxidase complex   总被引:1,自引:0,他引:1  
The cbb3-type cytochrome c oxidases as members of the heme-copper oxidase superfamily are involved in microaerobic respiration in both pathogenic and non-pathogenic proteobacteria. The biogenesis of these multisubunit enzymes, encoded by the ccoNOQP operon, depends on the ccoGHIS gene products, which are proposed to be specifically required for co-factor insertion and maturation of cbb3-type cytochrome c oxidases. Here, the assembly of the cbb3-type cytochrome c oxidase from the facultative photosynthetic model organism Rhodobacter capsulatus was investigated using blue-native polyacrylamide gel electrophoresis. This process involves the formation of a stable but inactive 210 kDa sub-complex consisting of the subunits CcoNOQ and the assembly proteins CcoH and CcoS. By recruiting monomeric CcoP, this sub-complex is converted into an active 230 kDa CcoNOQP complex. Formation of these complexes and the stability of the monomeric CcoP are impaired drastically upon deletion of ccoGHIS. In a ccoI deletion strain, the 230 kDa complex was absent, although monomeric CcoP was still detectable. In contrast, neither of the complexes nor the monomeric CcoP was found in a ccoH deletion strain. In the absence of CcoS, the 230 kDa complex was assembled. However, it exhibited no enzymatic activity, suggesting that CcoS might be involved in a late step of biogenesis. Based on these data, we propose that CcoN, CcoO and CcoQ assemble first into an inactive 210 kDa sub-complex, which is stabilized via its interactions with CcoH and CcoS. Binding of CcoP, and probably subsequent dissociation of CcoH and CcoS, then generates the active 230 kDa complex. The insertion of the heme cofactors into the c-type cytochromes CcoP and CcoO precedes sub-complex formation, while the cofactor insertion into CcoN could occur either before or after the 210 kDa sub-complex formation during the assembly of the cbb3-type cytochrome c oxidase.  相似文献   

3.
Cytochrome cbb3-type oxidases are members of the heme copper oxidase superfamily and are composed of four subunits. CcoN contains the heme b-CuB binuclear center where oxygen is reduced, while CcoP and CcoO are membrane-bound c-type cytochromes thought to channel electrons from the donor cytochrome into the binuclear center. Like many other bacterial members of this superfamily, the cytochrome cbb3-type oxidase contains a fourth, non-cofactor-containing subunit, which is termed CcoQ. In the present study, we analyzed the role of CcoQ on the stability and activity of Rhodobacter capsulatus cbb3-type oxidase. Our data showed that CcoQ is a single-spanning membrane protein with a Nout-Cin topology. In the absence of CcoQ, cbb3-type oxidase activity is significantly reduced, irrespective of the growth conditions. Blue native polyacrylamide gel electrophoresis analyses revealed that the lack of CcoQ specifically impaired the stable recruitment of CcoP into the cbb3-type oxidase complex. This suggested a specific CcoQ-CcoP interaction, which was confirmed by chemical cross-linking. Collectively, our data demonstrated that in R. capsulatus CcoQ was required for optimal cbb3-type oxidase activity because it stabilized the interaction of CcoP with the CcoNO core complex, leading subsequently to the formation of the active 230-kDa cbb3-type oxidase complex.  相似文献   

4.
5.
Eraso JM  Kaplan S 《Biochemistry》2000,39(8):2052-2062
Activation of photosynthesis (PS) gene expression by the PrrBA two-component activation system in Rhodobacter sphaeroides 2.4.1 results from the interruption of an inhibitory signal originating from the cbb(3) cytochrome c oxidase via its interaction with oxygen, in conjunction with the Rdx redox proteins. The CcoQ protein, encoded by the ccoNOQP operon, which encodes the cbb(3) cytochrome c oxidase, was shown to act as a "transponder" that conveys the signal derived from reductant flow through cbb(3) to oxygen, to the Prr system. To further define the elements comprising this signal transduction pathway we considered the prrC gene product, which to date possessed no definable role in this signal transduction pathway despite its being part of the prrBCA gene cluster. Similar to mutations in cbb(3) and rdx, suitably constructed prrC deletion mutations lead to PS gene expression in the presence of high oxygen. Unlike mutations that remove cbb(3) terminal oxidase activity or Rdx function, the PrrC deletion mutant shows no effect upon cbb(3) activity, nor does it affect the ratio of the carotenoid (Crt) spheroidene (SE) to spheroidenone (SO). Thus, the PrrC deletion mutant behaves identically to the CcoQ deletion mutant. Taking these and previous results together, we suggest that PrrC is located upstream of the two-component PrrBA activation system in the signal transduction pathway but downstream of the cbb(3) cytochrome c oxidase and its "transponder" CcoQ. The PrrC deletion mutant was also shown to lead to an increase in the DorA protein under aerobic conditions as was shown earlier for the cbb(3) mutant. Finally, PrrC is a member of a highly conserved family of proteins found in both prokaryotes and eukaryotes, and this appears to be the first instance in which a direct regulatory role has been ascribed to a member of this protein family.  相似文献   

6.
Cytochrome cbb(3) oxidase, a member of the heme-copper oxidase superfamily, is characterized by its high affinity for oxygen while retaining the ability to pump protons. These attributes are central to its proposed role in the microaerobic metabolism of proteobacteria. We have completed the first detailed spectroscopic characterization of a cytochrome cbb(3) oxidase, the enzyme purified from Pseudomonas stutzeri. A combination of UV-visible and magnetic CD spectroscopies clearly identified four low-spin hemes and the high-spin heme of the active site. This heme complement is in good agreement with our analysis of the primary sequence of the ccoNOPQ operon and biochemical analysis of the complex. Near-IR magnetic CD spectroscopy revealed the unexpected presence of a low-spin bishistidine-coordinated c-type heme in the complex. This was shown to be one of two c-type hemes in the CcoP subunit by separately expressing the subunit in Escherichia coli. Separate expression of CcoP also allowed us to unambiguously assign each of the signals associated with low-spin ferric hemes present in the X-band EPR spectrum of the oxidized enzyme. This work both underpins future mechanistic studies on this distinctive class of bacterial oxidases and raises questions concerning the role of CcoP in electron delivery to the catalytic subunit.  相似文献   

7.
The cbb3 cytochrome c oxidase has the dual function as a terminal oxidase and oxygen sensor in the photosynthetic bacterium, Rhodobacter sphaeroides. The cbb3 oxidase forms a signal transduction pathway together with the PrrBA two-component system that controls photosynthesis gene expression in response to changes in oxygen tension in the environment. Under aerobic conditions the cbb3 oxidase generates an inhibitory signal, which shifts the equilibrium of PrrB kinase/phosphatase activities towards the phosphatase mode. Photosynthesis genes are thereby turned off under aerobic conditions. The catalytic subunit (CcoN) of the R. sphaeroides cbb3 oxidase contains five histidine residues (H214, H233, H303, H320, and H444) that are conserved in all CcoN subunits of the cbb3 oxidase, but not in the catalytic subunits of other members of copper-heme superfamily oxidases. H214A mutation of CcoN affected neither catalytic activity nor sensory (signaling) function of the cbb3 oxidase, whereas H320A mutation led to almost complete loss of both catalytic activity and sensory function of the cbb3 oxidase. H233V and H444A mutations brought about the partial loss of catalytic activity and sensory function of the cbb3 oxidase. Interestingly, the H303A mutant form of the cbb3 oxidase retains the catalytic function as a cytochrome c oxidase as compared to the wild-type oxidase, while it is defective in signaling function as an oxygen sensor. H303 appears to be implicated in either signal sensing or generation of the inhibitory signal to the PrrBA two-component system.  相似文献   

8.
It has been a long-standing hypothesis that the endosymbiotic rhizobia (bacteroids) cope with a concentration of 10 to 20 nM free O2 in legume root nodules by the use of a specialized respiratory electron transport chain terminating with an oxidase that ought to have a high affinity for O2. Previously, we suggested that the microaerobically and anaerobically induced fixNOQP operon of Bradyrhizobium japonicum might code for such a special oxidase. Here we report the biochemical characteristics of this terminal oxidase after a 27-fold enrichment from membranes of anaerobically grown B. japonicum wild-type cells. The purified oxidase has TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) oxidase activity as well as cytochrome c oxidase activity. N-terminal amino acid sequencing of its major constituent subunits confirmed that presence of the fixN,fixO, and fixP gene products. FixN is a highly hydrophobic, heme B-binding protein. FixO and FixP are membrane-anchored c-type cytochromes (apparent Mrs of 29,000 and 31,000, respectively), as shown by their peroxidase activities in sodium dodecyl sulfate-polyacrylamide gels. All oxidase properties are diagnostic for it to be a member of the cbb3-type subfamily of heme-copper oxidases. The FixP protein was immunologically detectable in membranes isolated from root nodule bacteroids, and 85% of the total cytochrome c oxidase activity in bacteroid membranes was contributed by the cbb3-type oxidase. The Km values for O2 of the purified enzyme and of membranes from different B. japonicum wild-type and mutant strains were determined by a spectrophotometric method with oxygenated soybean leghemoglobin as the sole O2 delivery system. The derived Km value for O2 of the cbb3-type oxidase in membranes was 7 nM, which is six- to eightfold lower than that determined for the aerobic aa3-type cytochrome c oxidase. We conclude that the cbb3-type oxidase supports microaerobic respiration in endosymbiotic bacteroids.  相似文献   

9.
By using a modified purification procedure in which we have substituted detergent exchange gel filtration for DEAE-cellulose or hydroxylapatite chromatography (Mason, T. L., Poyton, R. O., Wharton, D. C., and Schatz, G. (1973) J. Biol. Chem. 248, 1346-1354), we have isolated yeast cytochrome c oxidase preparations which are low in contaminating polypeptides and which have been successfully used for the large scale purification of subunits. Subunits have been purified from this preparation by a simple two-step procedure which involves: 1) the release of subunits IV and VI from an "insoluble" core composed of subunits I, II, III, V, and VII; and 2) gel filtration of the "core" subunits in the presence of sodium dodecyl sulfate. Molecular weights of the isolated subunits, obtained from sodium dodecyl sulfate gel retardation coefficients (KR) derived from Ferguson plots, were: I, 54,000; II, 31,000; III, 29,500; IV, 14,500; V, 12,500; VI, 9,500; VII, 4,500. In their purified state all subunits, except for subunit V, exhibited electrophoretic behavior similar to that exhibited by unpurified subunits in sodium dodecyl sulfate-dissociated holoenzyme preparations. As purified, subunit V exhibits a slightly smaller apparent molecular weight than its counterpart in the holoenzyme. Amino acid analysis of the isolated subunits revealed that subunit III, a mitochondrial translation product, contained 41.9% polar amino acids, whereas subunits V and VII, cytoplasmic translation products, each contained 47.7% polar amino acids. These results extend and support our previous finding that the mitochondrially translated subunits of yeast cytochrome c oxidase are more hydrophobic than the cytoplasmically translated subunits.  相似文献   

10.
The respiratory chain enzymes of microaerophilic bacteria should play a major role in their adaptation to growth at low oxygen tensions. The genes encoding the putative NADH:quinone reductases (NDH-1), the ubiquinol:cytochrome c oxidoreductases (bc1 complex) and the terminal oxidases of the microaerophiles Campylobacter jejuni and Helicobacter pylori were analysed to identify structural elements that may be required for their unique energy metabolism. The gene clusters encoding NDH-1 in both C. jejuni and H. pylori lacked nuoE and nuoF, and in their place were genes encoding two unknown proteins. The NuoG subunit in these microaerophilic bacteria appeared to have an additional Fe-S cluster that is not present in NDH-1 from other organisms; but C. jejuni and H. pylori differed from each other in a cysteine-rich segment in this subunit, which is present in some but not all NDH-1. Both organisms lacked genes orthologous to those encoding NDH-2. The subunits of the bc1 complex of both bacteria were similar, and the Rieske Fe-S and cytochrome b subunits had significant similarity to those of Paracoccus denitrificans and Rhodobacter capsulatus, well-studied bacterial bc1 complexes. The composition of the terminal oxidases of C. jejuni and H. pylori was different; both bacteria had cytochrome cbb3 oxidases, but C. jejuni also contained a bd-type quinol oxidase. The primary structures of the major subunits of the cbb3-type (terminal) oxidase of C. jejuni and H. pylori indicated that they form a separate group within the cbb3 protein family. The implications of the results for the function of the enzymes and their adaptation to microaerophilic growth are discussed.  相似文献   

11.
Oh JI  Kaplan S 《Biochemistry》1999,38(9):2688-2696
We have previously shown that the flow of reductant through the cbb3 terminal cytochrome c oxidase of Rhodobacter sphaeroides is essential to the repression of photosynthesis (PS) gene expression in the presence of oxygen by inhibiting the functional activity of the Prr two-component activation system. To gain further insight into the role of the cbb3 oxidase and the cognate ccoNOQP operon in the oxygen regulation of PS gene expression, we constructed nonpolar, in-frame deletions within the ccoN and ccoQ genes. Whereas mutations in ccoN, ccoQ, and ccoP resulted in PS gene expression in the presence of oxygen, only the ccoQ mutation showed both the normal flow of reductant through the cbb3 oxidase and the absence of any alteration in the relative levels of spheroidene and spheroidenone, as is observed for those mutations in the cco operon that result in the loss of terminal oxidase activity. Consistent with these findings is the observation that extra copies of the ccoNOQP operon in trans resulted in the decreased formation of both the B800-850 and B875 spectral complexes under anaerobic growth conditions. These results in conjunction with our earlier findings indicate that (1) the flow of reductant through the cbb3 terminal oxidase is a prerequisite to the regulation of PS gene expression by the Prr two-component regulatory system, (2) the CcoQ protein is involved in conveying the signal derived from reductant flow through the cbb3 terminal oxidase to the Prr regulatory pathway, (3) there is reductant flow through this terminal oxidase under anaerobic conditions, and as a result, the activity of the Prr system is still subject to cbb3 regulation, and (4) the acceptor for reductant flow through cbb3 under anaerobic conditions is in whole or in part involved in the conversion of spheroidene to spheroidenone.  相似文献   

12.
Pitcher RS  Brittain T  Watmough NJ 《Biochemistry》2003,42(38):11263-11271
Cytochrome cbb(3) oxidase, from Pseudomonas stutzeri, contains a total of five hemes, two of which, a b-type heme in the active site and a hexacoordinate c-type heme, can bind CO in the reduced state. By comparing the cbb(3) oxidase complex and the isolated CcoP subunit, which contains the ligand binding bishistidine-coordinated c-type heme, we have deconvoluted the contribution made by each center to CO binding. A combination of rapid mixing and flash photolysis experiments, coupled with computer simulations, reveals the kinetics of the reaction of c-type heme with CO to be complex as a result of the need to displace an endogenous axial ligand, a property shared with nonsymbiotic plant hemoglobins and some heme-based gas sensing domains. The recombination of CO with heme b(3), unlike all other heme-copper oxidases, including mitochondrial cytochrome c oxidase, is independent of ligand concentration. This observation suggests a very differently organized dinuclear center in which CO exchange between Cu(B) and heme b(3) is significantly enhanced, perhaps reflecting an important determinant of substrate affinity.  相似文献   

13.
W Dowhan  C R Bibus    G Schatz 《The EMBO journal》1985,4(1):179-184
Yeast cytochrome c oxidase contains three large subunits made in mitochondria and at least six smaller subunits made in the cytoplasm. There is evidence that the catalytic centers (heme a and copper) are associated with the mitochondrially-made subunits, but the role of the cytoplasmically-made subunits has remained open. Using a gene interruption technique, we have now constructed a Saccharomyces cerevisiae mutant which lacks the largest of the cytoplasmically-made subunits (subunit IV). This mutant is devoid of cyanide-sensitive respiration, the absorption spectrum of cytochrome aa3 and cytochrome c oxidase activity. It still contains the other cytochrome c oxidase subunits but these are not assembled into a stable complex. Active cytochrome c oxidase was restored to the mutant by introducing a plasmid-borne wild-type subunit IV gene; no restoration was seen with a gene carrying an internal deletion corresponding to amino acid residues 28-66 of the mature subunit. Subunit IV is thus necessary for proper assembly of cytochrome c oxidase.  相似文献   

14.
Cytochrome caa3, a cytochrome c oxidase from Thermus thermophilus, is a two-subunit enzyme containing the four canonical metal centers of cytochrome c oxidases (cytochromes a and a3; copper centers CuA and CuB) and an additional cytochrome c. The smaller subunit contains heme C and was termed the C-protein. We have cloned the genes encoding the subunits of the oxidase and determined the nucleotide sequence of the C-protein gene. The gene and deduced primary amino acid sequences establish that both the gene and the protein are fusions with a typical subunit II sequence and a characteristic cytochrome c sequence; we now call this subunit IIc. The protein thus appears to represent a covalent joining of substrate (cytochrome c) to its enzyme (cytochrome c oxidase). In common with other subunits II, subunit IIc contains two hydrophobic segments of amino acids near the amino terminus that probably form transmembrane helices. Variability analysis of the Thermus and other subunit II sequences suggests that the two putative transmembrane helices in subunit II may be located on the surface of the hydrophobic portion of the intact cytochrome oxidase protein complex. Also in common with other subunits II is a relatively hydrophilic intermembrane domain containing a set of conserved amino acids (2 cysteines and 2 histidines) which have previously been proposed by others to serve as ligands to the CuA center. We compared the subunit IIc sequence with that of related proteins. N2O reductase of Pseudomonas stutzeri, a multi-copper protein that appears to contain a CuA site (Scott, R.A., Zumft, W.G., Coyle, C.L., and Dooley, D.M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4082-4086), contains a 59-residue sequence element that is homologous to the "CuA sequence motif" found in cytochrome oxidase subunits II, including all four putative copper ligands. By contrast, subunit II of the Escherichia coli quinol oxidase, cytochrome bo, also contains a region homologous to the CuA motif, but it lacks the proposed metal binding histidine and cysteine residues; this is consistent with the apparent absence of CuA from cytochrome bo.  相似文献   

15.
The cytochrome o complex of the Escherichia coli aerobic respiratory chain is a ubiquinol oxidase. The enzyme consists of at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and contains two heme b prosthetic groups (b555 and b562) plus copper. The sequence of the cyo operon, encoding the subunits of the oxidase, reveals five open reading frames, cyoABCDE. This paper describes results obtained by expressing independently cyoA and cyoB in the absence of the other subunits of the complex. Polyclonal antibodies which react with subunits I and II of the purified oxidase demonstrate that cyoA and cyoB correspond to subunit II and subunit I, respectively, of the complex. These subunits are stably inserted into the membrane when expressed. Furthermore, expression of cyoB (subunit I) results in elevated heme levels in the membrane. Reduced-minus-oxidized spectra suggest that the cytochrome b555 component is present but that the cytochrome b562 component is not. This heme component is shown to bind to CO, as it does in the intact enzyme. Hence, subunit I alone is sufficient for the assembly of the stable CO-binding heme component of this oxidase.  相似文献   

16.
The genes for a new type of a haem-copper cytochrome oxidase were cloned from Rhodobacter capsulatus strain 37b4, using the Bradyrhizobium japonicum fixNOQP gene region as a hybridizing probe. Four genes, probably organized in an operon (ccoNOQP), were identified; their products share extensive amino acid sequence similarity with the FixN, O, Q and P proteins that have recently been shown to be the subunits of a cb-type oxidase. CcoN is a c-type cytochrome, CcoO and CcoP are membrane-bound mono- and dihaem c-type cytochromes and CcoQ is a small membrane protein of unknown function. Genes for a similar oxidase are also present in other non-rhizobial bacterial species such as Azoto-bacter vinelandii, Agrobacterium tumefaciens and Pseudomonas aeruginosa, as revealed by polymerase chain reaction analysis. A ccoN mutant was constructed whose phenotype, in combination with the structural information on the gene products, provides evidence that the CcoNOQP oxidase is a cytochrome c oxidase of the cb type, which supports aerobic respiration in R. capsulatus and which is probably identical to the cbb3-type oxidase that was recently purified from a different strain of the same species. Mutant analysis also showed that this oxidase has no influence on photosynthetic growth and nitrogen-fixation activity.  相似文献   

17.
As part of our goal to reconstruct human evolution at the DNA level, we have been examining changes in the biochemical machinery for aerobic energy metabolism. We find that protein subunits of two of the electron transfer complexes, complex III and complex IV, and cytochrome c, the protein carrier that connects them, have all undergone a period of rapid protein evolution in the anthropoid lineage that ultimately led to humans. Indeed, subunit IV of cytochrome c oxidase (COX; complex IV) provides one of the best examples of positively selected changes of any protein studied. The rate of subunit IV evolution accelerated in our catarrhine ancestors in the period between 40 to 18 million years ago and then decelerated in the descendant hominid lineages, a pattern of rate changes indicative of positive selection of adaptive changes followed by purifying selection acting against further changes. Besides clear evidence that adaptive evolution occurred for cytochrome c and subunits of complexes III (e.g., cytochrome c(1)) and IV (e.g., COX2 and COX4), modest rate accelerations in the lineage that led to humans are seen for other subunits of both complexes. In addition the contractile muscle-specific isoform of COX subunit VIII became a pseudogene in an anthropoid ancestor of humans but appears to be a functional gene in the nonanthropoid primates. These changes in the aerobic energy complexes coincide with the expansion of the energy-dependent neocortex during the emergence of the higher primates. Discovering the biochemical adaptations suggested by molecular evolutionary analysis will be an exciting challenge.  相似文献   

18.
Neisseria gonorrhoeae is a microaerophile that, when oxygen availability is limited, supplements aerobic respiration with a truncated denitrification pathway, nitrite reduction to nitrous oxide. We demonstrate that the cccA gene of Neisseria gonorrhoeae strain F62 (accession number NG0292) is expressed, but the product, cytochrome c2, accumulates to only low levels. Nevertheless, a cccA mutant reduced nitrite at about half the rate of the parent strain. We previously reported that cytochromes c4 and c5 transfer electrons to cytochrome oxidase cbb3 by two independent pathways and that the CcoP subunit of cytochrome oxidase cbb3 transfers electrons to nitrite. We show that mutants defective in either cytochrome c4 or c5 also reduce nitrite more slowly than the parent. By combining mutations in cccAc2), cycAc4), cycBc5), and ccoP (ccoP-C368A), we demonstrate that cytochrome c2 is required for electron transfer from cytochrome c4 via the third heme group of CcoP to the nitrite reductase, AniA, and that cytochrome c5 transfers electrons to nitrite reductase by an independent pathway. We propose that cytochrome c2 forms a complex with cytochrome oxidase. If so, the redox state of cytochrome c2 might regulate electron transfer to nitrite or oxygen. However, our data are more consistent with a mechanism in which cytochrome c2 and the CcoQ subunit of cytochrome oxidase form alternative complexes that preferentially catalyze nitrite and oxygen reduction, respectively. Comparison with the much simpler electron transfer pathway for nitrite reduction in the meningococcus provides fascinating insights into niche adaptation within the pathogenic neisseriae.  相似文献   

19.
The catalytic core of cytochrome c oxidase is composed of three subunits where subunits I and II contain all of the redox-active metal centers and subunit III is a seven transmembrane helix protein that binds to subunit I. The N-terminal region of subunit III is adjacent to D132 of subunit I, the initial proton acceptor of the D pathway that transfers protons from the protein surface to the buried active site approximately 30 A distant. The absence of subunit III only slightly alters the initial steady-state activity of the oxidase at pH 6.5, but activity declines sharply with increasing pH, yielding an apparent pK(a) of 7.2 for steady-state O(2) reduction. When subunit III is present, cytochrome oxidase is more active at higher pH, and the apparent pK(a) of steady-state O(2) reduction is 8.5. Single-turnover experiments show that proton uptake through the D pathway at pH 8 slows from >10000 s(-1) in the presence of subunit III to 350 s(-1) in its absence. At low pH (5.5) the D pathway of the oxidase lacking subunit III regains its capacity for rapid proton uptake. Analysis of the F --> O transition indicates that the apparent pK(a) of the D pathway in the absence of subunit III is 6.8, similar to that of steady-state O(2) reduction (7.2). The pK(a) of D132 itself may decline in the absence of subunit III since its carboxylate group will be more exposed to solvent water. Alternatively, part of a proton antenna for the D pathway may be lost upon removal of subunit III. It is proposed that one role of subunit III in the normal oxidase is to maintain rapid proton uptake through the D pathway at physiologic pH.  相似文献   

20.
The formation of the mature cytochrome c oxidase (complex IV) involves the association of nuclear- and mitochondria-encoded subunits. The assembly of nuclear-encoded subunits like cytochrome c oxidase subunit 4 (Cox4) into the mature complex is poorly understood. Cox4 is crucial for the stability of complex IV. To find specific biogenesis factors, we analyze interaction partners of Cox4 by affinity purification and mass spectroscopy. Surprisingly, we identify a complex of Cox4, the mitochondrial Hsp70 (mtHsp70), and its nucleotide-exchange factor mitochondrial GrpE (Mge1). We generate a yeast mutant of mtHsp70 specifically impaired in the formation of this novel mtHsp70-Mge1-Cox4 complex. Strikingly, the assembly of Cox4 is strongly decreased in these mutant mitochondria. Because Cox4 is a key factor for the biogenesis of complex IV, we conclude that the mtHsp70-Mge1-Cox4 complex plays an important role in the formation of cytochrome c oxidase. Cox4 arrests at this chaperone complex in the absence of mature complex IV. Thus the mtHsp70-Cox4 complex likely serves as a novel delivery system to channel Cox4 into the assembly line when needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号